core.c 33.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Common code for the NVMe target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
16
#include <linux/random.h>
17
#include <linux/rculist.h>
18
#include <linux/pci-p2pdma.h>
19

20 21
#include "nvmet.h"

22
struct workqueue_struct *buffered_io_wq;
23
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24
static DEFINE_IDA(cntlid_ida);
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

/*
 * This read/write semaphore is used to synchronize access to configuration
 * information on a target system that will result in discovery log page
 * information change for at least one host.
 * The full list of resources to protected by this semaphore is:
 *
 *  - subsystems list
 *  - per-subsystem allowed hosts list
 *  - allow_any_host subsystem attribute
 *  - nvmet_genctr
 *  - the nvmet_transports array
 *
 * When updating any of those lists/structures write lock should be obtained,
 * while when reading (popolating discovery log page or checking host-subsystem
 * link) read lock is obtained to allow concurrent reads.
 */
DECLARE_RWSEM(nvmet_config_sem);

44 45 46 47
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn);

u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
		size_t len)
{
	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
	return 0;
}

u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
	return 0;
}

66 67 68 69 70 71 72
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len)
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
	return 0;
}

73 74 75 76 77 78 79 80 81 82 83
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
	struct nvmet_ns *ns;

	if (list_empty(&subsys->namespaces))
		return 0;

	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
	return ns->nsid;
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}

static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		if (!ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
			return;
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
	}
}

static void nvmet_async_event_work(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
		container_of(work, struct nvmet_ctrl, async_event_work);
	struct nvmet_async_event *aen;
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		aen = list_first_entry_or_null(&ctrl->async_events,
				struct nvmet_async_event, entry);
		if (!aen || !ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
			return;
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
		nvmet_set_result(req, nvmet_async_event_result(aen));

		list_del(&aen->entry);
		kfree(aen);

		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, 0);
	}
}

static void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
		u8 event_info, u8 log_page)
{
	struct nvmet_async_event *aen;

	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
	if (!aen)
		return;

	aen->event_type = event_type;
	aen->event_info = event_info;
	aen->log_page = log_page;

	mutex_lock(&ctrl->lock);
	list_add_tail(&aen->entry, &ctrl->async_events);
	mutex_unlock(&ctrl->lock);

	schedule_work(&ctrl->async_event_work);
}

C
Christoph Hellwig 已提交
153 154 155 156 157 158 159
static bool nvmet_aen_disabled(struct nvmet_ctrl *ctrl, u32 aen)
{
	if (!(READ_ONCE(ctrl->aen_enabled) & aen))
		return true;
	return test_and_set_bit(aen, &ctrl->aen_masked);
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	u32 i;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
		goto out_unlock;

	for (i = 0; i < ctrl->nr_changed_ns; i++) {
		if (ctrl->changed_ns_list[i] == nsid)
			goto out_unlock;
	}

	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
		ctrl->nr_changed_ns = U32_MAX;
		goto out_unlock;
	}

	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
	mutex_unlock(&ctrl->lock);
}

184
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
185 186 187 188 189
{
	struct nvmet_ctrl *ctrl;

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
C
Christoph Hellwig 已提交
190
		if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_NS_ATTR))
191
			continue;
192 193 194 195 196 197
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_NS_CHANGED,
				NVME_LOG_CHANGED_NS);
	}
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
		struct nvmet_port *port)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (port && ctrl->port != port)
			continue;
		if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_ANA_CHANGE))
			continue;
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
	}
	mutex_unlock(&subsys->lock);
}

void nvmet_port_send_ana_event(struct nvmet_port *port)
{
	struct nvmet_subsys_link *p;

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry)
		nvmet_send_ana_event(p->subsys, port);
	up_read(&nvmet_config_sem);
}

225
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
226 227 228 229 230 231 232 233 234 235 236 237 238 239
{
	int ret = 0;

	down_write(&nvmet_config_sem);
	if (nvmet_transports[ops->type])
		ret = -EINVAL;
	else
		nvmet_transports[ops->type] = ops;
	up_write(&nvmet_config_sem);

	return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);

240
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
241 242 243 244 245 246 247 248 249
{
	down_write(&nvmet_config_sem);
	nvmet_transports[ops->type] = NULL;
	up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);

int nvmet_enable_port(struct nvmet_port *port)
{
250
	const struct nvmet_fabrics_ops *ops;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	int ret;

	lockdep_assert_held(&nvmet_config_sem);

	ops = nvmet_transports[port->disc_addr.trtype];
	if (!ops) {
		up_write(&nvmet_config_sem);
		request_module("nvmet-transport-%d", port->disc_addr.trtype);
		down_write(&nvmet_config_sem);
		ops = nvmet_transports[port->disc_addr.trtype];
		if (!ops) {
			pr_err("transport type %d not supported\n",
				port->disc_addr.trtype);
			return -EINVAL;
		}
	}

	if (!try_module_get(ops->owner))
		return -EINVAL;

	ret = ops->add_port(port);
	if (ret) {
		module_put(ops->owner);
		return ret;
	}

277 278 279 280
	/* If the transport didn't set inline_data_size, then disable it. */
	if (port->inline_data_size < 0)
		port->inline_data_size = 0;

281 282 283 284 285 286
	port->enabled = true;
	return 0;
}

void nvmet_disable_port(struct nvmet_port *port)
{
287
	const struct nvmet_fabrics_ops *ops;
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

	lockdep_assert_held(&nvmet_config_sem);

	port->enabled = false;

	ops = nvmet_transports[port->disc_addr.trtype];
	ops->remove_port(port);
	module_put(ops->owner);
}

static void nvmet_keep_alive_timer(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvmet_ctrl, ka_work);

	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
		ctrl->cntlid, ctrl->kato);

306
	nvmet_ctrl_fatal_error(ctrl);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
}

static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
		ctrl->cntlid, ctrl->kato);

	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);

	cancel_delayed_work_sync(&ctrl->ka_work);
}

static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
		__le32 nsid)
{
	struct nvmet_ns *ns;

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
		if (ns->nsid == le32_to_cpu(nsid))
			return ns;
	}

	return NULL;
}

struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	struct nvmet_ns *ns;

	rcu_read_lock();
	ns = __nvmet_find_namespace(ctrl, nsid);
	if (ns)
		percpu_ref_get(&ns->ref);
	rcu_read_unlock();

	return ns;
}

static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);

	complete(&ns->disable_done);
}

void nvmet_put_namespace(struct nvmet_ns *ns)
{
	percpu_ref_put(&ns->ref);
}

363 364 365 366 367 368
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
	nvmet_bdev_ns_disable(ns);
	nvmet_file_ns_disable(ns);
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
	int ret;
	struct pci_dev *p2p_dev;

	if (!ns->use_p2pmem)
		return 0;

	if (!ns->bdev) {
		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
		return -EINVAL;
	}

	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
		       ns->device_path);
		return -EINVAL;
	}

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
		if (ret < 0)
			return -EINVAL;
	} else {
		/*
		 * Right now we just check that there is p2pmem available so
		 * we can report an error to the user right away if there
		 * is not. We'll find the actual device to use once we
		 * setup the controller when the port's device is available.
		 */

		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available for %s\n",
			       ns->device_path);
			return -EINVAL;
		}

		pci_dev_put(p2p_dev);
	}

	return 0;
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
				    struct nvmet_ns *ns)
{
	struct device *clients[2];
	struct pci_dev *p2p_dev;
	int ret;

	if (!ctrl->p2p_client)
		return;

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
		if (ret < 0)
			return;

		p2p_dev = pci_dev_get(ns->p2p_dev);
	} else {
		clients[0] = ctrl->p2p_client;
		clients[1] = nvmet_ns_dev(ns);

		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
			       dev_name(ctrl->p2p_client), ns->device_path);
			return;
		}
	}

	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
	if (ret < 0)
		pci_dev_put(p2p_dev);

	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
		ns->nsid);
}

452 453 454
int nvmet_ns_enable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
455
	struct nvmet_ctrl *ctrl;
456
	int ret;
457 458

	mutex_lock(&subsys->lock);
459 460 461 462
	ret = -EMFILE;
	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
		goto out_unlock;
	ret = 0;
463
	if (ns->enabled)
464 465
		goto out_unlock;

466
	ret = nvmet_bdev_ns_enable(ns);
467
	if (ret == -ENOTBLK)
468 469
		ret = nvmet_file_ns_enable(ns);
	if (ret)
470 471
		goto out_unlock;

472 473 474 475 476 477 478
	ret = nvmet_p2pmem_ns_enable(ns);
	if (ret)
		goto out_unlock;

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);

479 480 481
	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
				0, GFP_KERNEL);
	if (ret)
482
		goto out_dev_put;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	if (ns->nsid > subsys->max_nsid)
		subsys->max_nsid = ns->nsid;

	/*
	 * The namespaces list needs to be sorted to simplify the implementation
	 * of the Identify Namepace List subcommand.
	 */
	if (list_empty(&subsys->namespaces)) {
		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
	} else {
		struct nvmet_ns *old;

		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
			BUG_ON(ns->nsid == old->nsid);
			if (ns->nsid < old->nsid)
				break;
		}

		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
	}
504
	subsys->nr_namespaces++;
505

506
	nvmet_ns_changed(subsys, ns->nsid);
507
	ns->enabled = true;
508 509 510 511
	ret = 0;
out_unlock:
	mutex_unlock(&subsys->lock);
	return ret;
512
out_dev_put:
513 514 515
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

516
	nvmet_ns_dev_disable(ns);
517 518 519 520 521 522
	goto out_unlock;
}

void nvmet_ns_disable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
523
	struct nvmet_ctrl *ctrl;
524 525

	mutex_lock(&subsys->lock);
526 527 528 529 530
	if (!ns->enabled)
		goto out_unlock;

	ns->enabled = false;
	list_del_rcu(&ns->dev_link);
531 532
	if (ns->nsid == subsys->max_nsid)
		subsys->max_nsid = nvmet_max_nsid(subsys);
533 534 535 536

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	mutex_unlock(&subsys->lock);

	/*
	 * Now that we removed the namespaces from the lookup list, we
	 * can kill the per_cpu ref and wait for any remaining references
	 * to be dropped, as well as a RCU grace period for anyone only
	 * using the namepace under rcu_read_lock().  Note that we can't
	 * use call_rcu here as we need to ensure the namespaces have
	 * been fully destroyed before unloading the module.
	 */
	percpu_ref_kill(&ns->ref);
	synchronize_rcu();
	wait_for_completion(&ns->disable_done);
	percpu_ref_exit(&ns->ref);

	mutex_lock(&subsys->lock);
553

554
	subsys->nr_namespaces--;
555
	nvmet_ns_changed(subsys, ns->nsid);
556
	nvmet_ns_dev_disable(ns);
557
out_unlock:
558 559 560 561 562 563 564
	mutex_unlock(&subsys->lock);
}

void nvmet_ns_free(struct nvmet_ns *ns)
{
	nvmet_ns_disable(ns);

565 566 567 568
	down_write(&nvmet_ana_sem);
	nvmet_ana_group_enabled[ns->anagrpid]--;
	up_write(&nvmet_ana_sem);

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	kfree(ns->device_path);
	kfree(ns);
}

struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
	struct nvmet_ns *ns;

	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
	if (!ns)
		return NULL;

	INIT_LIST_HEAD(&ns->dev_link);
	init_completion(&ns->disable_done);

	ns->nsid = nsid;
	ns->subsys = subsys;
586 587 588 589 590 591

	down_write(&nvmet_ana_sem);
	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
	nvmet_ana_group_enabled[ns->anagrpid]++;
	up_write(&nvmet_ana_sem);

592
	uuid_gen(&ns->uuid);
593
	ns->buffered_io = false;
594 595 596 597 598 599

	return ns;
}

static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
J
James Smart 已提交
600 601 602
	u32 old_sqhd, new_sqhd;
	u16 sqhd;

603 604 605
	if (status)
		nvmet_set_status(req, status);

J
James Smart 已提交
606 607 608 609 610 611 612 613 614
	if (req->sq->size) {
		do {
			old_sqhd = req->sq->sqhd;
			new_sqhd = (old_sqhd + 1) % req->sq->size;
		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
					old_sqhd);
	}
	sqhd = req->sq->sqhd & 0x0000FFFF;
	req->rsp->sq_head = cpu_to_le16(sqhd);
615
	req->rsp->sq_id = cpu_to_le16(req->sq->qid);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	req->rsp->command_id = req->cmd->common.command_id;

	if (req->ns)
		nvmet_put_namespace(req->ns);
	req->ops->queue_response(req);
}

void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	__nvmet_req_complete(req, status);
	percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);

void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
		u16 qid, u16 size)
{
	cq->qid = qid;
	cq->size = size;

	ctrl->cqs[qid] = cq;
}

void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
		u16 qid, u16 size)
{
642
	sq->sqhd = 0;
643 644 645 646 647 648
	sq->qid = qid;
	sq->size = size;

	ctrl->sqs[qid] = sq;
}

649 650 651 652 653 654 655
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->confirm_done);
}

656 657 658 659 660 661 662 663
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
	/*
	 * If this is the admin queue, complete all AERs so that our
	 * queue doesn't have outstanding requests on it.
	 */
	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
		nvmet_async_events_free(sq->ctrl);
664 665
	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
	wait_for_completion(&sq->confirm_done);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	wait_for_completion(&sq->free_done);
	percpu_ref_exit(&sq->ref);

	if (sq->ctrl) {
		nvmet_ctrl_put(sq->ctrl);
		sq->ctrl = NULL; /* allows reusing the queue later */
	}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);

static void nvmet_sq_free(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->free_done);
}

int nvmet_sq_init(struct nvmet_sq *sq)
{
	int ret;

	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
	if (ret) {
		pr_err("percpu_ref init failed!\n");
		return ret;
	}
	init_completion(&sq->free_done);
693
	init_completion(&sq->confirm_done);
694 695 696 697 698

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);

699 700 701 702 703 704 705 706 707 708 709 710 711 712
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
		struct nvmet_ns *ns)
{
	enum nvme_ana_state state = port->ana_state[ns->anagrpid];

	if (unlikely(state == NVME_ANA_INACCESSIBLE))
		return NVME_SC_ANA_INACCESSIBLE;
	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
		return NVME_SC_ANA_PERSISTENT_LOSS;
	if (unlikely(state == NVME_ANA_CHANGE))
		return NVME_SC_ANA_TRANSITION;
	return 0;
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
	if (unlikely(req->ns->readonly)) {
		switch (req->cmd->common.opcode) {
		case nvme_cmd_read:
		case nvme_cmd_flush:
			break;
		default:
			return NVME_SC_NS_WRITE_PROTECTED;
		}
	}

	return 0;
}

728 729 730 731 732 733 734 735 736 737 738 739
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
	struct nvme_command *cmd = req->cmd;
	u16 ret;

	ret = nvmet_check_ctrl_status(req, cmd);
	if (unlikely(ret))
		return ret;

	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
	if (unlikely(!req->ns))
		return NVME_SC_INVALID_NS | NVME_SC_DNR;
740
	ret = nvmet_check_ana_state(req->port, req->ns);
741 742 743
	if (unlikely(ret))
		return ret;
	ret = nvmet_io_cmd_check_access(req);
744 745
	if (unlikely(ret))
		return ret;
746 747 748 749 750 751 752

	if (req->ns->file)
		return nvmet_file_parse_io_cmd(req);
	else
		return nvmet_bdev_parse_io_cmd(req);
}

753
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
754
		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
755 756 757 758 759 760 761 762 763
{
	u8 flags = req->cmd->common.flags;
	u16 status;

	req->cq = cq;
	req->sq = sq;
	req->ops = ops;
	req->sg = NULL;
	req->sg_cnt = 0;
764
	req->transfer_len = 0;
765
	req->rsp->status = 0;
766
	req->ns = NULL;
767 768 769 770 771 772 773

	/* no support for fused commands yet */
	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

774 775 776 777 778 779
	/*
	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
	 * contains an address of a single contiguous physical buffer that is
	 * byte aligned.
	 */
	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

	if (unlikely(!req->sq->ctrl))
		/* will return an error for any Non-connect command: */
		status = nvmet_parse_connect_cmd(req);
	else if (likely(req->sq->qid != 0))
		status = nvmet_parse_io_cmd(req);
	else if (req->cmd->common.opcode == nvme_fabrics_command)
		status = nvmet_parse_fabrics_cmd(req);
	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
		status = nvmet_parse_discovery_cmd(req);
	else
		status = nvmet_parse_admin_cmd(req);

	if (status)
		goto fail;

	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

	return true;

fail:
	__nvmet_req_complete(req, status);
	return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);

812 813 814
void nvmet_req_uninit(struct nvmet_req *req)
{
	percpu_ref_put(&req->sq->ref);
815 816
	if (req->ns)
		nvmet_put_namespace(req->ns);
817 818 819
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);

820 821 822 823 824 825 826 827 828
void nvmet_req_execute(struct nvmet_req *req)
{
	if (unlikely(req->data_len != req->transfer_len))
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
	else
		req->execute(req);
}
EXPORT_SYMBOL_GPL(nvmet_req_execute);

829 830
int nvmet_req_alloc_sgl(struct nvmet_req *req)
{
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
	struct pci_dev *p2p_dev = NULL;

	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
		if (req->sq->ctrl && req->ns)
			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
						    req->ns->nsid);

		req->p2p_dev = NULL;
		if (req->sq->qid && p2p_dev) {
			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
						       req->transfer_len);
			if (req->sg) {
				req->p2p_dev = p2p_dev;
				return 0;
			}
		}

		/*
		 * If no P2P memory was available we fallback to using
		 * regular memory
		 */
	}

854 855 856 857 858 859 860 861 862 863
	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
	if (!req->sg)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);

void nvmet_req_free_sgl(struct nvmet_req *req)
{
864 865 866 867 868
	if (req->p2p_dev)
		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
	else
		sgl_free(req->sg);

869 870 871 872 873
	req->sg = NULL;
	req->sg_cnt = 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);

874 875
static inline bool nvmet_cc_en(u32 cc)
{
876
	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
877 878 879 880
}

static inline u8 nvmet_cc_css(u32 cc)
{
881
	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
882 883 884 885
}

static inline u8 nvmet_cc_mps(u32 cc)
{
886
	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
887 888 889 890
}

static inline u8 nvmet_cc_ams(u32 cc)
{
891
	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
892 893 894 895
}

static inline u8 nvmet_cc_shn(u32 cc)
{
896
	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
897 898 899 900
}

static inline u8 nvmet_cc_iosqes(u32 cc)
{
901
	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
902 903 904 905
}

static inline u8 nvmet_cc_iocqes(u32 cc)
{
906
	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
}

static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
	    nvmet_cc_mps(ctrl->cc) != 0 ||
	    nvmet_cc_ams(ctrl->cc) != 0 ||
	    nvmet_cc_css(ctrl->cc) != 0) {
		ctrl->csts = NVME_CSTS_CFS;
		return;
	}

	ctrl->csts = NVME_CSTS_RDY;
923 924 925 926 927 928 929 930

	/*
	 * Controllers that are not yet enabled should not really enforce the
	 * keep alive timeout, but we still want to track a timeout and cleanup
	 * in case a host died before it enabled the controller.  Hence, simply
	 * reset the keep alive timer when the controller is enabled.
	 */
	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
}

static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	/* XXX: tear down queues? */
	ctrl->csts &= ~NVME_CSTS_RDY;
	ctrl->cc = 0;
}

void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
	u32 old;

	mutex_lock(&ctrl->lock);
	old = ctrl->cc;
	ctrl->cc = new;

	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
		nvmet_start_ctrl(ctrl);
	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
		nvmet_clear_ctrl(ctrl);
	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
		nvmet_clear_ctrl(ctrl);
		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
	}
	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
	mutex_unlock(&ctrl->lock);
}

static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
	/* command sets supported: NVMe command set: */
	ctrl->cap = (1ULL << 37);
	/* CC.EN timeout in 500msec units: */
	ctrl->cap |= (15ULL << 24);
	/* maximum queue entries supported: */
	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}

u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
		struct nvmet_req *req, struct nvmet_ctrl **ret)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	u16 status = 0;

	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
984
		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	}

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->cntlid == cntlid) {
			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
				pr_warn("hostnqn mismatch.\n");
				continue;
			}
			if (!kref_get_unless_zero(&ctrl->ref))
				continue;

			*ret = ctrl;
			goto out;
		}
	}

	pr_warn("could not find controller %d for subsys %s / host %s\n",
		cntlid, subsysnqn, hostnqn);
1005
	req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1006 1007 1008 1009 1010 1011 1012 1013
	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;

out:
	mutex_unlock(&subsys->lock);
	nvmet_subsys_put(subsys);
	return status;
}

1014 1015 1016
u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
{
	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1017
		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1018 1019 1020 1021 1022
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}

	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1023
		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1024 1025 1026 1027 1028 1029
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}
	return 0;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static bool __nvmet_host_allowed(struct nvmet_subsys *subsys,
		const char *hostnqn)
{
	struct nvmet_host_link *p;

	if (subsys->allow_any_host)
		return true;

	list_for_each_entry(p, &subsys->hosts, entry) {
		if (!strcmp(nvmet_host_name(p->host), hostnqn))
			return true;
	}

	return false;
}

static bool nvmet_host_discovery_allowed(struct nvmet_req *req,
		const char *hostnqn)
{
	struct nvmet_subsys_link *s;

	list_for_each_entry(s, &req->port->subsystems, entry) {
		if (__nvmet_host_allowed(s->subsys, hostnqn))
			return true;
	}

	return false;
}

bool nvmet_host_allowed(struct nvmet_req *req, struct nvmet_subsys *subsys,
		const char *hostnqn)
{
	lockdep_assert_held(&nvmet_config_sem);

	if (subsys->type == NVME_NQN_DISC)
		return nvmet_host_discovery_allowed(req, hostnqn);
	else
		return __nvmet_host_allowed(subsys, hostnqn);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
		struct nvmet_req *req)
{
	struct nvmet_ns *ns;

	if (!req->p2p_client)
		return;

	ctrl->p2p_client = get_device(req->p2p_client);

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
		pci_dev_put(radix_tree_deref_slot(slot));

	put_device(ctrl->p2p_client);
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	int ret;
	u16 status;

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1114
		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1115 1116 1117 1118 1119 1120 1121 1122
		goto out;
	}

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	down_read(&nvmet_config_sem);
	if (!nvmet_host_allowed(req, subsys, hostnqn)) {
		pr_info("connect by host %s for subsystem %s not allowed\n",
			hostnqn, subsysnqn);
1123
		req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1124
		up_read(&nvmet_config_sem);
1125
		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		goto out_put_subsystem;
	}
	up_read(&nvmet_config_sem);

	status = NVME_SC_INTERNAL;
	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		goto out_put_subsystem;
	mutex_init(&ctrl->lock);

	nvmet_init_cap(ctrl);

1138 1139
	ctrl->port = req->port;

1140 1141
	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
	INIT_LIST_HEAD(&ctrl->async_events);
1142
	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1143 1144 1145 1146 1147 1148

	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);

	kref_init(&ctrl->ref);
	ctrl->subsys = subsys;
1149
	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1150

1151 1152 1153 1154 1155
	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
			sizeof(__le32), GFP_KERNEL);
	if (!ctrl->changed_ns_list)
		goto out_free_ctrl;

1156 1157 1158 1159
	ctrl->cqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_cq *),
			GFP_KERNEL);
	if (!ctrl->cqs)
1160
		goto out_free_changed_ns_list;
1161 1162 1163 1164 1165 1166 1167

	ctrl->sqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_sq *),
			GFP_KERNEL);
	if (!ctrl->sqs)
		goto out_free_cqs;

1168
	ret = ida_simple_get(&cntlid_ida,
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
			     GFP_KERNEL);
	if (ret < 0) {
		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
		goto out_free_sqs;
	}
	ctrl->cntlid = ret;

	ctrl->ops = req->ops;
	if (ctrl->subsys->type == NVME_NQN_DISC) {
		/* Don't accept keep-alive timeout for discovery controllers */
		if (kato) {
			status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
1182
			goto out_remove_ida;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		}

		/*
		 * Discovery controllers use some arbitrary high value in order
		 * to cleanup stale discovery sessions
		 *
		 * From the latest base diff RC:
		 * "The Keep Alive command is not supported by
		 * Discovery controllers. A transport may specify a
		 * fixed Discovery controller activity timeout value
		 * (e.g., 2 minutes).  If no commands are received
		 * by a Discovery controller within that time
		 * period, the controller may perform the
		 * actions for Keep Alive Timer expiration".
		 */
		ctrl->kato = NVMET_DISC_KATO;
	} else {
		/* keep-alive timeout in seconds */
		ctrl->kato = DIV_ROUND_UP(kato, 1000);
	}
	nvmet_start_keep_alive_timer(ctrl);

	mutex_lock(&subsys->lock);
	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1207
	nvmet_setup_p2p_ns_map(ctrl, req);
1208 1209 1210 1211 1212
	mutex_unlock(&subsys->lock);

	*ctrlp = ctrl;
	return 0;

1213 1214
out_remove_ida:
	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1215 1216 1217 1218
out_free_sqs:
	kfree(ctrl->sqs);
out_free_cqs:
	kfree(ctrl->cqs);
1219 1220
out_free_changed_ns_list:
	kfree(ctrl->changed_ns_list);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
out_free_ctrl:
	kfree(ctrl);
out_put_subsystem:
	nvmet_subsys_put(subsys);
out:
	return status;
}

static void nvmet_ctrl_free(struct kref *ref)
{
	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
	struct nvmet_subsys *subsys = ctrl->subsys;

	mutex_lock(&subsys->lock);
1235
	nvmet_release_p2p_ns_map(ctrl);
1236 1237 1238
	list_del(&ctrl->subsys_entry);
	mutex_unlock(&subsys->lock);

1239 1240
	nvmet_stop_keep_alive_timer(ctrl);

1241 1242 1243
	flush_work(&ctrl->async_event_work);
	cancel_work_sync(&ctrl->fatal_err_work);

1244
	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1245 1246 1247

	kfree(ctrl->sqs);
	kfree(ctrl->cqs);
1248
	kfree(ctrl->changed_ns_list);
1249
	kfree(ctrl);
1250 1251

	nvmet_subsys_put(subsys);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
}

void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
	kref_put(&ctrl->ref, nvmet_ctrl_free);
}

static void nvmet_fatal_error_handler(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
			container_of(work, struct nvmet_ctrl, fatal_err_work);

	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
	ctrl->ops->delete_ctrl(ctrl);
}

void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
1270 1271 1272 1273 1274 1275 1276
	mutex_lock(&ctrl->lock);
	if (!(ctrl->csts & NVME_CSTS_CFS)) {
		ctrl->csts |= NVME_CSTS_CFS;
		INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
		schedule_work(&ctrl->fatal_err_work);
	}
	mutex_unlock(&ctrl->lock);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);

static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn)
{
	struct nvmet_subsys_link *p;

	if (!port)
		return NULL;

1288
	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
			return NULL;
		return nvmet_disc_subsys;
	}

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry) {
		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
				NVMF_NQN_SIZE)) {
			if (!kref_get_unless_zero(&p->subsys->ref))
				break;
			up_read(&nvmet_config_sem);
			return p->subsys;
		}
	}
	up_read(&nvmet_config_sem);
	return NULL;
}

struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
		enum nvme_subsys_type type)
{
	struct nvmet_subsys *subsys;

	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
	if (!subsys)
		return NULL;

1317
	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1318 1319
	/* generate a random serial number as our controllers are ephemeral: */
	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	switch (type) {
	case NVME_NQN_NVME:
		subsys->max_qid = NVMET_NR_QUEUES;
		break;
	case NVME_NQN_DISC:
		subsys->max_qid = 0;
		break;
	default:
		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
		kfree(subsys);
		return NULL;
	}
	subsys->type = type;
	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
			GFP_KERNEL);
1336
	if (!subsys->subsysnqn) {
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		kfree(subsys);
		return NULL;
	}

	kref_init(&subsys->ref);

	mutex_init(&subsys->lock);
	INIT_LIST_HEAD(&subsys->namespaces);
	INIT_LIST_HEAD(&subsys->ctrls);
	INIT_LIST_HEAD(&subsys->hosts);

	return subsys;
}

static void nvmet_subsys_free(struct kref *ref)
{
	struct nvmet_subsys *subsys =
		container_of(ref, struct nvmet_subsys, ref);

	WARN_ON_ONCE(!list_empty(&subsys->namespaces));

	kfree(subsys->subsysnqn);
	kfree(subsys);
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		ctrl->ops->delete_ctrl(ctrl);
	mutex_unlock(&subsys->lock);
}

1372 1373 1374 1375 1376 1377 1378 1379 1380
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
	kref_put(&subsys->ref, nvmet_subsys_free);
}

static int __init nvmet_init(void)
{
	int error;

1381 1382
	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;

1383 1384 1385 1386 1387 1388
	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
			WQ_MEM_RECLAIM, 0);
	if (!buffered_io_wq) {
		error = -ENOMEM;
		goto out;
	}
1389

1390 1391
	error = nvmet_init_discovery();
	if (error)
1392
		goto out_free_work_queue;
1393 1394 1395 1396 1397 1398 1399 1400

	error = nvmet_init_configfs();
	if (error)
		goto out_exit_discovery;
	return 0;

out_exit_discovery:
	nvmet_exit_discovery();
1401 1402
out_free_work_queue:
	destroy_workqueue(buffered_io_wq);
1403 1404 1405 1406 1407 1408 1409 1410
out:
	return error;
}

static void __exit nvmet_exit(void)
{
	nvmet_exit_configfs();
	nvmet_exit_discovery();
1411
	ida_destroy(&cntlid_ida);
1412
	destroy_workqueue(buffered_io_wq);
1413 1414 1415 1416 1417 1418 1419 1420 1421

	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}

module_init(nvmet_init);
module_exit(nvmet_exit);

MODULE_LICENSE("GPL v2");