core.c 35.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Common code for the NVMe target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
8
#include <linux/random.h>
9
#include <linux/rculist.h>
10
#include <linux/pci-p2pdma.h>
11
#include <linux/scatterlist.h>
12

M
Minwoo Im 已提交
13 14 15
#define CREATE_TRACE_POINTS
#include "trace.h"

16 17
#include "nvmet.h"

18
struct workqueue_struct *buffered_io_wq;
19
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20
static DEFINE_IDA(cntlid_ida);
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

/*
 * This read/write semaphore is used to synchronize access to configuration
 * information on a target system that will result in discovery log page
 * information change for at least one host.
 * The full list of resources to protected by this semaphore is:
 *
 *  - subsystems list
 *  - per-subsystem allowed hosts list
 *  - allow_any_host subsystem attribute
 *  - nvmet_genctr
 *  - the nvmet_transports array
 *
 * When updating any of those lists/structures write lock should be obtained,
 * while when reading (popolating discovery log page or checking host-subsystem
 * link) read lock is obtained to allow concurrent reads.
 */
DECLARE_RWSEM(nvmet_config_sem);

40 41 42 43
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
{
	u16 status;

	switch (errno) {
	case -ENOSPC:
		req->error_loc = offsetof(struct nvme_rw_command, length);
		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
		break;
	case -EREMOTEIO:
		req->error_loc = offsetof(struct nvme_rw_command, slba);
		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
		break;
	case -EOPNOTSUPP:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		switch (req->cmd->common.opcode) {
		case nvme_cmd_dsm:
		case nvme_cmd_write_zeroes:
			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
			break;
		default:
			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
		}
		break;
	case -ENODATA:
		req->error_loc = offsetof(struct nvme_rw_command, nsid);
		status = NVME_SC_ACCESS_DENIED;
		break;
	case -EIO:
		/* FALLTHRU */
	default:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		status = NVME_SC_INTERNAL | NVME_SC_DNR;
	}

	return status;
}

82 83 84 85 86 87
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn);

u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
		size_t len)
{
88 89
	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
90
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
91
	}
92 93 94 95 96
	return 0;
}

u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
97 98
	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
99
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
100
	}
101 102 103
	return 0;
}

104 105
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
106 107
	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
108
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
109
	}
110 111 112
	return 0;
}

113 114 115 116 117 118 119 120 121 122 123
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
	struct nvmet_ns *ns;

	if (list_empty(&subsys->namespaces))
		return 0;

	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
	return ns->nsid;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}

static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		if (!ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
			return;
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
	}
}

static void nvmet_async_event_work(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
		container_of(work, struct nvmet_ctrl, async_event_work);
	struct nvmet_async_event *aen;
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		aen = list_first_entry_or_null(&ctrl->async_events,
				struct nvmet_async_event, entry);
		if (!aen || !ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
			return;
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
		nvmet_set_result(req, nvmet_async_event_result(aen));

		list_del(&aen->entry);
		kfree(aen);

		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, 0);
	}
}

173
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
		u8 event_info, u8 log_page)
{
	struct nvmet_async_event *aen;

	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
	if (!aen)
		return;

	aen->event_type = event_type;
	aen->event_info = event_info;
	aen->log_page = log_page;

	mutex_lock(&ctrl->lock);
	list_add_tail(&aen->entry, &ctrl->async_events);
	mutex_unlock(&ctrl->lock);

	schedule_work(&ctrl->async_event_work);
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	u32 i;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
		goto out_unlock;

	for (i = 0; i < ctrl->nr_changed_ns; i++) {
		if (ctrl->changed_ns_list[i] == nsid)
			goto out_unlock;
	}

	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
		ctrl->nr_changed_ns = U32_MAX;
		goto out_unlock;
	}

	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
	mutex_unlock(&ctrl->lock);
}

217
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
218 219 220
{
	struct nvmet_ctrl *ctrl;

221 222
	lockdep_assert_held(&subsys->lock);

223 224
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
225
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
226
			continue;
227 228 229 230 231 232
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_NS_CHANGED,
				NVME_LOG_CHANGED_NS);
	}
}

233 234 235 236 237 238 239 240 241
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
		struct nvmet_port *port)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (port && ctrl->port != port)
			continue;
242
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
			continue;
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
	}
	mutex_unlock(&subsys->lock);
}

void nvmet_port_send_ana_event(struct nvmet_port *port)
{
	struct nvmet_subsys_link *p;

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry)
		nvmet_send_ana_event(p->subsys, port);
	up_read(&nvmet_config_sem);
}

260
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
261 262 263 264 265 266 267 268 269 270 271 272 273 274
{
	int ret = 0;

	down_write(&nvmet_config_sem);
	if (nvmet_transports[ops->type])
		ret = -EINVAL;
	else
		nvmet_transports[ops->type] = ops;
	up_write(&nvmet_config_sem);

	return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);

275
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
276 277 278 279 280 281 282
{
	down_write(&nvmet_config_sem);
	nvmet_transports[ops->type] = NULL;
	up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);

283 284 285 286 287 288 289 290 291 292 293 294
void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->port == port)
			ctrl->ops->delete_ctrl(ctrl);
	}
	mutex_unlock(&subsys->lock);
}

295 296
int nvmet_enable_port(struct nvmet_port *port)
{
297
	const struct nvmet_fabrics_ops *ops;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	int ret;

	lockdep_assert_held(&nvmet_config_sem);

	ops = nvmet_transports[port->disc_addr.trtype];
	if (!ops) {
		up_write(&nvmet_config_sem);
		request_module("nvmet-transport-%d", port->disc_addr.trtype);
		down_write(&nvmet_config_sem);
		ops = nvmet_transports[port->disc_addr.trtype];
		if (!ops) {
			pr_err("transport type %d not supported\n",
				port->disc_addr.trtype);
			return -EINVAL;
		}
	}

	if (!try_module_get(ops->owner))
		return -EINVAL;

	ret = ops->add_port(port);
	if (ret) {
		module_put(ops->owner);
		return ret;
	}

324 325 326 327
	/* If the transport didn't set inline_data_size, then disable it. */
	if (port->inline_data_size < 0)
		port->inline_data_size = 0;

328
	port->enabled = true;
329
	port->tr_ops = ops;
330 331 332 333 334
	return 0;
}

void nvmet_disable_port(struct nvmet_port *port)
{
335
	const struct nvmet_fabrics_ops *ops;
336 337 338 339

	lockdep_assert_held(&nvmet_config_sem);

	port->enabled = false;
340
	port->tr_ops = NULL;
341 342 343 344 345 346 347 348 349 350

	ops = nvmet_transports[port->disc_addr.trtype];
	ops->remove_port(port);
	module_put(ops->owner);
}

static void nvmet_keep_alive_timer(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvmet_ctrl, ka_work);
351 352 353 354 355 356 357 358 359
	bool cmd_seen = ctrl->cmd_seen;

	ctrl->cmd_seen = false;
	if (cmd_seen) {
		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
			ctrl->cntlid);
		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
		return;
	}
360 361 362 363

	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
		ctrl->cntlid, ctrl->kato);

364
	nvmet_ctrl_fatal_error(ctrl);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
}

static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
		ctrl->cntlid, ctrl->kato);

	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);

	cancel_delayed_work_sync(&ctrl->ka_work);
}

static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
		__le32 nsid)
{
	struct nvmet_ns *ns;

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
		if (ns->nsid == le32_to_cpu(nsid))
			return ns;
	}

	return NULL;
}

struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	struct nvmet_ns *ns;

	rcu_read_lock();
	ns = __nvmet_find_namespace(ctrl, nsid);
	if (ns)
		percpu_ref_get(&ns->ref);
	rcu_read_unlock();

	return ns;
}

static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);

	complete(&ns->disable_done);
}

void nvmet_put_namespace(struct nvmet_ns *ns)
{
	percpu_ref_put(&ns->ref);
}

421 422 423 424 425 426
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
	nvmet_bdev_ns_disable(ns);
	nvmet_file_ns_disable(ns);
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
	int ret;
	struct pci_dev *p2p_dev;

	if (!ns->use_p2pmem)
		return 0;

	if (!ns->bdev) {
		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
		return -EINVAL;
	}

	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
		       ns->device_path);
		return -EINVAL;
	}

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
		if (ret < 0)
			return -EINVAL;
	} else {
		/*
		 * Right now we just check that there is p2pmem available so
		 * we can report an error to the user right away if there
		 * is not. We'll find the actual device to use once we
		 * setup the controller when the port's device is available.
		 */

		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available for %s\n",
			       ns->device_path);
			return -EINVAL;
		}

		pci_dev_put(p2p_dev);
	}

	return 0;
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
				    struct nvmet_ns *ns)
{
	struct device *clients[2];
	struct pci_dev *p2p_dev;
	int ret;

481
	if (!ctrl->p2p_client || !ns->use_p2pmem)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return;

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
		if (ret < 0)
			return;

		p2p_dev = pci_dev_get(ns->p2p_dev);
	} else {
		clients[0] = ctrl->p2p_client;
		clients[1] = nvmet_ns_dev(ns);

		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
			       dev_name(ctrl->p2p_client), ns->device_path);
			return;
		}
	}

	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
	if (ret < 0)
		pci_dev_put(p2p_dev);

	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
		ns->nsid);
}

510 511 512
int nvmet_ns_enable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
513
	struct nvmet_ctrl *ctrl;
514
	int ret;
515 516

	mutex_lock(&subsys->lock);
517
	ret = 0;
518
	if (ns->enabled)
519 520
		goto out_unlock;

521 522 523 524
	ret = -EMFILE;
	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
		goto out_unlock;

525
	ret = nvmet_bdev_ns_enable(ns);
526
	if (ret == -ENOTBLK)
527 528
		ret = nvmet_file_ns_enable(ns);
	if (ret)
529 530
		goto out_unlock;

531 532
	ret = nvmet_p2pmem_ns_enable(ns);
	if (ret)
533
		goto out_dev_disable;
534 535 536 537

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);

538 539 540
	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
				0, GFP_KERNEL);
	if (ret)
541
		goto out_dev_put;
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

	if (ns->nsid > subsys->max_nsid)
		subsys->max_nsid = ns->nsid;

	/*
	 * The namespaces list needs to be sorted to simplify the implementation
	 * of the Identify Namepace List subcommand.
	 */
	if (list_empty(&subsys->namespaces)) {
		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
	} else {
		struct nvmet_ns *old;

		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
			BUG_ON(ns->nsid == old->nsid);
			if (ns->nsid < old->nsid)
				break;
		}

		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
	}
563
	subsys->nr_namespaces++;
564

565
	nvmet_ns_changed(subsys, ns->nsid);
566
	ns->enabled = true;
567 568 569 570
	ret = 0;
out_unlock:
	mutex_unlock(&subsys->lock);
	return ret;
571
out_dev_put:
572 573
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
574
out_dev_disable:
575
	nvmet_ns_dev_disable(ns);
576 577 578 579 580 581
	goto out_unlock;
}

void nvmet_ns_disable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
582
	struct nvmet_ctrl *ctrl;
583 584

	mutex_lock(&subsys->lock);
585 586 587 588 589
	if (!ns->enabled)
		goto out_unlock;

	ns->enabled = false;
	list_del_rcu(&ns->dev_link);
590 591
	if (ns->nsid == subsys->max_nsid)
		subsys->max_nsid = nvmet_max_nsid(subsys);
592 593 594 595

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	mutex_unlock(&subsys->lock);

	/*
	 * Now that we removed the namespaces from the lookup list, we
	 * can kill the per_cpu ref and wait for any remaining references
	 * to be dropped, as well as a RCU grace period for anyone only
	 * using the namepace under rcu_read_lock().  Note that we can't
	 * use call_rcu here as we need to ensure the namespaces have
	 * been fully destroyed before unloading the module.
	 */
	percpu_ref_kill(&ns->ref);
	synchronize_rcu();
	wait_for_completion(&ns->disable_done);
	percpu_ref_exit(&ns->ref);

	mutex_lock(&subsys->lock);
612

613
	subsys->nr_namespaces--;
614
	nvmet_ns_changed(subsys, ns->nsid);
615
	nvmet_ns_dev_disable(ns);
616
out_unlock:
617 618 619 620 621 622 623
	mutex_unlock(&subsys->lock);
}

void nvmet_ns_free(struct nvmet_ns *ns)
{
	nvmet_ns_disable(ns);

624 625 626 627
	down_write(&nvmet_ana_sem);
	nvmet_ana_group_enabled[ns->anagrpid]--;
	up_write(&nvmet_ana_sem);

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	kfree(ns->device_path);
	kfree(ns);
}

struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
	struct nvmet_ns *ns;

	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
	if (!ns)
		return NULL;

	INIT_LIST_HEAD(&ns->dev_link);
	init_completion(&ns->disable_done);

	ns->nsid = nsid;
	ns->subsys = subsys;
645 646 647 648 649 650

	down_write(&nvmet_ana_sem);
	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
	nvmet_ana_group_enabled[ns->anagrpid]++;
	up_write(&nvmet_ana_sem);

651
	uuid_gen(&ns->uuid);
652
	ns->buffered_io = false;
653 654 655 656

	return ns;
}

657
static void nvmet_update_sq_head(struct nvmet_req *req)
658
{
J
James Smart 已提交
659
	if (req->sq->size) {
660 661
		u32 old_sqhd, new_sqhd;

J
James Smart 已提交
662 663 664 665 666 667
		do {
			old_sqhd = req->sq->sqhd;
			new_sqhd = (old_sqhd + 1) % req->sq->size;
		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
					old_sqhd);
	}
668
	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
669 670
}

671 672 673 674 675 676
static void nvmet_set_error(struct nvmet_req *req, u16 status)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvme_error_slot *new_error_slot;
	unsigned long flags;

677
	req->cqe->status = cpu_to_le16(status << 1);
678

679
	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		return;

	spin_lock_irqsave(&ctrl->error_lock, flags);
	ctrl->err_counter++;
	new_error_slot =
		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];

	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
	new_error_slot->status_field = cpu_to_le16(status << 1);
	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
	new_error_slot->lba = cpu_to_le64(req->error_slba);
	new_error_slot->nsid = req->cmd->common.nsid;
	spin_unlock_irqrestore(&ctrl->error_lock, flags);

	/* set the more bit for this request */
697
	req->cqe->status |= cpu_to_le16(1 << 14);
698 699
}

700 701 702 703
static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	if (!req->sq->sqhd_disabled)
		nvmet_update_sq_head(req);
704 705
	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
	req->cqe->command_id = req->cmd->common.command_id;
706

707
	if (unlikely(status))
708
		nvmet_set_error(req, status);
M
Minwoo Im 已提交
709 710 711

	trace_nvmet_req_complete(req);

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	if (req->ns)
		nvmet_put_namespace(req->ns);
	req->ops->queue_response(req);
}

void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	__nvmet_req_complete(req, status);
	percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);

void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
		u16 qid, u16 size)
{
	cq->qid = qid;
	cq->size = size;

	ctrl->cqs[qid] = cq;
}

void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
		u16 qid, u16 size)
{
736
	sq->sqhd = 0;
737 738 739 740 741 742
	sq->qid = qid;
	sq->size = size;

	ctrl->sqs[qid] = sq;
}

743 744 745 746 747 748 749
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->confirm_done);
}

750 751 752 753 754 755 756 757
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
	/*
	 * If this is the admin queue, complete all AERs so that our
	 * queue doesn't have outstanding requests on it.
	 */
	if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
		nvmet_async_events_free(sq->ctrl);
758 759
	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
	wait_for_completion(&sq->confirm_done);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	wait_for_completion(&sq->free_done);
	percpu_ref_exit(&sq->ref);

	if (sq->ctrl) {
		nvmet_ctrl_put(sq->ctrl);
		sq->ctrl = NULL; /* allows reusing the queue later */
	}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);

static void nvmet_sq_free(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->free_done);
}

int nvmet_sq_init(struct nvmet_sq *sq)
{
	int ret;

	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
	if (ret) {
		pr_err("percpu_ref init failed!\n");
		return ret;
	}
	init_completion(&sq->free_done);
787
	init_completion(&sq->confirm_done);
788 789 790 791 792

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);

793 794 795 796 797 798 799 800 801 802 803 804 805 806
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
		struct nvmet_ns *ns)
{
	enum nvme_ana_state state = port->ana_state[ns->anagrpid];

	if (unlikely(state == NVME_ANA_INACCESSIBLE))
		return NVME_SC_ANA_INACCESSIBLE;
	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
		return NVME_SC_ANA_PERSISTENT_LOSS;
	if (unlikely(state == NVME_ANA_CHANGE))
		return NVME_SC_ANA_TRANSITION;
	return 0;
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
	if (unlikely(req->ns->readonly)) {
		switch (req->cmd->common.opcode) {
		case nvme_cmd_read:
		case nvme_cmd_flush:
			break;
		default:
			return NVME_SC_NS_WRITE_PROTECTED;
		}
	}

	return 0;
}

822 823 824 825 826 827 828 829 830 831
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
	struct nvme_command *cmd = req->cmd;
	u16 ret;

	ret = nvmet_check_ctrl_status(req, cmd);
	if (unlikely(ret))
		return ret;

	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
832 833
	if (unlikely(!req->ns)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
834
		return NVME_SC_INVALID_NS | NVME_SC_DNR;
835
	}
836
	ret = nvmet_check_ana_state(req->port, req->ns);
837 838
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
839
		return ret;
840
	}
841
	ret = nvmet_io_cmd_check_access(req);
842 843
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
844
		return ret;
845
	}
846 847 848 849 850 851 852

	if (req->ns->file)
		return nvmet_file_parse_io_cmd(req);
	else
		return nvmet_bdev_parse_io_cmd(req);
}

853
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
854
		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
855 856 857 858 859 860 861 862 863
{
	u8 flags = req->cmd->common.flags;
	u16 status;

	req->cq = cq;
	req->sq = sq;
	req->ops = ops;
	req->sg = NULL;
	req->sg_cnt = 0;
864
	req->transfer_len = 0;
865 866
	req->cqe->status = 0;
	req->cqe->sq_head = 0;
867
	req->ns = NULL;
868
	req->error_loc = NVMET_NO_ERROR_LOC;
869
	req->error_slba = 0;
870

M
Minwoo Im 已提交
871 872
	trace_nvmet_req_init(req, req->cmd);

873 874
	/* no support for fused commands yet */
	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
875
		req->error_loc = offsetof(struct nvme_common_command, flags);
876 877 878 879
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

880 881 882 883 884 885
	/*
	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
	 * contains an address of a single contiguous physical buffer that is
	 * byte aligned.
	 */
	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
886
		req->error_loc = offsetof(struct nvme_common_command, flags);
887 888 889 890 891 892 893 894 895
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

	if (unlikely(!req->sq->ctrl))
		/* will return an error for any Non-connect command: */
		status = nvmet_parse_connect_cmd(req);
	else if (likely(req->sq->qid != 0))
		status = nvmet_parse_io_cmd(req);
896
	else if (nvme_is_fabrics(req->cmd))
897 898 899 900 901 902 903 904 905 906 907 908 909 910
		status = nvmet_parse_fabrics_cmd(req);
	else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
		status = nvmet_parse_discovery_cmd(req);
	else
		status = nvmet_parse_admin_cmd(req);

	if (status)
		goto fail;

	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

911 912 913
	if (sq->ctrl)
		sq->ctrl->cmd_seen = true;

914 915 916 917 918 919 920 921
	return true;

fail:
	__nvmet_req_complete(req, status);
	return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);

922 923 924
void nvmet_req_uninit(struct nvmet_req *req)
{
	percpu_ref_put(&req->sq->ref);
925 926
	if (req->ns)
		nvmet_put_namespace(req->ns);
927 928 929
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);

930 931
void nvmet_req_execute(struct nvmet_req *req)
{
932 933
	if (unlikely(req->data_len != req->transfer_len)) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
934
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
935
	} else
936 937 938 939
		req->execute(req);
}
EXPORT_SYMBOL_GPL(nvmet_req_execute);

940 941
int nvmet_req_alloc_sgl(struct nvmet_req *req)
{
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	struct pci_dev *p2p_dev = NULL;

	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
		if (req->sq->ctrl && req->ns)
			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
						    req->ns->nsid);

		req->p2p_dev = NULL;
		if (req->sq->qid && p2p_dev) {
			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
						       req->transfer_len);
			if (req->sg) {
				req->p2p_dev = p2p_dev;
				return 0;
			}
		}

		/*
		 * If no P2P memory was available we fallback to using
		 * regular memory
		 */
	}

965 966 967 968 969 970 971 972 973 974
	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
	if (!req->sg)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);

void nvmet_req_free_sgl(struct nvmet_req *req)
{
975 976 977 978 979
	if (req->p2p_dev)
		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
	else
		sgl_free(req->sg);

980 981 982 983 984
	req->sg = NULL;
	req->sg_cnt = 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);

985 986
static inline bool nvmet_cc_en(u32 cc)
{
987
	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
988 989 990 991
}

static inline u8 nvmet_cc_css(u32 cc)
{
992
	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
993 994 995 996
}

static inline u8 nvmet_cc_mps(u32 cc)
{
997
	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
998 999 1000 1001
}

static inline u8 nvmet_cc_ams(u32 cc)
{
1002
	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1003 1004 1005 1006
}

static inline u8 nvmet_cc_shn(u32 cc)
{
1007
	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1008 1009 1010 1011
}

static inline u8 nvmet_cc_iosqes(u32 cc)
{
1012
	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1013 1014 1015 1016
}

static inline u8 nvmet_cc_iocqes(u32 cc)
{
1017
	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
}

static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
	    nvmet_cc_mps(ctrl->cc) != 0 ||
	    nvmet_cc_ams(ctrl->cc) != 0 ||
	    nvmet_cc_css(ctrl->cc) != 0) {
		ctrl->csts = NVME_CSTS_CFS;
		return;
	}

	ctrl->csts = NVME_CSTS_RDY;
1034 1035 1036 1037 1038 1039 1040 1041

	/*
	 * Controllers that are not yet enabled should not really enforce the
	 * keep alive timeout, but we still want to track a timeout and cleanup
	 * in case a host died before it enabled the controller.  Hence, simply
	 * reset the keep alive timer when the controller is enabled.
	 */
	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	/* XXX: tear down queues? */
	ctrl->csts &= ~NVME_CSTS_RDY;
	ctrl->cc = 0;
}

void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
	u32 old;

	mutex_lock(&ctrl->lock);
	old = ctrl->cc;
	ctrl->cc = new;

	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
		nvmet_start_ctrl(ctrl);
	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
		nvmet_clear_ctrl(ctrl);
	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
		nvmet_clear_ctrl(ctrl);
		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
	}
	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
	mutex_unlock(&ctrl->lock);
}

static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
	/* command sets supported: NVMe command set: */
	ctrl->cap = (1ULL << 37);
	/* CC.EN timeout in 500msec units: */
	ctrl->cap |= (15ULL << 24);
	/* maximum queue entries supported: */
	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}

u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
		struct nvmet_req *req, struct nvmet_ctrl **ret)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	u16 status = 0;

	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1095
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	}

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->cntlid == cntlid) {
			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
				pr_warn("hostnqn mismatch.\n");
				continue;
			}
			if (!kref_get_unless_zero(&ctrl->ref))
				continue;

			*ret = ctrl;
			goto out;
		}
	}

	pr_warn("could not find controller %d for subsys %s / host %s\n",
		cntlid, subsysnqn, hostnqn);
1116
	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1117 1118 1119 1120 1121 1122 1123 1124
	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;

out:
	mutex_unlock(&subsys->lock);
	nvmet_subsys_put(subsys);
	return status;
}

1125 1126 1127
u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
{
	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1128
		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1129 1130 1131 1132 1133
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}

	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1134
		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1135 1136 1137 1138 1139 1140
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}
	return 0;
}

1141
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1142 1143 1144
{
	struct nvmet_host_link *p;

1145 1146
	lockdep_assert_held(&nvmet_config_sem);

1147 1148 1149
	if (subsys->allow_any_host)
		return true;

1150 1151 1152
	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
		return true;

1153 1154 1155 1156 1157 1158 1159 1160
	list_for_each_entry(p, &subsys->hosts, entry) {
		if (!strcmp(nvmet_host_name(p->host), hostnqn))
			return true;
	}

	return false;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
		struct nvmet_req *req)
{
	struct nvmet_ns *ns;

	if (!req->p2p_client)
		return;

	ctrl->p2p_client = get_device(req->p2p_client);

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
		pci_dev_put(radix_tree_deref_slot(slot));

	put_device(ctrl->p2p_client);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static void nvmet_fatal_error_handler(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
			container_of(work, struct nvmet_ctrl, fatal_err_work);

	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
	ctrl->ops->delete_ctrl(ctrl);
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	int ret;
	u16 status;

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1214
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1215 1216 1217 1218 1219
		goto out;
	}

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	down_read(&nvmet_config_sem);
1220
	if (!nvmet_host_allowed(subsys, hostnqn)) {
1221 1222
		pr_info("connect by host %s for subsystem %s not allowed\n",
			hostnqn, subsysnqn);
1223
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1224
		up_read(&nvmet_config_sem);
1225
		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		goto out_put_subsystem;
	}
	up_read(&nvmet_config_sem);

	status = NVME_SC_INTERNAL;
	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		goto out_put_subsystem;
	mutex_init(&ctrl->lock);

	nvmet_init_cap(ctrl);

1238 1239
	ctrl->port = req->port;

1240 1241
	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
	INIT_LIST_HEAD(&ctrl->async_events);
1242
	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1243
	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1244 1245 1246 1247 1248 1249

	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);

	kref_init(&ctrl->ref);
	ctrl->subsys = subsys;
1250
	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1251

1252 1253 1254 1255 1256
	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
			sizeof(__le32), GFP_KERNEL);
	if (!ctrl->changed_ns_list)
		goto out_free_ctrl;

1257 1258 1259 1260
	ctrl->cqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_cq *),
			GFP_KERNEL);
	if (!ctrl->cqs)
1261
		goto out_free_changed_ns_list;
1262 1263 1264 1265 1266 1267 1268

	ctrl->sqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_sq *),
			GFP_KERNEL);
	if (!ctrl->sqs)
		goto out_free_cqs;

1269
	ret = ida_simple_get(&cntlid_ida,
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
			     NVME_CNTLID_MIN, NVME_CNTLID_MAX,
			     GFP_KERNEL);
	if (ret < 0) {
		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
		goto out_free_sqs;
	}
	ctrl->cntlid = ret;

	ctrl->ops = req->ops;

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	/*
	 * Discovery controllers may use some arbitrary high value
	 * in order to cleanup stale discovery sessions
	 */
	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
		kato = NVMET_DISC_KATO_MS;

	/* keep-alive timeout in seconds */
	ctrl->kato = DIV_ROUND_UP(kato, 1000);

1290 1291 1292
	ctrl->err_counter = 0;
	spin_lock_init(&ctrl->error_lock);

1293 1294 1295 1296
	nvmet_start_keep_alive_timer(ctrl);

	mutex_lock(&subsys->lock);
	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1297
	nvmet_setup_p2p_ns_map(ctrl, req);
1298 1299 1300 1301 1302 1303 1304 1305 1306
	mutex_unlock(&subsys->lock);

	*ctrlp = ctrl;
	return 0;

out_free_sqs:
	kfree(ctrl->sqs);
out_free_cqs:
	kfree(ctrl->cqs);
1307 1308
out_free_changed_ns_list:
	kfree(ctrl->changed_ns_list);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
out_free_ctrl:
	kfree(ctrl);
out_put_subsystem:
	nvmet_subsys_put(subsys);
out:
	return status;
}

static void nvmet_ctrl_free(struct kref *ref)
{
	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
	struct nvmet_subsys *subsys = ctrl->subsys;

	mutex_lock(&subsys->lock);
1323
	nvmet_release_p2p_ns_map(ctrl);
1324 1325 1326
	list_del(&ctrl->subsys_entry);
	mutex_unlock(&subsys->lock);

1327 1328
	nvmet_stop_keep_alive_timer(ctrl);

1329 1330 1331
	flush_work(&ctrl->async_event_work);
	cancel_work_sync(&ctrl->fatal_err_work);

1332
	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1333 1334 1335

	kfree(ctrl->sqs);
	kfree(ctrl->cqs);
1336
	kfree(ctrl->changed_ns_list);
1337
	kfree(ctrl);
1338 1339

	nvmet_subsys_put(subsys);
1340 1341 1342 1343 1344 1345 1346 1347 1348
}

void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
	kref_put(&ctrl->ref, nvmet_ctrl_free);
}

void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
1349 1350 1351 1352 1353 1354
	mutex_lock(&ctrl->lock);
	if (!(ctrl->csts & NVME_CSTS_CFS)) {
		ctrl->csts |= NVME_CSTS_CFS;
		schedule_work(&ctrl->fatal_err_work);
	}
	mutex_unlock(&ctrl->lock);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);

static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn)
{
	struct nvmet_subsys_link *p;

	if (!port)
		return NULL;

1366
	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
			return NULL;
		return nvmet_disc_subsys;
	}

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry) {
		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
				NVMF_NQN_SIZE)) {
			if (!kref_get_unless_zero(&p->subsys->ref))
				break;
			up_read(&nvmet_config_sem);
			return p->subsys;
		}
	}
	up_read(&nvmet_config_sem);
	return NULL;
}

struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
		enum nvme_subsys_type type)
{
	struct nvmet_subsys *subsys;

	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
	if (!subsys)
1393
		return ERR_PTR(-ENOMEM);
1394

1395
	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1396 1397
	/* generate a random serial number as our controllers are ephemeral: */
	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	switch (type) {
	case NVME_NQN_NVME:
		subsys->max_qid = NVMET_NR_QUEUES;
		break;
	case NVME_NQN_DISC:
		subsys->max_qid = 0;
		break;
	default:
		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
		kfree(subsys);
1409
		return ERR_PTR(-EINVAL);
1410 1411 1412 1413
	}
	subsys->type = type;
	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
			GFP_KERNEL);
1414
	if (!subsys->subsysnqn) {
1415
		kfree(subsys);
1416
		return ERR_PTR(-ENOMEM);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	}

	kref_init(&subsys->ref);

	mutex_init(&subsys->lock);
	INIT_LIST_HEAD(&subsys->namespaces);
	INIT_LIST_HEAD(&subsys->ctrls);
	INIT_LIST_HEAD(&subsys->hosts);

	return subsys;
}

static void nvmet_subsys_free(struct kref *ref)
{
	struct nvmet_subsys *subsys =
		container_of(ref, struct nvmet_subsys, ref);

	WARN_ON_ONCE(!list_empty(&subsys->namespaces));

	kfree(subsys->subsysnqn);
	kfree(subsys);
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		ctrl->ops->delete_ctrl(ctrl);
	mutex_unlock(&subsys->lock);
}

1450 1451 1452 1453 1454 1455 1456 1457 1458
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
	kref_put(&subsys->ref, nvmet_subsys_free);
}

static int __init nvmet_init(void)
{
	int error;

1459 1460
	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;

1461 1462 1463 1464 1465 1466
	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
			WQ_MEM_RECLAIM, 0);
	if (!buffered_io_wq) {
		error = -ENOMEM;
		goto out;
	}
1467

1468 1469
	error = nvmet_init_discovery();
	if (error)
1470
		goto out_free_work_queue;
1471 1472 1473 1474 1475 1476 1477 1478

	error = nvmet_init_configfs();
	if (error)
		goto out_exit_discovery;
	return 0;

out_exit_discovery:
	nvmet_exit_discovery();
1479 1480
out_free_work_queue:
	destroy_workqueue(buffered_io_wq);
1481 1482 1483 1484 1485 1486 1487 1488
out:
	return error;
}

static void __exit nvmet_exit(void)
{
	nvmet_exit_configfs();
	nvmet_exit_discovery();
1489
	ida_destroy(&cntlid_ida);
1490
	destroy_workqueue(buffered_io_wq);
1491 1492 1493 1494 1495 1496 1497 1498 1499

	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}

module_init(nvmet_init);
module_exit(nvmet_exit);

MODULE_LICENSE("GPL v2");