core.c 36.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7
/*
 * Common code for the NVMe target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
8
#include <linux/random.h>
9
#include <linux/rculist.h>
10
#include <linux/pci-p2pdma.h>
11
#include <linux/scatterlist.h>
12

M
Minwoo Im 已提交
13 14 15
#define CREATE_TRACE_POINTS
#include "trace.h"

16 17
#include "nvmet.h"

18
struct workqueue_struct *buffered_io_wq;
19
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20
static DEFINE_IDA(cntlid_ida);
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

/*
 * This read/write semaphore is used to synchronize access to configuration
 * information on a target system that will result in discovery log page
 * information change for at least one host.
 * The full list of resources to protected by this semaphore is:
 *
 *  - subsystems list
 *  - per-subsystem allowed hosts list
 *  - allow_any_host subsystem attribute
 *  - nvmet_genctr
 *  - the nvmet_transports array
 *
 * When updating any of those lists/structures write lock should be obtained,
 * while when reading (popolating discovery log page or checking host-subsystem
 * link) read lock is obtained to allow concurrent reads.
 */
DECLARE_RWSEM(nvmet_config_sem);

40 41 42 43
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);

44 45 46 47 48
inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
{
	u16 status;

	switch (errno) {
49 50 51
	case 0:
		status = NVME_SC_SUCCESS;
		break;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
	case -ENOSPC:
		req->error_loc = offsetof(struct nvme_rw_command, length);
		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
		break;
	case -EREMOTEIO:
		req->error_loc = offsetof(struct nvme_rw_command, slba);
		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
		break;
	case -EOPNOTSUPP:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		switch (req->cmd->common.opcode) {
		case nvme_cmd_dsm:
		case nvme_cmd_write_zeroes:
			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
			break;
		default:
			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
		}
		break;
	case -ENODATA:
		req->error_loc = offsetof(struct nvme_rw_command, nsid);
		status = NVME_SC_ACCESS_DENIED;
		break;
	case -EIO:
		/* FALLTHRU */
	default:
		req->error_loc = offsetof(struct nvme_common_command, opcode);
		status = NVME_SC_INTERNAL | NVME_SC_DNR;
	}

	return status;
}

85 86 87 88 89 90
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn);

u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
		size_t len)
{
91 92
	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
93
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94
	}
95 96 97 98 99
	return 0;
}

u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
100 101
	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
102
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103
	}
104 105 106
	return 0;
}

107 108
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
109 110
	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
111
		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112
	}
113 114 115
	return 0;
}

116 117 118 119 120 121 122 123 124 125 126
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
	struct nvmet_ns *ns;

	if (list_empty(&subsys->namespaces))
		return 0;

	ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
	return ns->nsid;
}

127 128 129 130 131
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}

132
static void nvmet_async_events_process(struct nvmet_ctrl *ctrl, u16 status)
133 134 135 136 137 138 139 140 141 142
{
	struct nvmet_async_event *aen;
	struct nvmet_req *req;

	while (1) {
		mutex_lock(&ctrl->lock);
		aen = list_first_entry_or_null(&ctrl->async_events,
				struct nvmet_async_event, entry);
		if (!aen || !ctrl->nr_async_event_cmds) {
			mutex_unlock(&ctrl->lock);
143
			break;
144 145 146
		}

		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
147 148
		if (status == 0)
			nvmet_set_result(req, nvmet_async_event_result(aen));
149 150 151 152 153

		list_del(&aen->entry);
		kfree(aen);

		mutex_unlock(&ctrl->lock);
154
		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
155
		nvmet_req_complete(req, status);
156 157 158
	}
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
	struct nvmet_req *req;

	mutex_lock(&ctrl->lock);
	while (ctrl->nr_async_event_cmds) {
		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
		mutex_unlock(&ctrl->lock);
		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
		mutex_lock(&ctrl->lock);
	}
	mutex_unlock(&ctrl->lock);
}

static void nvmet_async_event_work(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
		container_of(work, struct nvmet_ctrl, async_event_work);

	nvmet_async_events_process(ctrl, 0);
}

181
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
		u8 event_info, u8 log_page)
{
	struct nvmet_async_event *aen;

	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
	if (!aen)
		return;

	aen->event_type = event_type;
	aen->event_info = event_info;
	aen->log_page = log_page;

	mutex_lock(&ctrl->lock);
	list_add_tail(&aen->entry, &ctrl->async_events);
	mutex_unlock(&ctrl->lock);

	schedule_work(&ctrl->async_event_work);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	u32 i;

	mutex_lock(&ctrl->lock);
	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
		goto out_unlock;

	for (i = 0; i < ctrl->nr_changed_ns; i++) {
		if (ctrl->changed_ns_list[i] == nsid)
			goto out_unlock;
	}

	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
		ctrl->nr_changed_ns = U32_MAX;
		goto out_unlock;
	}

	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
	mutex_unlock(&ctrl->lock);
}

225
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
226 227 228
{
	struct nvmet_ctrl *ctrl;

229 230
	lockdep_assert_held(&subsys->lock);

231 232
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
233
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
234
			continue;
235 236 237 238 239 240
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_NS_CHANGED,
				NVME_LOG_CHANGED_NS);
	}
}

241 242 243 244 245 246 247 248 249
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
		struct nvmet_port *port)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (port && ctrl->port != port)
			continue;
250
		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
			continue;
		nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
	}
	mutex_unlock(&subsys->lock);
}

void nvmet_port_send_ana_event(struct nvmet_port *port)
{
	struct nvmet_subsys_link *p;

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry)
		nvmet_send_ana_event(p->subsys, port);
	up_read(&nvmet_config_sem);
}

268
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
269 270 271 272 273 274 275 276 277 278 279 280 281 282
{
	int ret = 0;

	down_write(&nvmet_config_sem);
	if (nvmet_transports[ops->type])
		ret = -EINVAL;
	else
		nvmet_transports[ops->type] = ops;
	up_write(&nvmet_config_sem);

	return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);

283
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
284 285 286 287 288 289 290
{
	down_write(&nvmet_config_sem);
	nvmet_transports[ops->type] = NULL;
	up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);

291 292 293 294 295 296 297 298 299 300 301 302
void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->port == port)
			ctrl->ops->delete_ctrl(ctrl);
	}
	mutex_unlock(&subsys->lock);
}

303 304
int nvmet_enable_port(struct nvmet_port *port)
{
305
	const struct nvmet_fabrics_ops *ops;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	int ret;

	lockdep_assert_held(&nvmet_config_sem);

	ops = nvmet_transports[port->disc_addr.trtype];
	if (!ops) {
		up_write(&nvmet_config_sem);
		request_module("nvmet-transport-%d", port->disc_addr.trtype);
		down_write(&nvmet_config_sem);
		ops = nvmet_transports[port->disc_addr.trtype];
		if (!ops) {
			pr_err("transport type %d not supported\n",
				port->disc_addr.trtype);
			return -EINVAL;
		}
	}

	if (!try_module_get(ops->owner))
		return -EINVAL;

	ret = ops->add_port(port);
	if (ret) {
		module_put(ops->owner);
		return ret;
	}

332 333 334 335
	/* If the transport didn't set inline_data_size, then disable it. */
	if (port->inline_data_size < 0)
		port->inline_data_size = 0;

336
	port->enabled = true;
337
	port->tr_ops = ops;
338 339 340 341 342
	return 0;
}

void nvmet_disable_port(struct nvmet_port *port)
{
343
	const struct nvmet_fabrics_ops *ops;
344 345 346 347

	lockdep_assert_held(&nvmet_config_sem);

	port->enabled = false;
348
	port->tr_ops = NULL;
349 350 351 352 353 354 355 356 357 358

	ops = nvmet_transports[port->disc_addr.trtype];
	ops->remove_port(port);
	module_put(ops->owner);
}

static void nvmet_keep_alive_timer(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvmet_ctrl, ka_work);
359 360 361 362 363 364 365 366 367
	bool cmd_seen = ctrl->cmd_seen;

	ctrl->cmd_seen = false;
	if (cmd_seen) {
		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
			ctrl->cntlid);
		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
		return;
	}
368 369 370 371

	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
		ctrl->cntlid, ctrl->kato);

372
	nvmet_ctrl_fatal_error(ctrl);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
}

static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
		ctrl->cntlid, ctrl->kato);

	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);

	cancel_delayed_work_sync(&ctrl->ka_work);
}

static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
		__le32 nsid)
{
	struct nvmet_ns *ns;

	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
		if (ns->nsid == le32_to_cpu(nsid))
			return ns;
	}

	return NULL;
}

struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
{
	struct nvmet_ns *ns;

	rcu_read_lock();
	ns = __nvmet_find_namespace(ctrl, nsid);
	if (ns)
		percpu_ref_get(&ns->ref);
	rcu_read_unlock();

	return ns;
}

static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);

	complete(&ns->disable_done);
}

void nvmet_put_namespace(struct nvmet_ns *ns)
{
	percpu_ref_put(&ns->ref);
}

429 430 431 432 433 434
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
	nvmet_bdev_ns_disable(ns);
	nvmet_file_ns_disable(ns);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
	int ret;
	struct pci_dev *p2p_dev;

	if (!ns->use_p2pmem)
		return 0;

	if (!ns->bdev) {
		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
		return -EINVAL;
	}

	if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
		       ns->device_path);
		return -EINVAL;
	}

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
		if (ret < 0)
			return -EINVAL;
	} else {
		/*
		 * Right now we just check that there is p2pmem available so
		 * we can report an error to the user right away if there
		 * is not. We'll find the actual device to use once we
		 * setup the controller when the port's device is available.
		 */

		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available for %s\n",
			       ns->device_path);
			return -EINVAL;
		}

		pci_dev_put(p2p_dev);
	}

	return 0;
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
				    struct nvmet_ns *ns)
{
	struct device *clients[2];
	struct pci_dev *p2p_dev;
	int ret;

489
	if (!ctrl->p2p_client || !ns->use_p2pmem)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		return;

	if (ns->p2p_dev) {
		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
		if (ret < 0)
			return;

		p2p_dev = pci_dev_get(ns->p2p_dev);
	} else {
		clients[0] = ctrl->p2p_client;
		clients[1] = nvmet_ns_dev(ns);

		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
		if (!p2p_dev) {
			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
			       dev_name(ctrl->p2p_client), ns->device_path);
			return;
		}
	}

	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
	if (ret < 0)
		pci_dev_put(p2p_dev);

	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
		ns->nsid);
}

518 519 520 521 522 523 524 525
void nvmet_ns_revalidate(struct nvmet_ns *ns)
{
	if (ns->bdev)
		nvmet_bdev_ns_revalidate(ns);
	else
		nvmet_file_ns_revalidate(ns);
}

526 527 528
int nvmet_ns_enable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
529
	struct nvmet_ctrl *ctrl;
530
	int ret;
531 532

	mutex_lock(&subsys->lock);
533
	ret = 0;
534
	if (ns->enabled)
535 536
		goto out_unlock;

537 538 539 540
	ret = -EMFILE;
	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
		goto out_unlock;

541
	ret = nvmet_bdev_ns_enable(ns);
542
	if (ret == -ENOTBLK)
543 544
		ret = nvmet_file_ns_enable(ns);
	if (ret)
545 546
		goto out_unlock;

547 548
	ret = nvmet_p2pmem_ns_enable(ns);
	if (ret)
549
		goto out_dev_disable;
550 551 552 553

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);

554 555 556
	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
				0, GFP_KERNEL);
	if (ret)
557
		goto out_dev_put;
558 559 560 561 562 563 564 565 566 567 568 569 570

	if (ns->nsid > subsys->max_nsid)
		subsys->max_nsid = ns->nsid;

	/*
	 * The namespaces list needs to be sorted to simplify the implementation
	 * of the Identify Namepace List subcommand.
	 */
	if (list_empty(&subsys->namespaces)) {
		list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
	} else {
		struct nvmet_ns *old;

571 572
		list_for_each_entry_rcu(old, &subsys->namespaces, dev_link,
					lockdep_is_held(&subsys->lock)) {
573 574 575 576 577 578 579
			BUG_ON(ns->nsid == old->nsid);
			if (ns->nsid < old->nsid)
				break;
		}

		list_add_tail_rcu(&ns->dev_link, &old->dev_link);
	}
580
	subsys->nr_namespaces++;
581

582
	nvmet_ns_changed(subsys, ns->nsid);
583
	ns->enabled = true;
584 585 586 587
	ret = 0;
out_unlock:
	mutex_unlock(&subsys->lock);
	return ret;
588
out_dev_put:
589 590
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
591
out_dev_disable:
592
	nvmet_ns_dev_disable(ns);
593 594 595 596 597 598
	goto out_unlock;
}

void nvmet_ns_disable(struct nvmet_ns *ns)
{
	struct nvmet_subsys *subsys = ns->subsys;
599
	struct nvmet_ctrl *ctrl;
600 601

	mutex_lock(&subsys->lock);
602 603 604 605 606
	if (!ns->enabled)
		goto out_unlock;

	ns->enabled = false;
	list_del_rcu(&ns->dev_link);
607 608
	if (ns->nsid == subsys->max_nsid)
		subsys->max_nsid = nvmet_max_nsid(subsys);
609 610 611 612

	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
	mutex_unlock(&subsys->lock);

	/*
	 * Now that we removed the namespaces from the lookup list, we
	 * can kill the per_cpu ref and wait for any remaining references
	 * to be dropped, as well as a RCU grace period for anyone only
	 * using the namepace under rcu_read_lock().  Note that we can't
	 * use call_rcu here as we need to ensure the namespaces have
	 * been fully destroyed before unloading the module.
	 */
	percpu_ref_kill(&ns->ref);
	synchronize_rcu();
	wait_for_completion(&ns->disable_done);
	percpu_ref_exit(&ns->ref);

	mutex_lock(&subsys->lock);
629

630
	subsys->nr_namespaces--;
631
	nvmet_ns_changed(subsys, ns->nsid);
632
	nvmet_ns_dev_disable(ns);
633
out_unlock:
634 635 636 637 638 639 640
	mutex_unlock(&subsys->lock);
}

void nvmet_ns_free(struct nvmet_ns *ns)
{
	nvmet_ns_disable(ns);

641 642 643 644
	down_write(&nvmet_ana_sem);
	nvmet_ana_group_enabled[ns->anagrpid]--;
	up_write(&nvmet_ana_sem);

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	kfree(ns->device_path);
	kfree(ns);
}

struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
	struct nvmet_ns *ns;

	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
	if (!ns)
		return NULL;

	INIT_LIST_HEAD(&ns->dev_link);
	init_completion(&ns->disable_done);

	ns->nsid = nsid;
	ns->subsys = subsys;
662 663 664 665 666 667

	down_write(&nvmet_ana_sem);
	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
	nvmet_ana_group_enabled[ns->anagrpid]++;
	up_write(&nvmet_ana_sem);

668
	uuid_gen(&ns->uuid);
669
	ns->buffered_io = false;
670 671 672 673

	return ns;
}

674
static void nvmet_update_sq_head(struct nvmet_req *req)
675
{
J
James Smart 已提交
676
	if (req->sq->size) {
677 678
		u32 old_sqhd, new_sqhd;

J
James Smart 已提交
679 680 681 682 683 684
		do {
			old_sqhd = req->sq->sqhd;
			new_sqhd = (old_sqhd + 1) % req->sq->size;
		} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
					old_sqhd);
	}
685
	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
686 687
}

688 689 690 691 692 693
static void nvmet_set_error(struct nvmet_req *req, u16 status)
{
	struct nvmet_ctrl *ctrl = req->sq->ctrl;
	struct nvme_error_slot *new_error_slot;
	unsigned long flags;

694
	req->cqe->status = cpu_to_le16(status << 1);
695

696
	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		return;

	spin_lock_irqsave(&ctrl->error_lock, flags);
	ctrl->err_counter++;
	new_error_slot =
		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];

	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
	new_error_slot->status_field = cpu_to_le16(status << 1);
	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
	new_error_slot->lba = cpu_to_le64(req->error_slba);
	new_error_slot->nsid = req->cmd->common.nsid;
	spin_unlock_irqrestore(&ctrl->error_lock, flags);

	/* set the more bit for this request */
714
	req->cqe->status |= cpu_to_le16(1 << 14);
715 716
}

717 718 719 720
static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	if (!req->sq->sqhd_disabled)
		nvmet_update_sq_head(req);
721 722
	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
	req->cqe->command_id = req->cmd->common.command_id;
723

724
	if (unlikely(status))
725
		nvmet_set_error(req, status);
M
Minwoo Im 已提交
726 727 728

	trace_nvmet_req_complete(req);

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	if (req->ns)
		nvmet_put_namespace(req->ns);
	req->ops->queue_response(req);
}

void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
	__nvmet_req_complete(req, status);
	percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);

void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
		u16 qid, u16 size)
{
	cq->qid = qid;
	cq->size = size;

	ctrl->cqs[qid] = cq;
}

void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
		u16 qid, u16 size)
{
753
	sq->sqhd = 0;
754 755 756 757 758 759
	sq->qid = qid;
	sq->size = size;

	ctrl->sqs[qid] = sq;
}

760 761 762 763 764 765 766
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->confirm_done);
}

767 768
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
769 770 771
	u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
	struct nvmet_ctrl *ctrl = sq->ctrl;

772 773 774 775
	/*
	 * If this is the admin queue, complete all AERs so that our
	 * queue doesn't have outstanding requests on it.
	 */
776 777 778 779
	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) {
		nvmet_async_events_process(ctrl, status);
		nvmet_async_events_free(ctrl);
	}
780 781
	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
	wait_for_completion(&sq->confirm_done);
782 783 784
	wait_for_completion(&sq->free_done);
	percpu_ref_exit(&sq->ref);

785 786
	if (ctrl) {
		nvmet_ctrl_put(ctrl);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		sq->ctrl = NULL; /* allows reusing the queue later */
	}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);

static void nvmet_sq_free(struct percpu_ref *ref)
{
	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);

	complete(&sq->free_done);
}

int nvmet_sq_init(struct nvmet_sq *sq)
{
	int ret;

	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
	if (ret) {
		pr_err("percpu_ref init failed!\n");
		return ret;
	}
	init_completion(&sq->free_done);
809
	init_completion(&sq->confirm_done);
810 811 812 813 814

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);

815 816 817 818 819 820 821 822 823 824 825 826 827 828
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
		struct nvmet_ns *ns)
{
	enum nvme_ana_state state = port->ana_state[ns->anagrpid];

	if (unlikely(state == NVME_ANA_INACCESSIBLE))
		return NVME_SC_ANA_INACCESSIBLE;
	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
		return NVME_SC_ANA_PERSISTENT_LOSS;
	if (unlikely(state == NVME_ANA_CHANGE))
		return NVME_SC_ANA_TRANSITION;
	return 0;
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
	if (unlikely(req->ns->readonly)) {
		switch (req->cmd->common.opcode) {
		case nvme_cmd_read:
		case nvme_cmd_flush:
			break;
		default:
			return NVME_SC_NS_WRITE_PROTECTED;
		}
	}

	return 0;
}

844 845 846 847 848 849 850 851 852 853
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
	struct nvme_command *cmd = req->cmd;
	u16 ret;

	ret = nvmet_check_ctrl_status(req, cmd);
	if (unlikely(ret))
		return ret;

	req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
854 855
	if (unlikely(!req->ns)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
856
		return NVME_SC_INVALID_NS | NVME_SC_DNR;
857
	}
858
	ret = nvmet_check_ana_state(req->port, req->ns);
859 860
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
861
		return ret;
862
	}
863
	ret = nvmet_io_cmd_check_access(req);
864 865
	if (unlikely(ret)) {
		req->error_loc = offsetof(struct nvme_common_command, nsid);
866
		return ret;
867
	}
868 869 870 871 872 873 874

	if (req->ns->file)
		return nvmet_file_parse_io_cmd(req);
	else
		return nvmet_bdev_parse_io_cmd(req);
}

875
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
876
		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
877 878 879 880 881 882 883 884 885
{
	u8 flags = req->cmd->common.flags;
	u16 status;

	req->cq = cq;
	req->sq = sq;
	req->ops = ops;
	req->sg = NULL;
	req->sg_cnt = 0;
886
	req->transfer_len = 0;
887 888
	req->cqe->status = 0;
	req->cqe->sq_head = 0;
889
	req->ns = NULL;
890
	req->error_loc = NVMET_NO_ERROR_LOC;
891
	req->error_slba = 0;
892

M
Minwoo Im 已提交
893 894
	trace_nvmet_req_init(req, req->cmd);

895 896
	/* no support for fused commands yet */
	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
897
		req->error_loc = offsetof(struct nvme_common_command, flags);
898 899 900 901
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

902 903 904 905 906 907
	/*
	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
	 * contains an address of a single contiguous physical buffer that is
	 * byte aligned.
	 */
	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
908
		req->error_loc = offsetof(struct nvme_common_command, flags);
909 910 911 912 913
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

	if (unlikely(!req->sq->ctrl))
914
		/* will return an error for any non-connect command: */
915 916 917 918 919 920 921 922 923 924 925 926 927 928
		status = nvmet_parse_connect_cmd(req);
	else if (likely(req->sq->qid != 0))
		status = nvmet_parse_io_cmd(req);
	else
		status = nvmet_parse_admin_cmd(req);

	if (status)
		goto fail;

	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		goto fail;
	}

929 930 931
	if (sq->ctrl)
		sq->ctrl->cmd_seen = true;

932 933 934 935 936 937 938 939
	return true;

fail:
	__nvmet_req_complete(req, status);
	return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);

940 941 942
void nvmet_req_uninit(struct nvmet_req *req)
{
	percpu_ref_put(&req->sq->ref);
943 944
	if (req->ns)
		nvmet_put_namespace(req->ns);
945 946 947
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);

948
bool nvmet_check_data_len(struct nvmet_req *req, size_t data_len)
949
{
950
	if (unlikely(data_len != req->transfer_len)) {
951
		req->error_loc = offsetof(struct nvme_common_command, dptr);
952
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
953 954 955 956 957 958 959
		return false;
	}

	return true;
}
EXPORT_SYMBOL_GPL(nvmet_check_data_len);

960 961 962 963 964 965 966 967 968 969 970
bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
{
	if (unlikely(data_len > req->transfer_len)) {
		req->error_loc = offsetof(struct nvme_common_command, dptr);
		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
		return false;
	}

	return true;
}

971 972
int nvmet_req_alloc_sgl(struct nvmet_req *req)
{
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	struct pci_dev *p2p_dev = NULL;

	if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
		if (req->sq->ctrl && req->ns)
			p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
						    req->ns->nsid);

		req->p2p_dev = NULL;
		if (req->sq->qid && p2p_dev) {
			req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
						       req->transfer_len);
			if (req->sg) {
				req->p2p_dev = p2p_dev;
				return 0;
			}
		}

		/*
		 * If no P2P memory was available we fallback to using
		 * regular memory
		 */
	}

996
	req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
997
	if (unlikely(!req->sg))
998 999 1000 1001 1002 1003 1004 1005
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);

void nvmet_req_free_sgl(struct nvmet_req *req)
{
1006 1007 1008 1009 1010
	if (req->p2p_dev)
		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
	else
		sgl_free(req->sg);

1011 1012 1013 1014 1015
	req->sg = NULL;
	req->sg_cnt = 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);

1016 1017
static inline bool nvmet_cc_en(u32 cc)
{
1018
	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1019 1020 1021 1022
}

static inline u8 nvmet_cc_css(u32 cc)
{
1023
	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1024 1025 1026 1027
}

static inline u8 nvmet_cc_mps(u32 cc)
{
1028
	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1029 1030 1031 1032
}

static inline u8 nvmet_cc_ams(u32 cc)
{
1033
	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1034 1035 1036 1037
}

static inline u8 nvmet_cc_shn(u32 cc)
{
1038
	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1039 1040 1041 1042
}

static inline u8 nvmet_cc_iosqes(u32 cc)
{
1043
	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1044 1045 1046 1047
}

static inline u8 nvmet_cc_iocqes(u32 cc)
{
1048
	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
}

static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
	    nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
	    nvmet_cc_mps(ctrl->cc) != 0 ||
	    nvmet_cc_ams(ctrl->cc) != 0 ||
	    nvmet_cc_css(ctrl->cc) != 0) {
		ctrl->csts = NVME_CSTS_CFS;
		return;
	}

	ctrl->csts = NVME_CSTS_RDY;
1065 1066 1067 1068 1069 1070 1071 1072

	/*
	 * Controllers that are not yet enabled should not really enforce the
	 * keep alive timeout, but we still want to track a timeout and cleanup
	 * in case a host died before it enabled the controller.  Hence, simply
	 * reset the keep alive timer when the controller is enabled.
	 */
	mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
	lockdep_assert_held(&ctrl->lock);

	/* XXX: tear down queues? */
	ctrl->csts &= ~NVME_CSTS_RDY;
	ctrl->cc = 0;
}

void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
	u32 old;

	mutex_lock(&ctrl->lock);
	old = ctrl->cc;
	ctrl->cc = new;

	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
		nvmet_start_ctrl(ctrl);
	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
		nvmet_clear_ctrl(ctrl);
	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
		nvmet_clear_ctrl(ctrl);
		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
	}
	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
	mutex_unlock(&ctrl->lock);
}

static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
	/* command sets supported: NVMe command set: */
	ctrl->cap = (1ULL << 37);
	/* CC.EN timeout in 500msec units: */
	ctrl->cap |= (15ULL << 24);
	/* maximum queue entries supported: */
	ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}

u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
		struct nvmet_req *req, struct nvmet_ctrl **ret)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	u16 status = 0;

	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1126
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
		return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	}

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
		if (ctrl->cntlid == cntlid) {
			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
				pr_warn("hostnqn mismatch.\n");
				continue;
			}
			if (!kref_get_unless_zero(&ctrl->ref))
				continue;

			*ret = ctrl;
			goto out;
		}
	}

	pr_warn("could not find controller %d for subsys %s / host %s\n",
		cntlid, subsysnqn, hostnqn);
1147
	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1148 1149 1150 1151 1152 1153 1154 1155
	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;

out:
	mutex_unlock(&subsys->lock);
	nvmet_subsys_put(subsys);
	return status;
}

1156 1157 1158
u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
{
	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1159
		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1160 1161 1162 1163 1164
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}

	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1165
		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1166 1167 1168 1169 1170 1171
		       cmd->common.opcode, req->sq->qid);
		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
	}
	return 0;
}

1172
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1173 1174 1175
{
	struct nvmet_host_link *p;

1176 1177
	lockdep_assert_held(&nvmet_config_sem);

1178 1179 1180
	if (subsys->allow_any_host)
		return true;

1181 1182 1183
	if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
		return true;

1184 1185 1186 1187 1188 1189 1190 1191
	list_for_each_entry(p, &subsys->hosts, entry) {
		if (!strcmp(nvmet_host_name(p->host), hostnqn))
			return true;
	}

	return false;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
		struct nvmet_req *req)
{
	struct nvmet_ns *ns;

	if (!req->p2p_client)
		return;

	ctrl->p2p_client = get_device(req->p2p_client);

1205 1206
	list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link,
				lockdep_is_held(&ctrl->subsys->lock))
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}

/*
 * Note: ctrl->subsys->lock should be held when calling this function
 */
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
	struct radix_tree_iter iter;
	void __rcu **slot;

	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
		pci_dev_put(radix_tree_deref_slot(slot));

	put_device(ctrl->p2p_client);
}

1224 1225 1226 1227 1228 1229 1230 1231 1232
static void nvmet_fatal_error_handler(struct work_struct *work)
{
	struct nvmet_ctrl *ctrl =
			container_of(work, struct nvmet_ctrl, fatal_err_work);

	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
	ctrl->ops->delete_ctrl(ctrl);
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
	struct nvmet_subsys *subsys;
	struct nvmet_ctrl *ctrl;
	int ret;
	u16 status;

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
	if (!subsys) {
		pr_warn("connect request for invalid subsystem %s!\n",
			subsysnqn);
1246
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1247 1248 1249 1250 1251
		goto out;
	}

	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
	down_read(&nvmet_config_sem);
1252
	if (!nvmet_host_allowed(subsys, hostnqn)) {
1253 1254
		pr_info("connect by host %s for subsystem %s not allowed\n",
			hostnqn, subsysnqn);
1255
		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1256
		up_read(&nvmet_config_sem);
1257
		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		goto out_put_subsystem;
	}
	up_read(&nvmet_config_sem);

	status = NVME_SC_INTERNAL;
	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		goto out_put_subsystem;
	mutex_init(&ctrl->lock);

	nvmet_init_cap(ctrl);

1270 1271
	ctrl->port = req->port;

1272 1273
	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
	INIT_LIST_HEAD(&ctrl->async_events);
1274
	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1275
	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1276 1277 1278 1279 1280 1281

	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);

	kref_init(&ctrl->ref);
	ctrl->subsys = subsys;
1282
	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1283

1284 1285 1286 1287 1288
	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
			sizeof(__le32), GFP_KERNEL);
	if (!ctrl->changed_ns_list)
		goto out_free_ctrl;

1289 1290 1291 1292
	ctrl->cqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_cq *),
			GFP_KERNEL);
	if (!ctrl->cqs)
1293
		goto out_free_changed_ns_list;
1294 1295 1296 1297 1298 1299 1300

	ctrl->sqs = kcalloc(subsys->max_qid + 1,
			sizeof(struct nvmet_sq *),
			GFP_KERNEL);
	if (!ctrl->sqs)
		goto out_free_cqs;

1301 1302 1303
	if (subsys->cntlid_min > subsys->cntlid_max)
		goto out_free_cqs;

1304
	ret = ida_simple_get(&cntlid_ida,
1305
			     subsys->cntlid_min, subsys->cntlid_max,
1306 1307 1308 1309 1310 1311 1312 1313 1314
			     GFP_KERNEL);
	if (ret < 0) {
		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
		goto out_free_sqs;
	}
	ctrl->cntlid = ret;

	ctrl->ops = req->ops;

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	/*
	 * Discovery controllers may use some arbitrary high value
	 * in order to cleanup stale discovery sessions
	 */
	if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
		kato = NVMET_DISC_KATO_MS;

	/* keep-alive timeout in seconds */
	ctrl->kato = DIV_ROUND_UP(kato, 1000);

1325 1326 1327
	ctrl->err_counter = 0;
	spin_lock_init(&ctrl->error_lock);

1328 1329 1330 1331
	nvmet_start_keep_alive_timer(ctrl);

	mutex_lock(&subsys->lock);
	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1332
	nvmet_setup_p2p_ns_map(ctrl, req);
1333 1334 1335 1336 1337 1338 1339 1340 1341
	mutex_unlock(&subsys->lock);

	*ctrlp = ctrl;
	return 0;

out_free_sqs:
	kfree(ctrl->sqs);
out_free_cqs:
	kfree(ctrl->cqs);
1342 1343
out_free_changed_ns_list:
	kfree(ctrl->changed_ns_list);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
out_free_ctrl:
	kfree(ctrl);
out_put_subsystem:
	nvmet_subsys_put(subsys);
out:
	return status;
}

static void nvmet_ctrl_free(struct kref *ref)
{
	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
	struct nvmet_subsys *subsys = ctrl->subsys;

	mutex_lock(&subsys->lock);
1358
	nvmet_release_p2p_ns_map(ctrl);
1359 1360 1361
	list_del(&ctrl->subsys_entry);
	mutex_unlock(&subsys->lock);

1362 1363
	nvmet_stop_keep_alive_timer(ctrl);

1364 1365 1366
	flush_work(&ctrl->async_event_work);
	cancel_work_sync(&ctrl->fatal_err_work);

1367
	ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1368 1369 1370

	kfree(ctrl->sqs);
	kfree(ctrl->cqs);
1371
	kfree(ctrl->changed_ns_list);
1372
	kfree(ctrl);
1373 1374

	nvmet_subsys_put(subsys);
1375 1376 1377 1378 1379 1380 1381 1382 1383
}

void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
	kref_put(&ctrl->ref, nvmet_ctrl_free);
}

void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
1384 1385 1386 1387 1388 1389
	mutex_lock(&ctrl->lock);
	if (!(ctrl->csts & NVME_CSTS_CFS)) {
		ctrl->csts |= NVME_CSTS_CFS;
		schedule_work(&ctrl->fatal_err_work);
	}
	mutex_unlock(&ctrl->lock);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);

static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
		const char *subsysnqn)
{
	struct nvmet_subsys_link *p;

	if (!port)
		return NULL;

1401
	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
			return NULL;
		return nvmet_disc_subsys;
	}

	down_read(&nvmet_config_sem);
	list_for_each_entry(p, &port->subsystems, entry) {
		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
				NVMF_NQN_SIZE)) {
			if (!kref_get_unless_zero(&p->subsys->ref))
				break;
			up_read(&nvmet_config_sem);
			return p->subsys;
		}
	}
	up_read(&nvmet_config_sem);
	return NULL;
}

struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
		enum nvme_subsys_type type)
{
	struct nvmet_subsys *subsys;

	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
	if (!subsys)
1428
		return ERR_PTR(-ENOMEM);
1429

1430
	subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1431 1432
	/* generate a random serial number as our controllers are ephemeral: */
	get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	switch (type) {
	case NVME_NQN_NVME:
		subsys->max_qid = NVMET_NR_QUEUES;
		break;
	case NVME_NQN_DISC:
		subsys->max_qid = 0;
		break;
	default:
		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
		kfree(subsys);
1444
		return ERR_PTR(-EINVAL);
1445 1446 1447 1448
	}
	subsys->type = type;
	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
			GFP_KERNEL);
1449
	if (!subsys->subsysnqn) {
1450
		kfree(subsys);
1451
		return ERR_PTR(-ENOMEM);
1452
	}
1453 1454
	subsys->cntlid_min = NVME_CNTLID_MIN;
	subsys->cntlid_max = NVME_CNTLID_MAX;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	kref_init(&subsys->ref);

	mutex_init(&subsys->lock);
	INIT_LIST_HEAD(&subsys->namespaces);
	INIT_LIST_HEAD(&subsys->ctrls);
	INIT_LIST_HEAD(&subsys->hosts);

	return subsys;
}

static void nvmet_subsys_free(struct kref *ref)
{
	struct nvmet_subsys *subsys =
		container_of(ref, struct nvmet_subsys, ref);

	WARN_ON_ONCE(!list_empty(&subsys->namespaces));

	kfree(subsys->subsysnqn);
1473
	kfree_rcu(subsys->model, rcuhead);
1474 1475 1476
	kfree(subsys);
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
	struct nvmet_ctrl *ctrl;

	mutex_lock(&subsys->lock);
	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
		ctrl->ops->delete_ctrl(ctrl);
	mutex_unlock(&subsys->lock);
}

1487 1488 1489 1490 1491 1492 1493 1494 1495
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
	kref_put(&subsys->ref, nvmet_subsys_free);
}

static int __init nvmet_init(void)
{
	int error;

1496 1497
	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;

1498 1499 1500 1501 1502 1503
	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
			WQ_MEM_RECLAIM, 0);
	if (!buffered_io_wq) {
		error = -ENOMEM;
		goto out;
	}
1504

1505 1506
	error = nvmet_init_discovery();
	if (error)
1507
		goto out_free_work_queue;
1508 1509 1510 1511 1512 1513 1514 1515

	error = nvmet_init_configfs();
	if (error)
		goto out_exit_discovery;
	return 0;

out_exit_discovery:
	nvmet_exit_discovery();
1516 1517
out_free_work_queue:
	destroy_workqueue(buffered_io_wq);
1518 1519 1520 1521 1522 1523 1524 1525
out:
	return error;
}

static void __exit nvmet_exit(void)
{
	nvmet_exit_configfs();
	nvmet_exit_discovery();
1526
	ida_destroy(&cntlid_ida);
1527
	destroy_workqueue(buffered_io_wq);
1528 1529 1530 1531 1532 1533 1534 1535 1536

	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}

module_init(nvmet_init);
module_exit(nvmet_exit);

MODULE_LICENSE("GPL v2");