core.c 34.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Common code for the NVMe target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
8
#include <linux/random.h>
9
#include <linux/rculist.h>
10
#include <linux/pci-p2pdma.h>
11

12 13
#include "nvmet.h"

14
struct workqueue_struct *buffered_io_wq;
15
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
16
static DEFINE_IDA(cntlid_ida);
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

/*
 * This read/write semaphore is used to synchronize access to configuration
 * information on a target system that will result in discovery log page
 * information change for at least one host.
 * The full list of resources to protected by this semaphore is:
 *
 *  - subsystems list
 *  - per-subsystem allowed hosts list
 *  - allow_any_host subsystem attribute
 *  - nvmet_genctr
 *  - the nvmet_transports array
 *
 * When updating any of those lists/structures write lock should be obtained,
 * while when reading (popolating discovery log page or checking host-subsystem
 * link) read lock is obtained to allow concurrent reads.
 */
DECLARE_RWSEM(nvmet_config_sem);

36 37 38 39
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
{
	u16 status;

	switch (errno) {
	case -ENOSPC:
		req->error_loc = offsetof(struct nvme_rw_command, length);
		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
		break;
	case -EREMOTEIO:
		req->error_loc = offsetof(struct nvme_rw_command, slba);
		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
		break;
	case -EOPNOTSUPP:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		switch (req->cmd->common.opcode) {
		case nvme_cmd_dsm:
		case nvme_cmd_write_zeroes:
			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
			break;
		default:
			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
		}
		break;
	case -ENODATA:
		req->error_loc = offsetof(struct nvme_rw_command, nsid);
		status = NVME_SC_ACCESS_DENIED;
		break;
	case -EIO:
		/* FALLTHRU */
	default:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		status = NVME_SC_INTERNAL | NVME_SC_DNR;
	}

	return status;
}

78 79 80 81 82 83
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn);

u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
		size_t len)
{
84 85
	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
86
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
87
	}
88 89 90 91 92
	return 0;
}

u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
93 94
	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
95
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
96
	}
97 98 99
	return 0;
}

100 101
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
102 103
	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
104
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
105
	}
106 107 108
	return 0;
}

109 110 111 112 113 114 115 116 117 118 119
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
	struct nvmet_ns *ns;

	if (list_empty(&subsys->namespaces))
		return 0;

	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
	return ns->nsid;
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}

static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		if (!ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
			return;
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
	}
}

static void nvmet_async_event_work(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
		container_of(work, struct nvmet_ctrl, async_event_work);
	struct nvmet_async_event *aen;
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		aen = list_first_entry_or_null(&ctrl->async_events,
				struct nvmet_async_event, entry);
		if (!aen || !ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
			return;
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
		nvmet_set_result(req, nvmet_async_event_result(aen));

		list_del(&aen->entry);
		kfree(aen);

		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, 0);
	}
}

169
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
		u8 event_info, u8 log_page)
{
	struct nvmet_async_event *aen;

	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
	if (!aen)
		return;

	aen->event_type = event_type;
	aen->event_info = event_info;
	aen->log_page = log_page;

	mutex_lock(&ctrl->lock);
	list_add_tail(&aen->entry, &ctrl->async_events);
	mutex_unlock(&ctrl->lock);

	schedule_work(&ctrl->async_event_work);
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	u32 i;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
		goto out_unlock;

	for (i = 0; i < ctrl->nr_changed_ns; i++) {
		if (ctrl->changed_ns_list[i] == nsid)
			goto out_unlock;
	}

	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
		ctrl->nr_changed_ns = U32_MAX;
		goto out_unlock;
	}

	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
	mutex_unlock(&ctrl->lock);
}

213
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
214 215 216 217 218
{
	struct nvmet_ctrl *ctrl;

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
219
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
220
			continue;
221 222 223 224 225 226
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_NS_CHANGED,
				NVME_LOG_CHANGED_NS);
	}
}

227 228 229 230 231 232 233 234 235
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
		struct nvmet_port *port)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (port && ctrl->port != port)
			continue;
236
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
			continue;
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
	}
	mutex_unlock(&subsys->lock);
}

void nvmet_port_send_ana_event(struct nvmet_port *port)
{
	struct nvmet_subsys_link *p;

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry)
		nvmet_send_ana_event(p->subsys, port);
	up_read(&nvmet_config_sem);
}

254
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
255 256 257 258 259 260 261 262 263 264 265 266 267 268
{
	int ret = 0;

	down_write(&nvmet_config_sem);
	if (nvmet_transports[ops->type])
		ret = -EINVAL;
	else
		nvmet_transports[ops->type] = ops;
	up_write(&nvmet_config_sem);

	return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);

269
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
270 271 272 273 274 275 276 277 278
{
	down_write(&nvmet_config_sem);
	nvmet_transports[ops->type] = NULL;
	up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);

int nvmet_enable_port(struct nvmet_port *port)
{
279
	const struct nvmet_fabrics_ops *ops;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	int ret;

	lockdep_assert_held(&nvmet_config_sem);

	ops = nvmet_transports[port->disc_addr.trtype];
	if (!ops) {
		up_write(&nvmet_config_sem);
		request_module("nvmet-transport-%d", port->disc_addr.trtype);
		down_write(&nvmet_config_sem);
		ops = nvmet_transports[port->disc_addr.trtype];
		if (!ops) {
			pr_err("transport type %d not supported\n",
				port->disc_addr.trtype);
			return -EINVAL;
		}
	}

	if (!try_module_get(ops->owner))
		return -EINVAL;

	ret = ops->add_port(port);
	if (ret) {
		module_put(ops->owner);
		return ret;
	}

306 307 308 309
	/* If the transport didn't set inline_data_size, then disable it. */
	if (port->inline_data_size < 0)
		port->inline_data_size = 0;

310 311 312 313 314 315
	port->enabled = true;
	return 0;
}

void nvmet_disable_port(struct nvmet_port *port)
{
316
	const struct nvmet_fabrics_ops *ops;
317 318 319 320 321 322 323 324 325 326 327 328 329 330

	lockdep_assert_held(&nvmet_config_sem);

	port->enabled = false;

	ops = nvmet_transports[port->disc_addr.trtype];
	ops->remove_port(port);
	module_put(ops->owner);
}

static void nvmet_keep_alive_timer(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvmet_ctrl, ka_work);
331 332 333 334 335 336 337 338 339
	bool cmd_seen = ctrl->cmd_seen;

	ctrl->cmd_seen = false;
	if (cmd_seen) {
		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
			ctrl->cntlid);
		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
		return;
	}
340 341 342 343

	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
		ctrl->cntlid, ctrl->kato);

344
	nvmet_ctrl_fatal_error(ctrl);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}

static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
		ctrl->cntlid, ctrl->kato);

	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);

	cancel_delayed_work_sync(&ctrl->ka_work);
}

static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
		__le32 nsid)
{
	struct nvmet_ns *ns;

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
		if (ns->nsid == le32_to_cpu(nsid))
			return ns;
	}

	return NULL;
}

struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	struct nvmet_ns *ns;

	rcu_read_lock();
	ns = __nvmet_find_namespace(ctrl, nsid);
	if (ns)
		percpu_ref_get(&ns->ref);
	rcu_read_unlock();

	return ns;
}

static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);

	complete(&ns->disable_done);
}

void nvmet_put_namespace(struct nvmet_ns *ns)
{
	percpu_ref_put(&ns->ref);
}

401 402 403 404 405 406
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
	nvmet_bdev_ns_disable(ns);
	nvmet_file_ns_disable(ns);
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
	int ret;
	struct pci_dev *p2p_dev;

	if (!ns->use_p2pmem)
		return 0;

	if (!ns->bdev) {
		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
		return -EINVAL;
	}

	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
		       ns->device_path);
		return -EINVAL;
	}

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
		if (ret < 0)
			return -EINVAL;
	} else {
		/*
		 * Right now we just check that there is p2pmem available so
		 * we can report an error to the user right away if there
		 * is not. We'll find the actual device to use once we
		 * setup the controller when the port's device is available.
		 */

		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available for %s\n",
			       ns->device_path);
			return -EINVAL;
		}

		pci_dev_put(p2p_dev);
	}

	return 0;
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
				    struct nvmet_ns *ns)
{
	struct device *clients[2];
	struct pci_dev *p2p_dev;
	int ret;

461
	if (!ctrl->p2p_client || !ns->use_p2pmem)
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
		return;

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
		if (ret < 0)
			return;

		p2p_dev = pci_dev_get(ns->p2p_dev);
	} else {
		clients[0] = ctrl->p2p_client;
		clients[1] = nvmet_ns_dev(ns);

		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
			       dev_name(ctrl->p2p_client), ns->device_path);
			return;
		}
	}

	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
	if (ret < 0)
		pci_dev_put(p2p_dev);

	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
		ns->nsid);
}

490 491 492
int nvmet_ns_enable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
493
	struct nvmet_ctrl *ctrl;
494
	int ret;
495 496

	mutex_lock(&subsys->lock);
497 498 499 500
	ret = -EMFILE;
	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
		goto out_unlock;
	ret = 0;
501
	if (ns->enabled)
502 503
		goto out_unlock;

504
	ret = nvmet_bdev_ns_enable(ns);
505
	if (ret == -ENOTBLK)
506 507
		ret = nvmet_file_ns_enable(ns);
	if (ret)
508 509
		goto out_unlock;

510 511 512 513 514 515 516
	ret = nvmet_p2pmem_ns_enable(ns);
	if (ret)
		goto out_unlock;

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);

517 518 519
	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
				0, GFP_KERNEL);
	if (ret)
520
		goto out_dev_put;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

	if (ns->nsid > subsys->max_nsid)
		subsys->max_nsid = ns->nsid;

	/*
	 * The namespaces list needs to be sorted to simplify the implementation
	 * of the Identify Namepace List subcommand.
	 */
	if (list_empty(&subsys->namespaces)) {
		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
	} else {
		struct nvmet_ns *old;

		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
			BUG_ON(ns->nsid == old->nsid);
			if (ns->nsid < old->nsid)
				break;
		}

		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
	}
542
	subsys->nr_namespaces++;
543

544
	nvmet_ns_changed(subsys, ns->nsid);
545
	ns->enabled = true;
546 547 548 549
	ret = 0;
out_unlock:
	mutex_unlock(&subsys->lock);
	return ret;
550
out_dev_put:
551 552 553
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

554
	nvmet_ns_dev_disable(ns);
555 556 557 558 559 560
	goto out_unlock;
}

void nvmet_ns_disable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
561
	struct nvmet_ctrl *ctrl;
562 563

	mutex_lock(&subsys->lock);
564 565 566 567 568
	if (!ns->enabled)
		goto out_unlock;

	ns->enabled = false;
	list_del_rcu(&ns->dev_link);
569 570
	if (ns->nsid == subsys->max_nsid)
		subsys->max_nsid = nvmet_max_nsid(subsys);
571 572 573 574

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	mutex_unlock(&subsys->lock);

	/*
	 * Now that we removed the namespaces from the lookup list, we
	 * can kill the per_cpu ref and wait for any remaining references
	 * to be dropped, as well as a RCU grace period for anyone only
	 * using the namepace under rcu_read_lock().  Note that we can't
	 * use call_rcu here as we need to ensure the namespaces have
	 * been fully destroyed before unloading the module.
	 */
	percpu_ref_kill(&ns->ref);
	synchronize_rcu();
	wait_for_completion(&ns->disable_done);
	percpu_ref_exit(&ns->ref);

	mutex_lock(&subsys->lock);
591

592
	subsys->nr_namespaces--;
593
	nvmet_ns_changed(subsys, ns->nsid);
594
	nvmet_ns_dev_disable(ns);
595
out_unlock:
596 597 598 599 600 601 602
	mutex_unlock(&subsys->lock);
}

void nvmet_ns_free(struct nvmet_ns *ns)
{
	nvmet_ns_disable(ns);

603 604 605 606
	down_write(&nvmet_ana_sem);
	nvmet_ana_group_enabled[ns->anagrpid]--;
	up_write(&nvmet_ana_sem);

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	kfree(ns->device_path);
	kfree(ns);
}

struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
	struct nvmet_ns *ns;

	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
	if (!ns)
		return NULL;

	INIT_LIST_HEAD(&ns->dev_link);
	init_completion(&ns->disable_done);

	ns->nsid = nsid;
	ns->subsys = subsys;
624 625 626 627 628 629

	down_write(&nvmet_ana_sem);
	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
	nvmet_ana_group_enabled[ns->anagrpid]++;
	up_write(&nvmet_ana_sem);

630
	uuid_gen(&ns->uuid);
631
	ns->buffered_io = false;
632 633 634 635

	return ns;
}

636
static void nvmet_update_sq_head(struct nvmet_req *req)
637
{
J
James Smart 已提交
638
	if (req->sq->size) {
639 640
		u32 old_sqhd, new_sqhd;

J
James Smart 已提交
641 642 643 644 645 646
		do {
			old_sqhd = req->sq->sqhd;
			new_sqhd = (old_sqhd + 1) % req->sq->size;
		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
					old_sqhd);
	}
647 648 649
	req->rsp->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
}

650 651 652 653 654 655 656 657
static void nvmet_set_error(struct nvmet_req *req, u16 status)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvme_error_slot *new_error_slot;
	unsigned long flags;

	req->rsp->status = cpu_to_le16(status << 1);

658
	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
		return;

	spin_lock_irqsave(&ctrl->error_lock, flags);
	ctrl->err_counter++;
	new_error_slot =
		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];

	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
	new_error_slot->status_field = cpu_to_le16(status << 1);
	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
	new_error_slot->lba = cpu_to_le64(req->error_slba);
	new_error_slot->nsid = req->cmd->common.nsid;
	spin_unlock_irqrestore(&ctrl->error_lock, flags);

	/* set the more bit for this request */
	req->rsp->status |= cpu_to_le16(1 << 14);
}

679 680 681 682
static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	if (!req->sq->sqhd_disabled)
		nvmet_update_sq_head(req);
683
	req->rsp->sq_id = cpu_to_le16(req->sq->qid);
684
	req->rsp->command_id = req->cmd->common.command_id;
685

686
	if (unlikely(status))
687
		nvmet_set_error(req, status);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	if (req->ns)
		nvmet_put_namespace(req->ns);
	req->ops->queue_response(req);
}

void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	__nvmet_req_complete(req, status);
	percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);

void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
		u16 qid, u16 size)
{
	cq->qid = qid;
	cq->size = size;

	ctrl->cqs[qid] = cq;
}

void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
		u16 qid, u16 size)
{
712
	sq->sqhd = 0;
713 714 715 716 717 718
	sq->qid = qid;
	sq->size = size;

	ctrl->sqs[qid] = sq;
}

719 720 721 722 723 724 725
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->confirm_done);
}

726 727 728 729 730 731 732 733
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
	/*
	 * If this is the admin queue, complete all AERs so that our
	 * queue doesn't have outstanding requests on it.
	 */
	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
		nvmet_async_events_free(sq->ctrl);
734 735
	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
	wait_for_completion(&sq->confirm_done);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	wait_for_completion(&sq->free_done);
	percpu_ref_exit(&sq->ref);

	if (sq->ctrl) {
		nvmet_ctrl_put(sq->ctrl);
		sq->ctrl = NULL; /* allows reusing the queue later */
	}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);

static void nvmet_sq_free(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->free_done);
}

int nvmet_sq_init(struct nvmet_sq *sq)
{
	int ret;

	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
	if (ret) {
		pr_err("percpu_ref init failed!\n");
		return ret;
	}
	init_completion(&sq->free_done);
763
	init_completion(&sq->confirm_done);
764 765 766 767 768

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);

769 770 771 772 773 774 775 776 777 778 779 780 781 782
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
		struct nvmet_ns *ns)
{
	enum nvme_ana_state state = port->ana_state[ns->anagrpid];

	if (unlikely(state == NVME_ANA_INACCESSIBLE))
		return NVME_SC_ANA_INACCESSIBLE;
	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
		return NVME_SC_ANA_PERSISTENT_LOSS;
	if (unlikely(state == NVME_ANA_CHANGE))
		return NVME_SC_ANA_TRANSITION;
	return 0;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
	if (unlikely(req->ns->readonly)) {
		switch (req->cmd->common.opcode) {
		case nvme_cmd_read:
		case nvme_cmd_flush:
			break;
		default:
			return NVME_SC_NS_WRITE_PROTECTED;
		}
	}

	return 0;
}

798 799 800 801 802 803 804 805 806 807
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
	struct nvme_command *cmd = req->cmd;
	u16 ret;

	ret = nvmet_check_ctrl_status(req, cmd);
	if (unlikely(ret))
		return ret;

	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
808 809
	if (unlikely(!req->ns)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
810
		return NVME_SC_INVALID_NS | NVME_SC_DNR;
811
	}
812
	ret = nvmet_check_ana_state(req->port, req->ns);
813 814
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
815
		return ret;
816
	}
817
	ret = nvmet_io_cmd_check_access(req);
818 819
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
820
		return ret;
821
	}
822 823 824 825 826 827 828

	if (req->ns->file)
		return nvmet_file_parse_io_cmd(req);
	else
		return nvmet_bdev_parse_io_cmd(req);
}

829
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
830
		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
831 832 833 834 835 836 837 838 839
{
	u8 flags = req->cmd->common.flags;
	u16 status;

	req->cq = cq;
	req->sq = sq;
	req->ops = ops;
	req->sg = NULL;
	req->sg_cnt = 0;
840
	req->transfer_len = 0;
841
	req->rsp->status = 0;
842
	req->rsp->sq_head = 0;
843
	req->ns = NULL;
844
	req->error_loc = NVMET_NO_ERROR_LOC;
845
	req->error_slba = 0;
846 847 848

	/* no support for fused commands yet */
	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
849
		req->error_loc = offsetof(struct nvme_common_command, flags);
850 851 852 853
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

854 855 856 857 858 859
	/*
	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
	 * contains an address of a single contiguous physical buffer that is
	 * byte aligned.
	 */
	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
860
		req->error_loc = offsetof(struct nvme_common_command, flags);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

	if (unlikely(!req->sq->ctrl))
		/* will return an error for any Non-connect command: */
		status = nvmet_parse_connect_cmd(req);
	else if (likely(req->sq->qid != 0))
		status = nvmet_parse_io_cmd(req);
	else if (req->cmd->common.opcode == nvme_fabrics_command)
		status = nvmet_parse_fabrics_cmd(req);
	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
		status = nvmet_parse_discovery_cmd(req);
	else
		status = nvmet_parse_admin_cmd(req);

	if (status)
		goto fail;

	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

885 886 887
	if (sq->ctrl)
		sq->ctrl->cmd_seen = true;

888 889 890 891 892 893 894 895
	return true;

fail:
	__nvmet_req_complete(req, status);
	return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);

896 897 898
void nvmet_req_uninit(struct nvmet_req *req)
{
	percpu_ref_put(&req->sq->ref);
899 900
	if (req->ns)
		nvmet_put_namespace(req->ns);
901 902 903
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);

904 905
void nvmet_req_execute(struct nvmet_req *req)
{
906 907
	if (unlikely(req->data_len != req->transfer_len)) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
908
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
909
	} else
910 911 912 913
		req->execute(req);
}
EXPORT_SYMBOL_GPL(nvmet_req_execute);

914 915
int nvmet_req_alloc_sgl(struct nvmet_req *req)
{
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	struct pci_dev *p2p_dev = NULL;

	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
		if (req->sq->ctrl && req->ns)
			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
						    req->ns->nsid);

		req->p2p_dev = NULL;
		if (req->sq->qid && p2p_dev) {
			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
						       req->transfer_len);
			if (req->sg) {
				req->p2p_dev = p2p_dev;
				return 0;
			}
		}

		/*
		 * If no P2P memory was available we fallback to using
		 * regular memory
		 */
	}

939 940 941 942 943 944 945 946 947 948
	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
	if (!req->sg)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);

void nvmet_req_free_sgl(struct nvmet_req *req)
{
949 950 951 952 953
	if (req->p2p_dev)
		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
	else
		sgl_free(req->sg);

954 955 956 957 958
	req->sg = NULL;
	req->sg_cnt = 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);

959 960
static inline bool nvmet_cc_en(u32 cc)
{
961
	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
962 963 964 965
}

static inline u8 nvmet_cc_css(u32 cc)
{
966
	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
967 968 969 970
}

static inline u8 nvmet_cc_mps(u32 cc)
{
971
	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
972 973 974 975
}

static inline u8 nvmet_cc_ams(u32 cc)
{
976
	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
977 978 979 980
}

static inline u8 nvmet_cc_shn(u32 cc)
{
981
	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
982 983 984 985
}

static inline u8 nvmet_cc_iosqes(u32 cc)
{
986
	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
987 988 989 990
}

static inline u8 nvmet_cc_iocqes(u32 cc)
{
991
	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
}

static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
	    nvmet_cc_mps(ctrl->cc) != 0 ||
	    nvmet_cc_ams(ctrl->cc) != 0 ||
	    nvmet_cc_css(ctrl->cc) != 0) {
		ctrl->csts = NVME_CSTS_CFS;
		return;
	}

	ctrl->csts = NVME_CSTS_RDY;
1008 1009 1010 1011 1012 1013 1014 1015

	/*
	 * Controllers that are not yet enabled should not really enforce the
	 * keep alive timeout, but we still want to track a timeout and cleanup
	 * in case a host died before it enabled the controller.  Hence, simply
	 * reset the keep alive timer when the controller is enabled.
	 */
	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
}

static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	/* XXX: tear down queues? */
	ctrl->csts &= ~NVME_CSTS_RDY;
	ctrl->cc = 0;
}

void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
	u32 old;

	mutex_lock(&ctrl->lock);
	old = ctrl->cc;
	ctrl->cc = new;

	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
		nvmet_start_ctrl(ctrl);
	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
		nvmet_clear_ctrl(ctrl);
	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
		nvmet_clear_ctrl(ctrl);
		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
	}
	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
	mutex_unlock(&ctrl->lock);
}

static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
	/* command sets supported: NVMe command set: */
	ctrl->cap = (1ULL << 37);
	/* CC.EN timeout in 500msec units: */
	ctrl->cap |= (15ULL << 24);
	/* maximum queue entries supported: */
	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}

u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
		struct nvmet_req *req, struct nvmet_ctrl **ret)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	u16 status = 0;

	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1069
		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	}

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->cntlid == cntlid) {
			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
				pr_warn("hostnqn mismatch.\n");
				continue;
			}
			if (!kref_get_unless_zero(&ctrl->ref))
				continue;

			*ret = ctrl;
			goto out;
		}
	}

	pr_warn("could not find controller %d for subsys %s / host %s\n",
		cntlid, subsysnqn, hostnqn);
1090
	req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1091 1092 1093 1094 1095 1096 1097 1098
	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;

out:
	mutex_unlock(&subsys->lock);
	nvmet_subsys_put(subsys);
	return status;
}

1099 1100 1101
u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
{
	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1102
		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1103 1104 1105 1106 1107
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}

	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1108
		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1109 1110 1111 1112 1113 1114
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}
	return 0;
}

1115
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1116 1117 1118
{
	struct nvmet_host_link *p;

1119 1120
	lockdep_assert_held(&nvmet_config_sem);

1121 1122 1123
	if (subsys->allow_any_host)
		return true;

1124 1125 1126
	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
		return true;

1127 1128 1129 1130 1131 1132 1133 1134
	list_for_each_entry(p, &subsys->hosts, entry) {
		if (!strcmp(nvmet_host_name(p->host), hostnqn))
			return true;
	}

	return false;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
		struct nvmet_req *req)
{
	struct nvmet_ns *ns;

	if (!req->p2p_client)
		return;

	ctrl->p2p_client = get_device(req->p2p_client);

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
		pci_dev_put(radix_tree_deref_slot(slot));

	put_device(ctrl->p2p_client);
}

1166 1167 1168 1169 1170 1171 1172 1173 1174
static void nvmet_fatal_error_handler(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
			container_of(work, struct nvmet_ctrl, fatal_err_work);

	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
	ctrl->ops->delete_ctrl(ctrl);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	int ret;
	u16 status;

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1188
		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1189 1190 1191 1192 1193
		goto out;
	}

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	down_read(&nvmet_config_sem);
1194
	if (!nvmet_host_allowed(subsys, hostnqn)) {
1195 1196
		pr_info("connect by host %s for subsystem %s not allowed\n",
			hostnqn, subsysnqn);
1197
		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1198
		up_read(&nvmet_config_sem);
1199
		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		goto out_put_subsystem;
	}
	up_read(&nvmet_config_sem);

	status = NVME_SC_INTERNAL;
	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		goto out_put_subsystem;
	mutex_init(&ctrl->lock);

	nvmet_init_cap(ctrl);

1212 1213
	ctrl->port = req->port;

1214 1215
	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
	INIT_LIST_HEAD(&ctrl->async_events);
1216
	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1217
	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1218 1219 1220 1221 1222 1223

	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);

	kref_init(&ctrl->ref);
	ctrl->subsys = subsys;
1224
	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1225

1226 1227 1228 1229 1230
	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
			sizeof(__le32), GFP_KERNEL);
	if (!ctrl->changed_ns_list)
		goto out_free_ctrl;

1231 1232 1233 1234
	ctrl->cqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_cq *),
			GFP_KERNEL);
	if (!ctrl->cqs)
1235
		goto out_free_changed_ns_list;
1236 1237 1238 1239 1240 1241 1242

	ctrl->sqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_sq *),
			GFP_KERNEL);
	if (!ctrl->sqs)
		goto out_free_cqs;

1243
	ret = ida_simple_get(&cntlid_ida,
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
			     GFP_KERNEL);
	if (ret < 0) {
		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
		goto out_free_sqs;
	}
	ctrl->cntlid = ret;

	ctrl->ops = req->ops;

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	/*
	 * Discovery controllers may use some arbitrary high value
	 * in order to cleanup stale discovery sessions
	 */
	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
		kato = NVMET_DISC_KATO_MS;

	/* keep-alive timeout in seconds */
	ctrl->kato = DIV_ROUND_UP(kato, 1000);

1264 1265 1266
	ctrl->err_counter = 0;
	spin_lock_init(&ctrl->error_lock);

1267 1268 1269 1270
	nvmet_start_keep_alive_timer(ctrl);

	mutex_lock(&subsys->lock);
	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1271
	nvmet_setup_p2p_ns_map(ctrl, req);
1272 1273 1274 1275 1276 1277 1278 1279 1280
	mutex_unlock(&subsys->lock);

	*ctrlp = ctrl;
	return 0;

out_free_sqs:
	kfree(ctrl->sqs);
out_free_cqs:
	kfree(ctrl->cqs);
1281 1282
out_free_changed_ns_list:
	kfree(ctrl->changed_ns_list);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
out_free_ctrl:
	kfree(ctrl);
out_put_subsystem:
	nvmet_subsys_put(subsys);
out:
	return status;
}

static void nvmet_ctrl_free(struct kref *ref)
{
	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
	struct nvmet_subsys *subsys = ctrl->subsys;

	mutex_lock(&subsys->lock);
1297
	nvmet_release_p2p_ns_map(ctrl);
1298 1299 1300
	list_del(&ctrl->subsys_entry);
	mutex_unlock(&subsys->lock);

1301 1302
	nvmet_stop_keep_alive_timer(ctrl);

1303 1304 1305
	flush_work(&ctrl->async_event_work);
	cancel_work_sync(&ctrl->fatal_err_work);

1306
	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1307 1308 1309

	kfree(ctrl->sqs);
	kfree(ctrl->cqs);
1310
	kfree(ctrl->changed_ns_list);
1311
	kfree(ctrl);
1312 1313

	nvmet_subsys_put(subsys);
1314 1315 1316 1317 1318 1319 1320 1321 1322
}

void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
	kref_put(&ctrl->ref, nvmet_ctrl_free);
}

void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
1323 1324 1325 1326 1327 1328
	mutex_lock(&ctrl->lock);
	if (!(ctrl->csts & NVME_CSTS_CFS)) {
		ctrl->csts |= NVME_CSTS_CFS;
		schedule_work(&ctrl->fatal_err_work);
	}
	mutex_unlock(&ctrl->lock);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);

static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn)
{
	struct nvmet_subsys_link *p;

	if (!port)
		return NULL;

1340
	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
			return NULL;
		return nvmet_disc_subsys;
	}

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry) {
		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
				NVMF_NQN_SIZE)) {
			if (!kref_get_unless_zero(&p->subsys->ref))
				break;
			up_read(&nvmet_config_sem);
			return p->subsys;
		}
	}
	up_read(&nvmet_config_sem);
	return NULL;
}

struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
		enum nvme_subsys_type type)
{
	struct nvmet_subsys *subsys;

	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
	if (!subsys)
		return NULL;

1369
	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1370 1371
	/* generate a random serial number as our controllers are ephemeral: */
	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	switch (type) {
	case NVME_NQN_NVME:
		subsys->max_qid = NVMET_NR_QUEUES;
		break;
	case NVME_NQN_DISC:
		subsys->max_qid = 0;
		break;
	default:
		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
		kfree(subsys);
		return NULL;
	}
	subsys->type = type;
	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
			GFP_KERNEL);
1388
	if (!subsys->subsysnqn) {
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
		kfree(subsys);
		return NULL;
	}

	kref_init(&subsys->ref);

	mutex_init(&subsys->lock);
	INIT_LIST_HEAD(&subsys->namespaces);
	INIT_LIST_HEAD(&subsys->ctrls);
	INIT_LIST_HEAD(&subsys->hosts);

	return subsys;
}

static void nvmet_subsys_free(struct kref *ref)
{
	struct nvmet_subsys *subsys =
		container_of(ref, struct nvmet_subsys, ref);

	WARN_ON_ONCE(!list_empty(&subsys->namespaces));

	kfree(subsys->subsysnqn);
	kfree(subsys);
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		ctrl->ops->delete_ctrl(ctrl);
	mutex_unlock(&subsys->lock);
}

1424 1425 1426 1427 1428 1429 1430 1431 1432
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
	kref_put(&subsys->ref, nvmet_subsys_free);
}

static int __init nvmet_init(void)
{
	int error;

1433 1434
	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;

1435 1436 1437 1438 1439 1440
	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
			WQ_MEM_RECLAIM, 0);
	if (!buffered_io_wq) {
		error = -ENOMEM;
		goto out;
	}
1441

1442 1443
	error = nvmet_init_discovery();
	if (error)
1444
		goto out_free_work_queue;
1445 1446 1447 1448 1449 1450 1451 1452

	error = nvmet_init_configfs();
	if (error)
		goto out_exit_discovery;
	return 0;

out_exit_discovery:
	nvmet_exit_discovery();
1453 1454
out_free_work_queue:
	destroy_workqueue(buffered_io_wq);
1455 1456 1457 1458 1459 1460 1461 1462
out:
	return error;
}

static void __exit nvmet_exit(void)
{
	nvmet_exit_configfs();
	nvmet_exit_discovery();
1463
	ida_destroy(&cntlid_ida);
1464
	destroy_workqueue(buffered_io_wq);
1465 1466 1467 1468 1469 1470 1471 1472 1473

	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}

module_init(nvmet_init);
module_exit(nvmet_exit);

MODULE_LICENSE("GPL v2");