core.c 37.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Common code for the NVMe target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
8
#include <linux/random.h>
9
#include <linux/rculist.h>
10
#include <linux/pci-p2pdma.h>
11
#include <linux/scatterlist.h>
12

M
Minwoo Im 已提交
13 14 15
#define CREATE_TRACE_POINTS
#include "trace.h"

16 17
#include "nvmet.h"

18
struct workqueue_struct *buffered_io_wq;
19
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20
static DEFINE_IDA(cntlid_ida);
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

/*
 * This read/write semaphore is used to synchronize access to configuration
 * information on a target system that will result in discovery log page
 * information change for at least one host.
 * The full list of resources to protected by this semaphore is:
 *
 *  - subsystems list
 *  - per-subsystem allowed hosts list
 *  - allow_any_host subsystem attribute
 *  - nvmet_genctr
 *  - the nvmet_transports array
 *
 * When updating any of those lists/structures write lock should be obtained,
 * while when reading (popolating discovery log page or checking host-subsystem
 * link) read lock is obtained to allow concurrent reads.
 */
DECLARE_RWSEM(nvmet_config_sem);

40 41 42 43
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);

44 45 46 47 48
inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
{
	u16 status;

	switch (errno) {
49 50 51
	case 0:
		status = NVME_SC_SUCCESS;
		break;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
	case -ENOSPC:
		req->error_loc = offsetof(struct nvme_rw_command, length);
		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
		break;
	case -EREMOTEIO:
		req->error_loc = offsetof(struct nvme_rw_command, slba);
		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
		break;
	case -EOPNOTSUPP:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		switch (req->cmd->common.opcode) {
		case nvme_cmd_dsm:
		case nvme_cmd_write_zeroes:
			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
			break;
		default:
			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
		}
		break;
	case -ENODATA:
		req->error_loc = offsetof(struct nvme_rw_command, nsid);
		status = NVME_SC_ACCESS_DENIED;
		break;
	case -EIO:
		/* FALLTHRU */
	default:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		status = NVME_SC_INTERNAL | NVME_SC_DNR;
	}

	return status;
}

85 86 87 88 89 90
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn);

u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
		size_t len)
{
91 92
	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
93
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94
	}
95 96 97 98 99
	return 0;
}

u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
100 101
	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
102
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103
	}
104 105 106
	return 0;
}

107 108
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
109 110
	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
111
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112
	}
113 114 115
	return 0;
}

116 117 118 119 120 121 122 123 124 125 126
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
	struct nvmet_ns *ns;

	if (list_empty(&subsys->namespaces))
		return 0;

	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
	return ns->nsid;
}

127 128 129 130 131
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}

132
static void nvmet_async_events_process(struct nvmet_ctrl *ctrl, u16 status)
133 134 135 136 137 138 139 140 141 142
{
	struct nvmet_async_event *aen;
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		aen = list_first_entry_or_null(&ctrl->async_events,
				struct nvmet_async_event, entry);
		if (!aen || !ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
143
			break;
144 145 146
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
147 148
		if (status == 0)
			nvmet_set_result(req, nvmet_async_event_result(aen));
149 150 151 152 153

		list_del(&aen->entry);
		kfree(aen);

		mutex_unlock(&ctrl->lock);
154
		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
155
		nvmet_req_complete(req, status);
156 157 158
	}
}

159 160
static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
161
	struct nvmet_async_event *aen, *tmp;
162 163

	mutex_lock(&ctrl->lock);
164 165 166
	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
		list_del(&aen->entry);
		kfree(aen);
167 168 169 170 171 172 173 174 175 176 177 178
	}
	mutex_unlock(&ctrl->lock);
}

static void nvmet_async_event_work(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
		container_of(work, struct nvmet_ctrl, async_event_work);

	nvmet_async_events_process(ctrl, 0);
}

179
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
		u8 event_info, u8 log_page)
{
	struct nvmet_async_event *aen;

	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
	if (!aen)
		return;

	aen->event_type = event_type;
	aen->event_info = event_info;
	aen->log_page = log_page;

	mutex_lock(&ctrl->lock);
	list_add_tail(&aen->entry, &ctrl->async_events);
	mutex_unlock(&ctrl->lock);

	schedule_work(&ctrl->async_event_work);
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	u32 i;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
		goto out_unlock;

	for (i = 0; i < ctrl->nr_changed_ns; i++) {
		if (ctrl->changed_ns_list[i] == nsid)
			goto out_unlock;
	}

	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
		ctrl->nr_changed_ns = U32_MAX;
		goto out_unlock;
	}

	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
	mutex_unlock(&ctrl->lock);
}

223
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
224 225 226
{
	struct nvmet_ctrl *ctrl;

227 228
	lockdep_assert_held(&subsys->lock);

229 230
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
231
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
232
			continue;
233 234 235 236 237 238
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_NS_CHANGED,
				NVME_LOG_CHANGED_NS);
	}
}

239 240 241 242 243 244 245 246 247
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
		struct nvmet_port *port)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (port && ctrl->port != port)
			continue;
248
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
			continue;
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
	}
	mutex_unlock(&subsys->lock);
}

void nvmet_port_send_ana_event(struct nvmet_port *port)
{
	struct nvmet_subsys_link *p;

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry)
		nvmet_send_ana_event(p->subsys, port);
	up_read(&nvmet_config_sem);
}

266
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
267 268 269 270 271 272 273 274 275 276 277 278 279 280
{
	int ret = 0;

	down_write(&nvmet_config_sem);
	if (nvmet_transports[ops->type])
		ret = -EINVAL;
	else
		nvmet_transports[ops->type] = ops;
	up_write(&nvmet_config_sem);

	return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);

281
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
282 283 284 285 286 287 288
{
	down_write(&nvmet_config_sem);
	nvmet_transports[ops->type] = NULL;
	up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);

289 290 291 292 293 294 295 296 297 298 299 300
void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->port == port)
			ctrl->ops->delete_ctrl(ctrl);
	}
	mutex_unlock(&subsys->lock);
}

301 302
int nvmet_enable_port(struct nvmet_port *port)
{
303
	const struct nvmet_fabrics_ops *ops;
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	int ret;

	lockdep_assert_held(&nvmet_config_sem);

	ops = nvmet_transports[port->disc_addr.trtype];
	if (!ops) {
		up_write(&nvmet_config_sem);
		request_module("nvmet-transport-%d", port->disc_addr.trtype);
		down_write(&nvmet_config_sem);
		ops = nvmet_transports[port->disc_addr.trtype];
		if (!ops) {
			pr_err("transport type %d not supported\n",
				port->disc_addr.trtype);
			return -EINVAL;
		}
	}

	if (!try_module_get(ops->owner))
		return -EINVAL;

324 325 326 327 328 329 330 331 332
	/*
	 * If the user requested PI support and the transport isn't pi capable,
	 * don't enable the port.
	 */
	if (port->pi_enable && !ops->metadata_support) {
		pr_err("T10-PI is not supported by transport type %d\n",
		       port->disc_addr.trtype);
		ret = -EINVAL;
		goto out_put;
333 334
	}

335 336 337 338
	ret = ops->add_port(port);
	if (ret)
		goto out_put;

339 340 341 342
	/* If the transport didn't set inline_data_size, then disable it. */
	if (port->inline_data_size < 0)
		port->inline_data_size = 0;

343
	port->enabled = true;
344
	port->tr_ops = ops;
345
	return 0;
346 347 348 349

out_put:
	module_put(ops->owner);
	return ret;
350 351 352 353
}

void nvmet_disable_port(struct nvmet_port *port)
{
354
	const struct nvmet_fabrics_ops *ops;
355 356 357 358

	lockdep_assert_held(&nvmet_config_sem);

	port->enabled = false;
359
	port->tr_ops = NULL;
360 361 362 363 364 365 366 367 368 369

	ops = nvmet_transports[port->disc_addr.trtype];
	ops->remove_port(port);
	module_put(ops->owner);
}

static void nvmet_keep_alive_timer(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvmet_ctrl, ka_work);
370 371 372 373 374 375 376 377 378
	bool cmd_seen = ctrl->cmd_seen;

	ctrl->cmd_seen = false;
	if (cmd_seen) {
		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
			ctrl->cntlid);
		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
		return;
	}
379 380 381 382

	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
		ctrl->cntlid, ctrl->kato);

383
	nvmet_ctrl_fatal_error(ctrl);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
		ctrl->cntlid, ctrl->kato);

	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);

	cancel_delayed_work_sync(&ctrl->ka_work);
}

static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
		__le32 nsid)
{
	struct nvmet_ns *ns;

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
		if (ns->nsid == le32_to_cpu(nsid))
			return ns;
	}

	return NULL;
}

struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	struct nvmet_ns *ns;

	rcu_read_lock();
	ns = __nvmet_find_namespace(ctrl, nsid);
	if (ns)
		percpu_ref_get(&ns->ref);
	rcu_read_unlock();

	return ns;
}

static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);

	complete(&ns->disable_done);
}

void nvmet_put_namespace(struct nvmet_ns *ns)
{
	percpu_ref_put(&ns->ref);
}

440 441 442 443 444 445
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
	nvmet_bdev_ns_disable(ns);
	nvmet_file_ns_disable(ns);
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
	int ret;
	struct pci_dev *p2p_dev;

	if (!ns->use_p2pmem)
		return 0;

	if (!ns->bdev) {
		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
		return -EINVAL;
	}

	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
		       ns->device_path);
		return -EINVAL;
	}

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
		if (ret < 0)
			return -EINVAL;
	} else {
		/*
		 * Right now we just check that there is p2pmem available so
		 * we can report an error to the user right away if there
		 * is not. We'll find the actual device to use once we
		 * setup the controller when the port's device is available.
		 */

		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available for %s\n",
			       ns->device_path);
			return -EINVAL;
		}

		pci_dev_put(p2p_dev);
	}

	return 0;
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
				    struct nvmet_ns *ns)
{
	struct device *clients[2];
	struct pci_dev *p2p_dev;
	int ret;

500
	if (!ctrl->p2p_client || !ns->use_p2pmem)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
		return;

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
		if (ret < 0)
			return;

		p2p_dev = pci_dev_get(ns->p2p_dev);
	} else {
		clients[0] = ctrl->p2p_client;
		clients[1] = nvmet_ns_dev(ns);

		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
			       dev_name(ctrl->p2p_client), ns->device_path);
			return;
		}
	}

	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
	if (ret < 0)
		pci_dev_put(p2p_dev);

	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
		ns->nsid);
}

529 530
void nvmet_ns_revalidate(struct nvmet_ns *ns)
{
531 532
	loff_t oldsize = ns->size;

533 534 535 536
	if (ns->bdev)
		nvmet_bdev_ns_revalidate(ns);
	else
		nvmet_file_ns_revalidate(ns);
537 538 539

	if (oldsize != ns->size)
		nvmet_ns_changed(ns->subsys, ns->nsid);
540 541
}

542 543 544
int nvmet_ns_enable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
545
	struct nvmet_ctrl *ctrl;
546
	int ret;
547 548

	mutex_lock(&subsys->lock);
549
	ret = 0;
550
	if (ns->enabled)
551 552
		goto out_unlock;

553 554 555 556
	ret = -EMFILE;
	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
		goto out_unlock;

557
	ret = nvmet_bdev_ns_enable(ns);
558
	if (ret == -ENOTBLK)
559 560
		ret = nvmet_file_ns_enable(ns);
	if (ret)
561 562
		goto out_unlock;

563 564
	ret = nvmet_p2pmem_ns_enable(ns);
	if (ret)
565
		goto out_dev_disable;
566 567 568 569

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);

570 571 572
	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
				0, GFP_KERNEL);
	if (ret)
573
		goto out_dev_put;
574 575 576 577 578 579 580 581 582 583 584 585 586

	if (ns->nsid > subsys->max_nsid)
		subsys->max_nsid = ns->nsid;

	/*
	 * The namespaces list needs to be sorted to simplify the implementation
	 * of the Identify Namepace List subcommand.
	 */
	if (list_empty(&subsys->namespaces)) {
		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
	} else {
		struct nvmet_ns *old;

587 588
		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link,
					lockdep_is_held(&subsys->lock)) {
589 590 591 592 593 594 595
			BUG_ON(ns->nsid == old->nsid);
			if (ns->nsid < old->nsid)
				break;
		}

		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
	}
596
	subsys->nr_namespaces++;
597

598
	nvmet_ns_changed(subsys, ns->nsid);
599
	ns->enabled = true;
600 601 602 603
	ret = 0;
out_unlock:
	mutex_unlock(&subsys->lock);
	return ret;
604
out_dev_put:
605 606
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
607
out_dev_disable:
608
	nvmet_ns_dev_disable(ns);
609 610 611 612 613 614
	goto out_unlock;
}

void nvmet_ns_disable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
615
	struct nvmet_ctrl *ctrl;
616 617

	mutex_lock(&subsys->lock);
618 619 620 621 622
	if (!ns->enabled)
		goto out_unlock;

	ns->enabled = false;
	list_del_rcu(&ns->dev_link);
623 624
	if (ns->nsid == subsys->max_nsid)
		subsys->max_nsid = nvmet_max_nsid(subsys);
625 626 627 628

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	mutex_unlock(&subsys->lock);

	/*
	 * Now that we removed the namespaces from the lookup list, we
	 * can kill the per_cpu ref and wait for any remaining references
	 * to be dropped, as well as a RCU grace period for anyone only
	 * using the namepace under rcu_read_lock().  Note that we can't
	 * use call_rcu here as we need to ensure the namespaces have
	 * been fully destroyed before unloading the module.
	 */
	percpu_ref_kill(&ns->ref);
	synchronize_rcu();
	wait_for_completion(&ns->disable_done);
	percpu_ref_exit(&ns->ref);

	mutex_lock(&subsys->lock);
645

646
	subsys->nr_namespaces--;
647
	nvmet_ns_changed(subsys, ns->nsid);
648
	nvmet_ns_dev_disable(ns);
649
out_unlock:
650 651 652 653 654 655 656
	mutex_unlock(&subsys->lock);
}

void nvmet_ns_free(struct nvmet_ns *ns)
{
	nvmet_ns_disable(ns);

657 658 659 660
	down_write(&nvmet_ana_sem);
	nvmet_ana_group_enabled[ns->anagrpid]--;
	up_write(&nvmet_ana_sem);

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	kfree(ns->device_path);
	kfree(ns);
}

struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
	struct nvmet_ns *ns;

	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
	if (!ns)
		return NULL;

	INIT_LIST_HEAD(&ns->dev_link);
	init_completion(&ns->disable_done);

	ns->nsid = nsid;
	ns->subsys = subsys;
678 679 680 681 682 683

	down_write(&nvmet_ana_sem);
	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
	nvmet_ana_group_enabled[ns->anagrpid]++;
	up_write(&nvmet_ana_sem);

684
	uuid_gen(&ns->uuid);
685
	ns->buffered_io = false;
686 687 688 689

	return ns;
}

690
static void nvmet_update_sq_head(struct nvmet_req *req)
691
{
J
James Smart 已提交
692
	if (req->sq->size) {
693 694
		u32 old_sqhd, new_sqhd;

J
James Smart 已提交
695 696 697 698 699 700
		do {
			old_sqhd = req->sq->sqhd;
			new_sqhd = (old_sqhd + 1) % req->sq->size;
		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
					old_sqhd);
	}
701
	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
702 703
}

704 705 706 707 708 709
static void nvmet_set_error(struct nvmet_req *req, u16 status)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvme_error_slot *new_error_slot;
	unsigned long flags;

710
	req->cqe->status = cpu_to_le16(status << 1);
711

712
	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
		return;

	spin_lock_irqsave(&ctrl->error_lock, flags);
	ctrl->err_counter++;
	new_error_slot =
		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];

	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
	new_error_slot->status_field = cpu_to_le16(status << 1);
	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
	new_error_slot->lba = cpu_to_le64(req->error_slba);
	new_error_slot->nsid = req->cmd->common.nsid;
	spin_unlock_irqrestore(&ctrl->error_lock, flags);

	/* set the more bit for this request */
730
	req->cqe->status |= cpu_to_le16(1 << 14);
731 732
}

733 734 735 736
static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	if (!req->sq->sqhd_disabled)
		nvmet_update_sq_head(req);
737 738
	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
	req->cqe->command_id = req->cmd->common.command_id;
739

740
	if (unlikely(status))
741
		nvmet_set_error(req, status);
M
Minwoo Im 已提交
742 743 744

	trace_nvmet_req_complete(req);

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	if (req->ns)
		nvmet_put_namespace(req->ns);
	req->ops->queue_response(req);
}

void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	__nvmet_req_complete(req, status);
	percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);

void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
		u16 qid, u16 size)
{
	cq->qid = qid;
	cq->size = size;

	ctrl->cqs[qid] = cq;
}

void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
		u16 qid, u16 size)
{
769
	sq->sqhd = 0;
770 771 772 773 774 775
	sq->qid = qid;
	sq->size = size;

	ctrl->sqs[qid] = sq;
}

776 777 778 779 780 781 782
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->confirm_done);
}

783 784
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
785 786 787
	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
	struct nvmet_ctrl *ctrl = sq->ctrl;

788 789 790 791
	/*
	 * If this is the admin queue, complete all AERs so that our
	 * queue doesn't have outstanding requests on it.
	 */
792
	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
793
		nvmet_async_events_process(ctrl, status);
794 795
	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
	wait_for_completion(&sq->confirm_done);
796 797 798
	wait_for_completion(&sq->free_done);
	percpu_ref_exit(&sq->ref);

799 800
	if (ctrl) {
		nvmet_ctrl_put(ctrl);
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		sq->ctrl = NULL; /* allows reusing the queue later */
	}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);

static void nvmet_sq_free(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->free_done);
}

int nvmet_sq_init(struct nvmet_sq *sq)
{
	int ret;

	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
	if (ret) {
		pr_err("percpu_ref init failed!\n");
		return ret;
	}
	init_completion(&sq->free_done);
823
	init_completion(&sq->confirm_done);
824 825 826 827 828

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);

829 830 831 832 833 834 835 836 837 838 839 840 841 842
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
		struct nvmet_ns *ns)
{
	enum nvme_ana_state state = port->ana_state[ns->anagrpid];

	if (unlikely(state == NVME_ANA_INACCESSIBLE))
		return NVME_SC_ANA_INACCESSIBLE;
	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
		return NVME_SC_ANA_PERSISTENT_LOSS;
	if (unlikely(state == NVME_ANA_CHANGE))
		return NVME_SC_ANA_TRANSITION;
	return 0;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
	if (unlikely(req->ns->readonly)) {
		switch (req->cmd->common.opcode) {
		case nvme_cmd_read:
		case nvme_cmd_flush:
			break;
		default:
			return NVME_SC_NS_WRITE_PROTECTED;
		}
	}

	return 0;
}

858 859 860 861 862 863 864 865 866 867
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
	struct nvme_command *cmd = req->cmd;
	u16 ret;

	ret = nvmet_check_ctrl_status(req, cmd);
	if (unlikely(ret))
		return ret;

	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
868 869
	if (unlikely(!req->ns)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
870
		return NVME_SC_INVALID_NS | NVME_SC_DNR;
871
	}
872
	ret = nvmet_check_ana_state(req->port, req->ns);
873 874
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
875
		return ret;
876
	}
877
	ret = nvmet_io_cmd_check_access(req);
878 879
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
880
		return ret;
881
	}
882 883 884 885 886 887 888

	if (req->ns->file)
		return nvmet_file_parse_io_cmd(req);
	else
		return nvmet_bdev_parse_io_cmd(req);
}

889
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
890
		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
891 892 893 894 895 896 897 898
{
	u8 flags = req->cmd->common.flags;
	u16 status;

	req->cq = cq;
	req->sq = sq;
	req->ops = ops;
	req->sg = NULL;
899
	req->metadata_sg = NULL;
900
	req->sg_cnt = 0;
901
	req->metadata_sg_cnt = 0;
902
	req->transfer_len = 0;
903
	req->metadata_len = 0;
904 905
	req->cqe->status = 0;
	req->cqe->sq_head = 0;
906
	req->ns = NULL;
907
	req->error_loc = NVMET_NO_ERROR_LOC;
908
	req->error_slba = 0;
909

M
Minwoo Im 已提交
910 911
	trace_nvmet_req_init(req, req->cmd);

912 913
	/* no support for fused commands yet */
	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
914
		req->error_loc = offsetof(struct nvme_common_command, flags);
915 916 917 918
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

919 920 921 922 923 924
	/*
	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
	 * contains an address of a single contiguous physical buffer that is
	 * byte aligned.
	 */
	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
925
		req->error_loc = offsetof(struct nvme_common_command, flags);
926 927 928 929 930
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

	if (unlikely(!req->sq->ctrl))
931
		/* will return an error for any non-connect command: */
932 933 934 935 936 937 938 939 940 941 942 943 944 945
		status = nvmet_parse_connect_cmd(req);
	else if (likely(req->sq->qid != 0))
		status = nvmet_parse_io_cmd(req);
	else
		status = nvmet_parse_admin_cmd(req);

	if (status)
		goto fail;

	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

946 947 948
	if (sq->ctrl)
		sq->ctrl->cmd_seen = true;

949 950 951 952 953 954 955 956
	return true;

fail:
	__nvmet_req_complete(req, status);
	return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);

957 958 959
void nvmet_req_uninit(struct nvmet_req *req)
{
	percpu_ref_put(&req->sq->ref);
960 961
	if (req->ns)
		nvmet_put_namespace(req->ns);
962 963 964
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);

965
bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
966
{
967
	if (unlikely(len != req->transfer_len)) {
968
		req->error_loc = offsetof(struct nvme_common_command, dptr);
969
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
970 971 972 973 974
		return false;
	}

	return true;
}
975
EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
976

977 978 979 980 981 982 983 984 985 986 987
bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
{
	if (unlikely(data_len > req->transfer_len)) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
		return false;
	}

	return true;
}

988
static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
989
{
990 991
	return req->transfer_len - req->metadata_len;
}
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
{
	req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
			nvmet_data_transfer_len(req));
	if (!req->sg)
		goto out_err;

	if (req->metadata_len) {
		req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
				&req->metadata_sg_cnt, req->metadata_len);
		if (!req->metadata_sg)
			goto out_free_sg;
	}
	return 0;
out_free_sg:
	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
out_err:
	return -ENOMEM;
}

static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
{
	if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
		return false;

	if (req->sq->ctrl && req->sq->qid && req->ns) {
		req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
						 req->ns->nsid);
		if (req->p2p_dev)
			return true;
1023 1024
	}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	req->p2p_dev = NULL;
	return false;
}

int nvmet_req_alloc_sgls(struct nvmet_req *req)
{
	if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
		return 0;

	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
			    &req->sg_cnt);
1036
	if (unlikely(!req->sg))
1037 1038 1039 1040 1041 1042 1043 1044
		goto out;

	if (req->metadata_len) {
		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
					     &req->metadata_sg_cnt);
		if (unlikely(!req->metadata_sg))
			goto out_free;
	}
1045 1046

	return 0;
1047 1048 1049 1050
out_free:
	sgl_free(req->sg);
out:
	return -ENOMEM;
1051
}
1052
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1053

1054
void nvmet_req_free_sgls(struct nvmet_req *req)
1055
{
1056
	if (req->p2p_dev) {
1057
		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1058 1059 1060
		if (req->metadata_sg)
			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
	} else {
1061
		sgl_free(req->sg);
1062 1063 1064
		if (req->metadata_sg)
			sgl_free(req->metadata_sg);
	}
1065

1066
	req->sg = NULL;
1067
	req->metadata_sg = NULL;
1068
	req->sg_cnt = 0;
1069
	req->metadata_sg_cnt = 0;
1070
}
1071
EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1072

1073 1074
static inline bool nvmet_cc_en(u32 cc)
{
1075
	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1076 1077 1078 1079
}

static inline u8 nvmet_cc_css(u32 cc)
{
1080
	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1081 1082 1083 1084
}

static inline u8 nvmet_cc_mps(u32 cc)
{
1085
	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1086 1087 1088 1089
}

static inline u8 nvmet_cc_ams(u32 cc)
{
1090
	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1091 1092 1093 1094
}

static inline u8 nvmet_cc_shn(u32 cc)
{
1095
	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1096 1097 1098 1099
}

static inline u8 nvmet_cc_iosqes(u32 cc)
{
1100
	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1101 1102 1103 1104
}

static inline u8 nvmet_cc_iocqes(u32 cc)
{
1105
	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
	    nvmet_cc_mps(ctrl->cc) != 0 ||
	    nvmet_cc_ams(ctrl->cc) != 0 ||
	    nvmet_cc_css(ctrl->cc) != 0) {
		ctrl->csts = NVME_CSTS_CFS;
		return;
	}

	ctrl->csts = NVME_CSTS_RDY;
1122 1123 1124 1125 1126 1127 1128 1129

	/*
	 * Controllers that are not yet enabled should not really enforce the
	 * keep alive timeout, but we still want to track a timeout and cleanup
	 * in case a host died before it enabled the controller.  Hence, simply
	 * reset the keep alive timer when the controller is enabled.
	 */
	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
}

static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	/* XXX: tear down queues? */
	ctrl->csts &= ~NVME_CSTS_RDY;
	ctrl->cc = 0;
}

void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
	u32 old;

	mutex_lock(&ctrl->lock);
	old = ctrl->cc;
	ctrl->cc = new;

	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
		nvmet_start_ctrl(ctrl);
	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
		nvmet_clear_ctrl(ctrl);
	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
		nvmet_clear_ctrl(ctrl);
		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
	}
	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
	mutex_unlock(&ctrl->lock);
}

static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
	/* command sets supported: NVMe command set: */
	ctrl->cap = (1ULL << 37);
	/* CC.EN timeout in 500msec units: */
	ctrl->cap |= (15ULL << 24);
	/* maximum queue entries supported: */
	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}

u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
		struct nvmet_req *req, struct nvmet_ctrl **ret)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	u16 status = 0;

	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1183
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	}

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->cntlid == cntlid) {
			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
				pr_warn("hostnqn mismatch.\n");
				continue;
			}
			if (!kref_get_unless_zero(&ctrl->ref))
				continue;

			*ret = ctrl;
			goto out;
		}
	}

	pr_warn("could not find controller %d for subsys %s / host %s\n",
		cntlid, subsysnqn, hostnqn);
1204
	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1205 1206 1207 1208 1209 1210 1211 1212
	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;

out:
	mutex_unlock(&subsys->lock);
	nvmet_subsys_put(subsys);
	return status;
}

1213 1214 1215
u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
{
	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1216
		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1217 1218 1219 1220 1221
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}

	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1222
		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1223 1224 1225 1226 1227 1228
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}
	return 0;
}

1229
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1230 1231 1232
{
	struct nvmet_host_link *p;

1233 1234
	lockdep_assert_held(&nvmet_config_sem);

1235 1236 1237
	if (subsys->allow_any_host)
		return true;

1238 1239 1240
	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
		return true;

1241 1242 1243 1244 1245 1246 1247 1248
	list_for_each_entry(p, &subsys->hosts, entry) {
		if (!strcmp(nvmet_host_name(p->host), hostnqn))
			return true;
	}

	return false;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
		struct nvmet_req *req)
{
	struct nvmet_ns *ns;

	if (!req->p2p_client)
		return;

	ctrl->p2p_client = get_device(req->p2p_client);

1262 1263
	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link,
				lockdep_is_held(&ctrl->subsys->lock))
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
		pci_dev_put(radix_tree_deref_slot(slot));

	put_device(ctrl->p2p_client);
}

1281 1282 1283 1284 1285 1286 1287 1288 1289
static void nvmet_fatal_error_handler(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
			container_of(work, struct nvmet_ctrl, fatal_err_work);

	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
	ctrl->ops->delete_ctrl(ctrl);
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	int ret;
	u16 status;

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1303
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1304 1305 1306 1307 1308
		goto out;
	}

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	down_read(&nvmet_config_sem);
1309
	if (!nvmet_host_allowed(subsys, hostnqn)) {
1310 1311
		pr_info("connect by host %s for subsystem %s not allowed\n",
			hostnqn, subsysnqn);
1312
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1313
		up_read(&nvmet_config_sem);
1314
		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		goto out_put_subsystem;
	}
	up_read(&nvmet_config_sem);

	status = NVME_SC_INTERNAL;
	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		goto out_put_subsystem;
	mutex_init(&ctrl->lock);

	nvmet_init_cap(ctrl);

1327 1328
	ctrl->port = req->port;

1329 1330
	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
	INIT_LIST_HEAD(&ctrl->async_events);
1331
	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1332
	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1333 1334 1335 1336 1337 1338

	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);

	kref_init(&ctrl->ref);
	ctrl->subsys = subsys;
1339
	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1340

1341 1342 1343 1344 1345
	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
			sizeof(__le32), GFP_KERNEL);
	if (!ctrl->changed_ns_list)
		goto out_free_ctrl;

1346 1347 1348 1349
	ctrl->cqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_cq *),
			GFP_KERNEL);
	if (!ctrl->cqs)
1350
		goto out_free_changed_ns_list;
1351 1352 1353 1354 1355 1356 1357

	ctrl->sqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_sq *),
			GFP_KERNEL);
	if (!ctrl->sqs)
		goto out_free_cqs;

1358 1359 1360
	if (subsys->cntlid_min > subsys->cntlid_max)
		goto out_free_cqs;

1361
	ret = ida_simple_get(&cntlid_ida,
1362
			     subsys->cntlid_min, subsys->cntlid_max,
1363 1364 1365 1366 1367 1368 1369 1370 1371
			     GFP_KERNEL);
	if (ret < 0) {
		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
		goto out_free_sqs;
	}
	ctrl->cntlid = ret;

	ctrl->ops = req->ops;

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * Discovery controllers may use some arbitrary high value
	 * in order to cleanup stale discovery sessions
	 */
	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
		kato = NVMET_DISC_KATO_MS;

	/* keep-alive timeout in seconds */
	ctrl->kato = DIV_ROUND_UP(kato, 1000);

1382 1383 1384
	ctrl->err_counter = 0;
	spin_lock_init(&ctrl->error_lock);

1385 1386 1387 1388
	nvmet_start_keep_alive_timer(ctrl);

	mutex_lock(&subsys->lock);
	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1389
	nvmet_setup_p2p_ns_map(ctrl, req);
1390 1391 1392 1393 1394 1395 1396 1397 1398
	mutex_unlock(&subsys->lock);

	*ctrlp = ctrl;
	return 0;

out_free_sqs:
	kfree(ctrl->sqs);
out_free_cqs:
	kfree(ctrl->cqs);
1399 1400
out_free_changed_ns_list:
	kfree(ctrl->changed_ns_list);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
out_free_ctrl:
	kfree(ctrl);
out_put_subsystem:
	nvmet_subsys_put(subsys);
out:
	return status;
}

static void nvmet_ctrl_free(struct kref *ref)
{
	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
	struct nvmet_subsys *subsys = ctrl->subsys;

	mutex_lock(&subsys->lock);
1415
	nvmet_release_p2p_ns_map(ctrl);
1416 1417 1418
	list_del(&ctrl->subsys_entry);
	mutex_unlock(&subsys->lock);

1419 1420
	nvmet_stop_keep_alive_timer(ctrl);

1421 1422 1423
	flush_work(&ctrl->async_event_work);
	cancel_work_sync(&ctrl->fatal_err_work);

1424
	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1425

1426
	nvmet_async_events_free(ctrl);
1427 1428
	kfree(ctrl->sqs);
	kfree(ctrl->cqs);
1429
	kfree(ctrl->changed_ns_list);
1430
	kfree(ctrl);
1431 1432

	nvmet_subsys_put(subsys);
1433 1434 1435 1436 1437 1438 1439 1440 1441
}

void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
	kref_put(&ctrl->ref, nvmet_ctrl_free);
}

void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
1442 1443 1444 1445 1446 1447
	mutex_lock(&ctrl->lock);
	if (!(ctrl->csts & NVME_CSTS_CFS)) {
		ctrl->csts |= NVME_CSTS_CFS;
		schedule_work(&ctrl->fatal_err_work);
	}
	mutex_unlock(&ctrl->lock);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);

static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn)
{
	struct nvmet_subsys_link *p;

	if (!port)
		return NULL;

1459
	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
			return NULL;
		return nvmet_disc_subsys;
	}

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry) {
		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
				NVMF_NQN_SIZE)) {
			if (!kref_get_unless_zero(&p->subsys->ref))
				break;
			up_read(&nvmet_config_sem);
			return p->subsys;
		}
	}
	up_read(&nvmet_config_sem);
	return NULL;
}

struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
		enum nvme_subsys_type type)
{
	struct nvmet_subsys *subsys;

	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
	if (!subsys)
1486
		return ERR_PTR(-ENOMEM);
1487

1488
	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1489 1490
	/* generate a random serial number as our controllers are ephemeral: */
	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

	switch (type) {
	case NVME_NQN_NVME:
		subsys->max_qid = NVMET_NR_QUEUES;
		break;
	case NVME_NQN_DISC:
		subsys->max_qid = 0;
		break;
	default:
		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
		kfree(subsys);
1502
		return ERR_PTR(-EINVAL);
1503 1504 1505 1506
	}
	subsys->type = type;
	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
			GFP_KERNEL);
1507
	if (!subsys->subsysnqn) {
1508
		kfree(subsys);
1509
		return ERR_PTR(-ENOMEM);
1510
	}
1511 1512
	subsys->cntlid_min = NVME_CNTLID_MIN;
	subsys->cntlid_max = NVME_CNTLID_MAX;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	kref_init(&subsys->ref);

	mutex_init(&subsys->lock);
	INIT_LIST_HEAD(&subsys->namespaces);
	INIT_LIST_HEAD(&subsys->ctrls);
	INIT_LIST_HEAD(&subsys->hosts);

	return subsys;
}

static void nvmet_subsys_free(struct kref *ref)
{
	struct nvmet_subsys *subsys =
		container_of(ref, struct nvmet_subsys, ref);

	WARN_ON_ONCE(!list_empty(&subsys->namespaces));

	kfree(subsys->subsysnqn);
1531
	kfree_rcu(subsys->model, rcuhead);
1532 1533 1534
	kfree(subsys);
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		ctrl->ops->delete_ctrl(ctrl);
	mutex_unlock(&subsys->lock);
}

1545 1546 1547 1548 1549 1550 1551 1552 1553
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
	kref_put(&subsys->ref, nvmet_subsys_free);
}

static int __init nvmet_init(void)
{
	int error;

1554 1555
	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;

1556 1557 1558 1559 1560 1561
	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
			WQ_MEM_RECLAIM, 0);
	if (!buffered_io_wq) {
		error = -ENOMEM;
		goto out;
	}
1562

1563 1564
	error = nvmet_init_discovery();
	if (error)
1565
		goto out_free_work_queue;
1566 1567 1568 1569 1570 1571 1572 1573

	error = nvmet_init_configfs();
	if (error)
		goto out_exit_discovery;
	return 0;

out_exit_discovery:
	nvmet_exit_discovery();
1574 1575
out_free_work_queue:
	destroy_workqueue(buffered_io_wq);
1576 1577 1578 1579 1580 1581 1582 1583
out:
	return error;
}

static void __exit nvmet_exit(void)
{
	nvmet_exit_configfs();
	nvmet_exit_discovery();
1584
	ida_destroy(&cntlid_ida);
1585
	destroy_workqueue(buffered_io_wq);
1586 1587 1588 1589 1590 1591 1592 1593 1594

	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}

module_init(nvmet_init);
module_exit(nvmet_exit);

MODULE_LICENSE("GPL v2");