core.c 37.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Common code for the NVMe target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
8
#include <linux/random.h>
9
#include <linux/rculist.h>
10
#include <linux/pci-p2pdma.h>
11
#include <linux/scatterlist.h>
12

M
Minwoo Im 已提交
13 14 15
#define CREATE_TRACE_POINTS
#include "trace.h"

16 17
#include "nvmet.h"

18
struct workqueue_struct *buffered_io_wq;
19
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20
static DEFINE_IDA(cntlid_ida);
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

/*
 * This read/write semaphore is used to synchronize access to configuration
 * information on a target system that will result in discovery log page
 * information change for at least one host.
 * The full list of resources to protected by this semaphore is:
 *
 *  - subsystems list
 *  - per-subsystem allowed hosts list
 *  - allow_any_host subsystem attribute
 *  - nvmet_genctr
 *  - the nvmet_transports array
 *
 * When updating any of those lists/structures write lock should be obtained,
 * while when reading (popolating discovery log page or checking host-subsystem
 * link) read lock is obtained to allow concurrent reads.
 */
DECLARE_RWSEM(nvmet_config_sem);

40 41 42 43
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);

44 45 46 47 48
inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
{
	u16 status;

	switch (errno) {
49 50 51
	case 0:
		status = NVME_SC_SUCCESS;
		break;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
	case -ENOSPC:
		req->error_loc = offsetof(struct nvme_rw_command, length);
		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
		break;
	case -EREMOTEIO:
		req->error_loc = offsetof(struct nvme_rw_command, slba);
		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
		break;
	case -EOPNOTSUPP:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		switch (req->cmd->common.opcode) {
		case nvme_cmd_dsm:
		case nvme_cmd_write_zeroes:
			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
			break;
		default:
			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
		}
		break;
	case -ENODATA:
		req->error_loc = offsetof(struct nvme_rw_command, nsid);
		status = NVME_SC_ACCESS_DENIED;
		break;
	case -EIO:
		/* FALLTHRU */
	default:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		status = NVME_SC_INTERNAL | NVME_SC_DNR;
	}

	return status;
}

85 86 87 88 89 90
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn);

u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
		size_t len)
{
91 92
	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
93
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94
	}
95 96 97 98 99
	return 0;
}

u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
100 101
	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
102
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103
	}
104 105 106
	return 0;
}

107 108
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
109 110
	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
111
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112
	}
113 114 115
	return 0;
}

116 117 118 119 120 121 122 123 124 125 126
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
	struct nvmet_ns *ns;

	if (list_empty(&subsys->namespaces))
		return 0;

	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
	return ns->nsid;
}

127 128 129 130 131
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}

132
static void nvmet_async_events_process(struct nvmet_ctrl *ctrl, u16 status)
133 134 135 136
{
	struct nvmet_async_event *aen;
	struct nvmet_req *req;

137 138 139 140
	mutex_lock(&ctrl->lock);
	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
		aen = list_first_entry(&ctrl->async_events,
				       struct nvmet_async_event, entry);
141
		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
142 143
		if (status == 0)
			nvmet_set_result(req, nvmet_async_event_result(aen));
144 145 146 147 148

		list_del(&aen->entry);
		kfree(aen);

		mutex_unlock(&ctrl->lock);
149
		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
150
		nvmet_req_complete(req, status);
151
		mutex_lock(&ctrl->lock);
152
	}
153
	mutex_unlock(&ctrl->lock);
154 155
}

156 157
static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
158
	struct nvmet_async_event *aen, *tmp;
159 160

	mutex_lock(&ctrl->lock);
161 162 163
	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
		list_del(&aen->entry);
		kfree(aen);
164 165 166 167 168 169 170 171 172 173 174 175
	}
	mutex_unlock(&ctrl->lock);
}

static void nvmet_async_event_work(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
		container_of(work, struct nvmet_ctrl, async_event_work);

	nvmet_async_events_process(ctrl, 0);
}

176
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
		u8 event_info, u8 log_page)
{
	struct nvmet_async_event *aen;

	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
	if (!aen)
		return;

	aen->event_type = event_type;
	aen->event_info = event_info;
	aen->log_page = log_page;

	mutex_lock(&ctrl->lock);
	list_add_tail(&aen->entry, &ctrl->async_events);
	mutex_unlock(&ctrl->lock);

	schedule_work(&ctrl->async_event_work);
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	u32 i;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
		goto out_unlock;

	for (i = 0; i < ctrl->nr_changed_ns; i++) {
		if (ctrl->changed_ns_list[i] == nsid)
			goto out_unlock;
	}

	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
		ctrl->nr_changed_ns = U32_MAX;
		goto out_unlock;
	}

	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
	mutex_unlock(&ctrl->lock);
}

220
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
221 222 223
{
	struct nvmet_ctrl *ctrl;

224 225
	lockdep_assert_held(&subsys->lock);

226 227
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
228
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
229
			continue;
230 231 232 233 234 235
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_NS_CHANGED,
				NVME_LOG_CHANGED_NS);
	}
}

236 237 238 239 240 241 242 243 244
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
		struct nvmet_port *port)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (port && ctrl->port != port)
			continue;
245
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
			continue;
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
	}
	mutex_unlock(&subsys->lock);
}

void nvmet_port_send_ana_event(struct nvmet_port *port)
{
	struct nvmet_subsys_link *p;

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry)
		nvmet_send_ana_event(p->subsys, port);
	up_read(&nvmet_config_sem);
}

263
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
264 265 266 267 268 269 270 271 272 273 274 275 276 277
{
	int ret = 0;

	down_write(&nvmet_config_sem);
	if (nvmet_transports[ops->type])
		ret = -EINVAL;
	else
		nvmet_transports[ops->type] = ops;
	up_write(&nvmet_config_sem);

	return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);

278
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
279 280 281 282 283 284 285
{
	down_write(&nvmet_config_sem);
	nvmet_transports[ops->type] = NULL;
	up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);

286 287 288 289 290 291 292 293 294 295 296 297
void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->port == port)
			ctrl->ops->delete_ctrl(ctrl);
	}
	mutex_unlock(&subsys->lock);
}

298 299
int nvmet_enable_port(struct nvmet_port *port)
{
300
	const struct nvmet_fabrics_ops *ops;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	int ret;

	lockdep_assert_held(&nvmet_config_sem);

	ops = nvmet_transports[port->disc_addr.trtype];
	if (!ops) {
		up_write(&nvmet_config_sem);
		request_module("nvmet-transport-%d", port->disc_addr.trtype);
		down_write(&nvmet_config_sem);
		ops = nvmet_transports[port->disc_addr.trtype];
		if (!ops) {
			pr_err("transport type %d not supported\n",
				port->disc_addr.trtype);
			return -EINVAL;
		}
	}

	if (!try_module_get(ops->owner))
		return -EINVAL;

321 322 323 324 325 326 327 328 329
	/*
	 * If the user requested PI support and the transport isn't pi capable,
	 * don't enable the port.
	 */
	if (port->pi_enable && !ops->metadata_support) {
		pr_err("T10-PI is not supported by transport type %d\n",
		       port->disc_addr.trtype);
		ret = -EINVAL;
		goto out_put;
330 331
	}

332 333 334 335
	ret = ops->add_port(port);
	if (ret)
		goto out_put;

336 337 338 339
	/* If the transport didn't set inline_data_size, then disable it. */
	if (port->inline_data_size < 0)
		port->inline_data_size = 0;

340
	port->enabled = true;
341
	port->tr_ops = ops;
342
	return 0;
343 344 345 346

out_put:
	module_put(ops->owner);
	return ret;
347 348 349 350
}

void nvmet_disable_port(struct nvmet_port *port)
{
351
	const struct nvmet_fabrics_ops *ops;
352 353 354 355

	lockdep_assert_held(&nvmet_config_sem);

	port->enabled = false;
356
	port->tr_ops = NULL;
357 358 359 360 361 362 363 364 365 366

	ops = nvmet_transports[port->disc_addr.trtype];
	ops->remove_port(port);
	module_put(ops->owner);
}

static void nvmet_keep_alive_timer(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvmet_ctrl, ka_work);
367 368 369 370 371 372 373 374 375
	bool cmd_seen = ctrl->cmd_seen;

	ctrl->cmd_seen = false;
	if (cmd_seen) {
		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
			ctrl->cntlid);
		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
		return;
	}
376 377 378 379

	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
		ctrl->cntlid, ctrl->kato);

380
	nvmet_ctrl_fatal_error(ctrl);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
}

static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
		ctrl->cntlid, ctrl->kato);

	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);

	cancel_delayed_work_sync(&ctrl->ka_work);
}

static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
		__le32 nsid)
{
	struct nvmet_ns *ns;

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
		if (ns->nsid == le32_to_cpu(nsid))
			return ns;
	}

	return NULL;
}

struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	struct nvmet_ns *ns;

	rcu_read_lock();
	ns = __nvmet_find_namespace(ctrl, nsid);
	if (ns)
		percpu_ref_get(&ns->ref);
	rcu_read_unlock();

	return ns;
}

static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);

	complete(&ns->disable_done);
}

void nvmet_put_namespace(struct nvmet_ns *ns)
{
	percpu_ref_put(&ns->ref);
}

437 438 439 440 441 442
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
	nvmet_bdev_ns_disable(ns);
	nvmet_file_ns_disable(ns);
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
	int ret;
	struct pci_dev *p2p_dev;

	if (!ns->use_p2pmem)
		return 0;

	if (!ns->bdev) {
		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
		return -EINVAL;
	}

	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
		       ns->device_path);
		return -EINVAL;
	}

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
		if (ret < 0)
			return -EINVAL;
	} else {
		/*
		 * Right now we just check that there is p2pmem available so
		 * we can report an error to the user right away if there
		 * is not. We'll find the actual device to use once we
		 * setup the controller when the port's device is available.
		 */

		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available for %s\n",
			       ns->device_path);
			return -EINVAL;
		}

		pci_dev_put(p2p_dev);
	}

	return 0;
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
				    struct nvmet_ns *ns)
{
	struct device *clients[2];
	struct pci_dev *p2p_dev;
	int ret;

497
	if (!ctrl->p2p_client || !ns->use_p2pmem)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
		return;

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
		if (ret < 0)
			return;

		p2p_dev = pci_dev_get(ns->p2p_dev);
	} else {
		clients[0] = ctrl->p2p_client;
		clients[1] = nvmet_ns_dev(ns);

		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
			       dev_name(ctrl->p2p_client), ns->device_path);
			return;
		}
	}

	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
	if (ret < 0)
		pci_dev_put(p2p_dev);

	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
		ns->nsid);
}

526 527
void nvmet_ns_revalidate(struct nvmet_ns *ns)
{
528 529
	loff_t oldsize = ns->size;

530 531 532 533
	if (ns->bdev)
		nvmet_bdev_ns_revalidate(ns);
	else
		nvmet_file_ns_revalidate(ns);
534 535 536

	if (oldsize != ns->size)
		nvmet_ns_changed(ns->subsys, ns->nsid);
537 538
}

539 540 541
int nvmet_ns_enable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
542
	struct nvmet_ctrl *ctrl;
543
	int ret;
544 545

	mutex_lock(&subsys->lock);
546
	ret = 0;
547
	if (ns->enabled)
548 549
		goto out_unlock;

550 551 552 553
	ret = -EMFILE;
	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
		goto out_unlock;

554
	ret = nvmet_bdev_ns_enable(ns);
555
	if (ret == -ENOTBLK)
556 557
		ret = nvmet_file_ns_enable(ns);
	if (ret)
558 559
		goto out_unlock;

560 561
	ret = nvmet_p2pmem_ns_enable(ns);
	if (ret)
562
		goto out_dev_disable;
563 564 565 566

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);

567 568 569
	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
				0, GFP_KERNEL);
	if (ret)
570
		goto out_dev_put;
571 572 573 574 575 576 577 578 579 580 581 582 583

	if (ns->nsid > subsys->max_nsid)
		subsys->max_nsid = ns->nsid;

	/*
	 * The namespaces list needs to be sorted to simplify the implementation
	 * of the Identify Namepace List subcommand.
	 */
	if (list_empty(&subsys->namespaces)) {
		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
	} else {
		struct nvmet_ns *old;

584 585
		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link,
					lockdep_is_held(&subsys->lock)) {
586 587 588 589 590 591 592
			BUG_ON(ns->nsid == old->nsid);
			if (ns->nsid < old->nsid)
				break;
		}

		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
	}
593
	subsys->nr_namespaces++;
594

595
	nvmet_ns_changed(subsys, ns->nsid);
596
	ns->enabled = true;
597 598 599 600
	ret = 0;
out_unlock:
	mutex_unlock(&subsys->lock);
	return ret;
601
out_dev_put:
602 603
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
604
out_dev_disable:
605
	nvmet_ns_dev_disable(ns);
606 607 608 609 610 611
	goto out_unlock;
}

void nvmet_ns_disable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
612
	struct nvmet_ctrl *ctrl;
613 614

	mutex_lock(&subsys->lock);
615 616 617 618 619
	if (!ns->enabled)
		goto out_unlock;

	ns->enabled = false;
	list_del_rcu(&ns->dev_link);
620 621
	if (ns->nsid == subsys->max_nsid)
		subsys->max_nsid = nvmet_max_nsid(subsys);
622 623 624 625

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	mutex_unlock(&subsys->lock);

	/*
	 * Now that we removed the namespaces from the lookup list, we
	 * can kill the per_cpu ref and wait for any remaining references
	 * to be dropped, as well as a RCU grace period for anyone only
	 * using the namepace under rcu_read_lock().  Note that we can't
	 * use call_rcu here as we need to ensure the namespaces have
	 * been fully destroyed before unloading the module.
	 */
	percpu_ref_kill(&ns->ref);
	synchronize_rcu();
	wait_for_completion(&ns->disable_done);
	percpu_ref_exit(&ns->ref);

	mutex_lock(&subsys->lock);
642

643
	subsys->nr_namespaces--;
644
	nvmet_ns_changed(subsys, ns->nsid);
645
	nvmet_ns_dev_disable(ns);
646
out_unlock:
647 648 649 650 651 652 653
	mutex_unlock(&subsys->lock);
}

void nvmet_ns_free(struct nvmet_ns *ns)
{
	nvmet_ns_disable(ns);

654 655 656 657
	down_write(&nvmet_ana_sem);
	nvmet_ana_group_enabled[ns->anagrpid]--;
	up_write(&nvmet_ana_sem);

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	kfree(ns->device_path);
	kfree(ns);
}

struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
	struct nvmet_ns *ns;

	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
	if (!ns)
		return NULL;

	INIT_LIST_HEAD(&ns->dev_link);
	init_completion(&ns->disable_done);

	ns->nsid = nsid;
	ns->subsys = subsys;
675 676 677 678 679 680

	down_write(&nvmet_ana_sem);
	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
	nvmet_ana_group_enabled[ns->anagrpid]++;
	up_write(&nvmet_ana_sem);

681
	uuid_gen(&ns->uuid);
682
	ns->buffered_io = false;
683 684 685 686

	return ns;
}

687
static void nvmet_update_sq_head(struct nvmet_req *req)
688
{
J
James Smart 已提交
689
	if (req->sq->size) {
690 691
		u32 old_sqhd, new_sqhd;

J
James Smart 已提交
692 693 694 695 696 697
		do {
			old_sqhd = req->sq->sqhd;
			new_sqhd = (old_sqhd + 1) % req->sq->size;
		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
					old_sqhd);
	}
698
	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
699 700
}

701 702 703 704 705 706
static void nvmet_set_error(struct nvmet_req *req, u16 status)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvme_error_slot *new_error_slot;
	unsigned long flags;

707
	req->cqe->status = cpu_to_le16(status << 1);
708

709
	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
		return;

	spin_lock_irqsave(&ctrl->error_lock, flags);
	ctrl->err_counter++;
	new_error_slot =
		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];

	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
	new_error_slot->status_field = cpu_to_le16(status << 1);
	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
	new_error_slot->lba = cpu_to_le64(req->error_slba);
	new_error_slot->nsid = req->cmd->common.nsid;
	spin_unlock_irqrestore(&ctrl->error_lock, flags);

	/* set the more bit for this request */
727
	req->cqe->status |= cpu_to_le16(1 << 14);
728 729
}

730 731 732 733
static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	if (!req->sq->sqhd_disabled)
		nvmet_update_sq_head(req);
734 735
	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
	req->cqe->command_id = req->cmd->common.command_id;
736

737
	if (unlikely(status))
738
		nvmet_set_error(req, status);
M
Minwoo Im 已提交
739 740 741

	trace_nvmet_req_complete(req);

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	if (req->ns)
		nvmet_put_namespace(req->ns);
	req->ops->queue_response(req);
}

void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	__nvmet_req_complete(req, status);
	percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);

void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
		u16 qid, u16 size)
{
	cq->qid = qid;
	cq->size = size;

	ctrl->cqs[qid] = cq;
}

void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
		u16 qid, u16 size)
{
766
	sq->sqhd = 0;
767 768 769 770 771 772
	sq->qid = qid;
	sq->size = size;

	ctrl->sqs[qid] = sq;
}

773 774 775 776 777 778 779
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->confirm_done);
}

780 781
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
782 783 784
	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
	struct nvmet_ctrl *ctrl = sq->ctrl;

785 786 787 788
	/*
	 * If this is the admin queue, complete all AERs so that our
	 * queue doesn't have outstanding requests on it.
	 */
789
	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
790
		nvmet_async_events_process(ctrl, status);
791 792
	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
	wait_for_completion(&sq->confirm_done);
793 794 795
	wait_for_completion(&sq->free_done);
	percpu_ref_exit(&sq->ref);

796 797
	if (ctrl) {
		nvmet_ctrl_put(ctrl);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		sq->ctrl = NULL; /* allows reusing the queue later */
	}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);

static void nvmet_sq_free(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->free_done);
}

int nvmet_sq_init(struct nvmet_sq *sq)
{
	int ret;

	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
	if (ret) {
		pr_err("percpu_ref init failed!\n");
		return ret;
	}
	init_completion(&sq->free_done);
820
	init_completion(&sq->confirm_done);
821 822 823 824 825

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);

826 827 828 829 830 831 832 833 834 835 836 837 838 839
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
		struct nvmet_ns *ns)
{
	enum nvme_ana_state state = port->ana_state[ns->anagrpid];

	if (unlikely(state == NVME_ANA_INACCESSIBLE))
		return NVME_SC_ANA_INACCESSIBLE;
	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
		return NVME_SC_ANA_PERSISTENT_LOSS;
	if (unlikely(state == NVME_ANA_CHANGE))
		return NVME_SC_ANA_TRANSITION;
	return 0;
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
	if (unlikely(req->ns->readonly)) {
		switch (req->cmd->common.opcode) {
		case nvme_cmd_read:
		case nvme_cmd_flush:
			break;
		default:
			return NVME_SC_NS_WRITE_PROTECTED;
		}
	}

	return 0;
}

855 856 857 858 859 860 861 862 863 864
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
	struct nvme_command *cmd = req->cmd;
	u16 ret;

	ret = nvmet_check_ctrl_status(req, cmd);
	if (unlikely(ret))
		return ret;

	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
865 866
	if (unlikely(!req->ns)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
867
		return NVME_SC_INVALID_NS | NVME_SC_DNR;
868
	}
869
	ret = nvmet_check_ana_state(req->port, req->ns);
870 871
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
872
		return ret;
873
	}
874
	ret = nvmet_io_cmd_check_access(req);
875 876
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
877
		return ret;
878
	}
879 880 881 882 883 884 885

	if (req->ns->file)
		return nvmet_file_parse_io_cmd(req);
	else
		return nvmet_bdev_parse_io_cmd(req);
}

886
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
887
		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
888 889 890 891 892 893 894 895
{
	u8 flags = req->cmd->common.flags;
	u16 status;

	req->cq = cq;
	req->sq = sq;
	req->ops = ops;
	req->sg = NULL;
896
	req->metadata_sg = NULL;
897
	req->sg_cnt = 0;
898
	req->metadata_sg_cnt = 0;
899
	req->transfer_len = 0;
900
	req->metadata_len = 0;
901 902
	req->cqe->status = 0;
	req->cqe->sq_head = 0;
903
	req->ns = NULL;
904
	req->error_loc = NVMET_NO_ERROR_LOC;
905
	req->error_slba = 0;
906

M
Minwoo Im 已提交
907 908
	trace_nvmet_req_init(req, req->cmd);

909 910
	/* no support for fused commands yet */
	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
911
		req->error_loc = offsetof(struct nvme_common_command, flags);
912 913 914 915
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

916 917 918 919 920 921
	/*
	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
	 * contains an address of a single contiguous physical buffer that is
	 * byte aligned.
	 */
	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
922
		req->error_loc = offsetof(struct nvme_common_command, flags);
923 924 925 926 927
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

	if (unlikely(!req->sq->ctrl))
928
		/* will return an error for any non-connect command: */
929 930 931 932 933 934 935 936 937 938 939 940 941 942
		status = nvmet_parse_connect_cmd(req);
	else if (likely(req->sq->qid != 0))
		status = nvmet_parse_io_cmd(req);
	else
		status = nvmet_parse_admin_cmd(req);

	if (status)
		goto fail;

	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

943 944 945
	if (sq->ctrl)
		sq->ctrl->cmd_seen = true;

946 947 948 949 950 951 952 953
	return true;

fail:
	__nvmet_req_complete(req, status);
	return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);

954 955 956
void nvmet_req_uninit(struct nvmet_req *req)
{
	percpu_ref_put(&req->sq->ref);
957 958
	if (req->ns)
		nvmet_put_namespace(req->ns);
959 960 961
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);

962
bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
963
{
964
	if (unlikely(len != req->transfer_len)) {
965
		req->error_loc = offsetof(struct nvme_common_command, dptr);
966
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
967 968 969 970 971
		return false;
	}

	return true;
}
972
EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
973

974 975 976 977 978 979 980 981 982 983 984
bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
{
	if (unlikely(data_len > req->transfer_len)) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
		return false;
	}

	return true;
}

985
static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
986
{
987 988
	return req->transfer_len - req->metadata_len;
}
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
{
	req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
			nvmet_data_transfer_len(req));
	if (!req->sg)
		goto out_err;

	if (req->metadata_len) {
		req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
				&req->metadata_sg_cnt, req->metadata_len);
		if (!req->metadata_sg)
			goto out_free_sg;
	}
	return 0;
out_free_sg:
	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
out_err:
	return -ENOMEM;
}

static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
{
	if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
		return false;

	if (req->sq->ctrl && req->sq->qid && req->ns) {
		req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
						 req->ns->nsid);
		if (req->p2p_dev)
			return true;
1020 1021
	}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	req->p2p_dev = NULL;
	return false;
}

int nvmet_req_alloc_sgls(struct nvmet_req *req)
{
	if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
		return 0;

	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
			    &req->sg_cnt);
1033
	if (unlikely(!req->sg))
1034 1035 1036 1037 1038 1039 1040 1041
		goto out;

	if (req->metadata_len) {
		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
					     &req->metadata_sg_cnt);
		if (unlikely(!req->metadata_sg))
			goto out_free;
	}
1042 1043

	return 0;
1044 1045 1046 1047
out_free:
	sgl_free(req->sg);
out:
	return -ENOMEM;
1048
}
1049
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1050

1051
void nvmet_req_free_sgls(struct nvmet_req *req)
1052
{
1053
	if (req->p2p_dev) {
1054
		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1055 1056 1057
		if (req->metadata_sg)
			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
	} else {
1058
		sgl_free(req->sg);
1059 1060 1061
		if (req->metadata_sg)
			sgl_free(req->metadata_sg);
	}
1062

1063
	req->sg = NULL;
1064
	req->metadata_sg = NULL;
1065
	req->sg_cnt = 0;
1066
	req->metadata_sg_cnt = 0;
1067
}
1068
EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1069

1070 1071
static inline bool nvmet_cc_en(u32 cc)
{
1072
	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1073 1074 1075 1076
}

static inline u8 nvmet_cc_css(u32 cc)
{
1077
	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1078 1079 1080 1081
}

static inline u8 nvmet_cc_mps(u32 cc)
{
1082
	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1083 1084 1085 1086
}

static inline u8 nvmet_cc_ams(u32 cc)
{
1087
	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1088 1089 1090 1091
}

static inline u8 nvmet_cc_shn(u32 cc)
{
1092
	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1093 1094 1095 1096
}

static inline u8 nvmet_cc_iosqes(u32 cc)
{
1097
	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1098 1099 1100 1101
}

static inline u8 nvmet_cc_iocqes(u32 cc)
{
1102
	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
	    nvmet_cc_mps(ctrl->cc) != 0 ||
	    nvmet_cc_ams(ctrl->cc) != 0 ||
	    nvmet_cc_css(ctrl->cc) != 0) {
		ctrl->csts = NVME_CSTS_CFS;
		return;
	}

	ctrl->csts = NVME_CSTS_RDY;
1119 1120 1121 1122 1123 1124 1125 1126

	/*
	 * Controllers that are not yet enabled should not really enforce the
	 * keep alive timeout, but we still want to track a timeout and cleanup
	 * in case a host died before it enabled the controller.  Hence, simply
	 * reset the keep alive timer when the controller is enabled.
	 */
	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
}

static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	/* XXX: tear down queues? */
	ctrl->csts &= ~NVME_CSTS_RDY;
	ctrl->cc = 0;
}

void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
	u32 old;

	mutex_lock(&ctrl->lock);
	old = ctrl->cc;
	ctrl->cc = new;

	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
		nvmet_start_ctrl(ctrl);
	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
		nvmet_clear_ctrl(ctrl);
	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
		nvmet_clear_ctrl(ctrl);
		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
	}
	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
	mutex_unlock(&ctrl->lock);
}

static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
	/* command sets supported: NVMe command set: */
	ctrl->cap = (1ULL << 37);
	/* CC.EN timeout in 500msec units: */
	ctrl->cap |= (15ULL << 24);
	/* maximum queue entries supported: */
	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}

u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
		struct nvmet_req *req, struct nvmet_ctrl **ret)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	u16 status = 0;

	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1180
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	}

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->cntlid == cntlid) {
			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
				pr_warn("hostnqn mismatch.\n");
				continue;
			}
			if (!kref_get_unless_zero(&ctrl->ref))
				continue;

			*ret = ctrl;
			goto out;
		}
	}

	pr_warn("could not find controller %d for subsys %s / host %s\n",
		cntlid, subsysnqn, hostnqn);
1201
	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1202 1203 1204 1205 1206 1207 1208 1209
	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;

out:
	mutex_unlock(&subsys->lock);
	nvmet_subsys_put(subsys);
	return status;
}

1210 1211 1212
u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
{
	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1213
		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1214 1215 1216 1217 1218
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}

	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1219
		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1220 1221 1222 1223 1224 1225
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}
	return 0;
}

1226
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1227 1228 1229
{
	struct nvmet_host_link *p;

1230 1231
	lockdep_assert_held(&nvmet_config_sem);

1232 1233 1234
	if (subsys->allow_any_host)
		return true;

1235 1236 1237
	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
		return true;

1238 1239 1240 1241 1242 1243 1244 1245
	list_for_each_entry(p, &subsys->hosts, entry) {
		if (!strcmp(nvmet_host_name(p->host), hostnqn))
			return true;
	}

	return false;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
		struct nvmet_req *req)
{
	struct nvmet_ns *ns;

	if (!req->p2p_client)
		return;

	ctrl->p2p_client = get_device(req->p2p_client);

1259 1260
	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link,
				lockdep_is_held(&ctrl->subsys->lock))
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
		pci_dev_put(radix_tree_deref_slot(slot));

	put_device(ctrl->p2p_client);
}

1278 1279 1280 1281 1282 1283 1284 1285 1286
static void nvmet_fatal_error_handler(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
			container_of(work, struct nvmet_ctrl, fatal_err_work);

	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
	ctrl->ops->delete_ctrl(ctrl);
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	int ret;
	u16 status;

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1300
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1301 1302 1303 1304 1305
		goto out;
	}

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	down_read(&nvmet_config_sem);
1306
	if (!nvmet_host_allowed(subsys, hostnqn)) {
1307 1308
		pr_info("connect by host %s for subsystem %s not allowed\n",
			hostnqn, subsysnqn);
1309
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1310
		up_read(&nvmet_config_sem);
1311
		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		goto out_put_subsystem;
	}
	up_read(&nvmet_config_sem);

	status = NVME_SC_INTERNAL;
	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		goto out_put_subsystem;
	mutex_init(&ctrl->lock);

	nvmet_init_cap(ctrl);

1324 1325
	ctrl->port = req->port;

1326 1327
	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
	INIT_LIST_HEAD(&ctrl->async_events);
1328
	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1329
	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1330 1331 1332 1333 1334 1335

	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);

	kref_init(&ctrl->ref);
	ctrl->subsys = subsys;
1336
	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1337

1338 1339 1340 1341 1342
	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
			sizeof(__le32), GFP_KERNEL);
	if (!ctrl->changed_ns_list)
		goto out_free_ctrl;

1343 1344 1345 1346
	ctrl->cqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_cq *),
			GFP_KERNEL);
	if (!ctrl->cqs)
1347
		goto out_free_changed_ns_list;
1348 1349 1350 1351 1352 1353 1354

	ctrl->sqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_sq *),
			GFP_KERNEL);
	if (!ctrl->sqs)
		goto out_free_cqs;

1355 1356 1357
	if (subsys->cntlid_min > subsys->cntlid_max)
		goto out_free_cqs;

1358
	ret = ida_simple_get(&cntlid_ida,
1359
			     subsys->cntlid_min, subsys->cntlid_max,
1360 1361 1362 1363 1364 1365 1366 1367 1368
			     GFP_KERNEL);
	if (ret < 0) {
		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
		goto out_free_sqs;
	}
	ctrl->cntlid = ret;

	ctrl->ops = req->ops;

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	/*
	 * Discovery controllers may use some arbitrary high value
	 * in order to cleanup stale discovery sessions
	 */
	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
		kato = NVMET_DISC_KATO_MS;

	/* keep-alive timeout in seconds */
	ctrl->kato = DIV_ROUND_UP(kato, 1000);

1379 1380 1381
	ctrl->err_counter = 0;
	spin_lock_init(&ctrl->error_lock);

1382 1383 1384 1385
	nvmet_start_keep_alive_timer(ctrl);

	mutex_lock(&subsys->lock);
	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1386
	nvmet_setup_p2p_ns_map(ctrl, req);
1387 1388 1389 1390 1391 1392 1393 1394 1395
	mutex_unlock(&subsys->lock);

	*ctrlp = ctrl;
	return 0;

out_free_sqs:
	kfree(ctrl->sqs);
out_free_cqs:
	kfree(ctrl->cqs);
1396 1397
out_free_changed_ns_list:
	kfree(ctrl->changed_ns_list);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
out_free_ctrl:
	kfree(ctrl);
out_put_subsystem:
	nvmet_subsys_put(subsys);
out:
	return status;
}

static void nvmet_ctrl_free(struct kref *ref)
{
	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
	struct nvmet_subsys *subsys = ctrl->subsys;

	mutex_lock(&subsys->lock);
1412
	nvmet_release_p2p_ns_map(ctrl);
1413 1414 1415
	list_del(&ctrl->subsys_entry);
	mutex_unlock(&subsys->lock);

1416 1417
	nvmet_stop_keep_alive_timer(ctrl);

1418 1419 1420
	flush_work(&ctrl->async_event_work);
	cancel_work_sync(&ctrl->fatal_err_work);

1421
	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1422

1423
	nvmet_async_events_free(ctrl);
1424 1425
	kfree(ctrl->sqs);
	kfree(ctrl->cqs);
1426
	kfree(ctrl->changed_ns_list);
1427
	kfree(ctrl);
1428 1429

	nvmet_subsys_put(subsys);
1430 1431 1432 1433 1434 1435 1436 1437 1438
}

void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
	kref_put(&ctrl->ref, nvmet_ctrl_free);
}

void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
1439 1440 1441 1442 1443 1444
	mutex_lock(&ctrl->lock);
	if (!(ctrl->csts & NVME_CSTS_CFS)) {
		ctrl->csts |= NVME_CSTS_CFS;
		schedule_work(&ctrl->fatal_err_work);
	}
	mutex_unlock(&ctrl->lock);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);

static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn)
{
	struct nvmet_subsys_link *p;

	if (!port)
		return NULL;

1456
	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
			return NULL;
		return nvmet_disc_subsys;
	}

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry) {
		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
				NVMF_NQN_SIZE)) {
			if (!kref_get_unless_zero(&p->subsys->ref))
				break;
			up_read(&nvmet_config_sem);
			return p->subsys;
		}
	}
	up_read(&nvmet_config_sem);
	return NULL;
}

struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
		enum nvme_subsys_type type)
{
	struct nvmet_subsys *subsys;

	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
	if (!subsys)
1483
		return ERR_PTR(-ENOMEM);
1484

1485
	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1486 1487
	/* generate a random serial number as our controllers are ephemeral: */
	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	switch (type) {
	case NVME_NQN_NVME:
		subsys->max_qid = NVMET_NR_QUEUES;
		break;
	case NVME_NQN_DISC:
		subsys->max_qid = 0;
		break;
	default:
		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
		kfree(subsys);
1499
		return ERR_PTR(-EINVAL);
1500 1501 1502 1503
	}
	subsys->type = type;
	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
			GFP_KERNEL);
1504
	if (!subsys->subsysnqn) {
1505
		kfree(subsys);
1506
		return ERR_PTR(-ENOMEM);
1507
	}
1508 1509
	subsys->cntlid_min = NVME_CNTLID_MIN;
	subsys->cntlid_max = NVME_CNTLID_MAX;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	kref_init(&subsys->ref);

	mutex_init(&subsys->lock);
	INIT_LIST_HEAD(&subsys->namespaces);
	INIT_LIST_HEAD(&subsys->ctrls);
	INIT_LIST_HEAD(&subsys->hosts);

	return subsys;
}

static void nvmet_subsys_free(struct kref *ref)
{
	struct nvmet_subsys *subsys =
		container_of(ref, struct nvmet_subsys, ref);

	WARN_ON_ONCE(!list_empty(&subsys->namespaces));

	kfree(subsys->subsysnqn);
1528
	kfree_rcu(subsys->model, rcuhead);
1529 1530 1531
	kfree(subsys);
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		ctrl->ops->delete_ctrl(ctrl);
	mutex_unlock(&subsys->lock);
}

1542 1543 1544 1545 1546 1547 1548 1549 1550
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
	kref_put(&subsys->ref, nvmet_subsys_free);
}

static int __init nvmet_init(void)
{
	int error;

1551 1552
	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;

1553 1554 1555 1556 1557 1558
	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
			WQ_MEM_RECLAIM, 0);
	if (!buffered_io_wq) {
		error = -ENOMEM;
		goto out;
	}
1559

1560 1561
	error = nvmet_init_discovery();
	if (error)
1562
		goto out_free_work_queue;
1563 1564 1565 1566 1567 1568 1569 1570

	error = nvmet_init_configfs();
	if (error)
		goto out_exit_discovery;
	return 0;

out_exit_discovery:
	nvmet_exit_discovery();
1571 1572
out_free_work_queue:
	destroy_workqueue(buffered_io_wq);
1573 1574 1575 1576 1577 1578 1579 1580
out:
	return error;
}

static void __exit nvmet_exit(void)
{
	nvmet_exit_configfs();
	nvmet_exit_discovery();
1581
	ida_destroy(&cntlid_ida);
1582
	destroy_workqueue(buffered_io_wq);
1583 1584 1585 1586 1587 1588 1589 1590 1591

	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}

module_init(nvmet_init);
module_exit(nvmet_exit);

MODULE_LICENSE("GPL v2");