intel_lrc.c 167.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136

#include "i915_drv.h"
137
#include "i915_perf.h"
138
#include "i915_trace.h"
139
#include "i915_vgpu.h"
140
#include "intel_breadcrumbs.h"
141
#include "intel_context.h"
142
#include "intel_engine_pm.h"
143
#include "intel_gt.h"
144
#include "intel_gt_pm.h"
145
#include "intel_gt_requests.h"
146
#include "intel_lrc_reg.h"
147
#include "intel_mocs.h"
148
#include "intel_reset.h"
149
#include "intel_ring.h"
150
#include "intel_workarounds.h"
151
#include "shmem_utils.h"
152

153 154 155 156 157 158 159 160 161 162 163 164 165
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
166

167
#define GEN8_CTX_STATUS_COMPLETED_MASK \
168
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
169

170 171
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)

172 173 174 175 176 177 178
#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
#define GEN12_IDLE_CTX_ID		0x7FF
#define GEN12_CSB_CTX_VALID(csb_dw) \
	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)

179 180
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
181

182 183 184
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;
185
	struct rcu_work rcu;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

208 209 210 211 212 213 214 215 216 217 218 219
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

220 221
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
222
	struct intel_engine_cs *siblings[];
223 224 225 226 227 228 229 230
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

231 232 233
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine);

234
static void execlists_init_reg_state(u32 *reg_state,
235 236 237 238
				     const struct intel_context *ce,
				     const struct intel_engine_cs *engine,
				     const struct intel_ring *ring,
				     bool close);
239 240
static void
__execlists_update_reg_state(const struct intel_context *ce,
241 242
			     const struct intel_engine_cs *engine,
			     u32 head);
243

244 245 246 247 248 249 250 251 252 253 254 255
static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
{
	if (INTEL_GEN(engine->i915) >= 12)
		return 0x60;
	else if (INTEL_GEN(engine->i915) >= 9)
		return 0x54;
	else if (engine->class == RENDER_CLASS)
		return 0x58;
	else
		return -1;
}

256 257 258 259 260 261 262 263 264 265 266 267
static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
{
	if (INTEL_GEN(engine->i915) >= 12)
		return 0x74;
	else if (INTEL_GEN(engine->i915) >= 9)
		return 0x68;
	else if (engine->class == RENDER_CLASS)
		return 0xd8;
	else
		return -1;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
{
	if (INTEL_GEN(engine->i915) >= 12)
		return 0x12;
	else if (INTEL_GEN(engine->i915) >= 9 || engine->class == RENDER_CLASS)
		return 0x18;
	else
		return -1;
}

static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
{
	int x;

	x = lrc_ring_wa_bb_per_ctx(engine);
	if (x < 0)
		return x;

	return x + 2;
}

static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
{
	int x;

	x = lrc_ring_indirect_ptr(engine);
	if (x < 0)
		return x;

	return x + 2;
}

300 301 302 303 304 305 306 307 308 309 310 311 312
static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
{
	if (engine->class != RENDER_CLASS)
		return -1;

	if (INTEL_GEN(engine->i915) >= 12)
		return 0xb6;
	else if (INTEL_GEN(engine->i915) >= 11)
		return 0xaa;
	else
		return -1;
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
static u32
lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
		fallthrough;
	case 12:
		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
	case 11:
		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
	case 10:
		return GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
	case 9:
		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
	case 8:
		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
	}
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static void
lrc_ring_setup_indirect_ctx(u32 *regs,
			    const struct intel_engine_cs *engine,
			    u32 ctx_bb_ggtt_addr,
			    u32 size)
{
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
	regs[lrc_ring_indirect_ptr(engine) + 1] =
		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);

	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
	regs[lrc_ring_indirect_offset(engine) + 1] =
		lrc_ring_indirect_offset_default(engine) << 6;
}

350 351 352 353 354 355 356 357 358 359 360
static u32 intel_context_get_runtime(const struct intel_context *ce)
{
	/*
	 * We can use either ppHWSP[16] which is recorded before the context
	 * switch (and so excludes the cost of context switches) or use the
	 * value from the context image itself, which is saved/restored earlier
	 * and so includes the cost of the save.
	 */
	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
}

361 362
static void mark_eio(struct i915_request *rq)
{
363 364 365 366 367
	if (i915_request_completed(rq))
		return;

	GEM_BUG_ON(i915_request_signaled(rq));

368
	i915_request_set_error_once(rq, -EIO);
369 370 371
	i915_request_mark_complete(rq);
}

372 373
static struct i915_request *
active_request(const struct intel_timeline * const tl, struct i915_request *rq)
374
{
375
	struct i915_request *active = rq;
376 377

	rcu_read_lock();
378
	list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
379 380 381 382 383 384 385 386 387 388
		if (i915_request_completed(rq))
			break;

		active = rq;
	}
	rcu_read_unlock();

	return active;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
	/*
	 * We inspect HWS_PREEMPT with a semaphore inside
	 * engine->emit_fini_breadcrumb. If the dword is true,
	 * the ring is paused as the semaphore will busywait
	 * until the dword is false.
	 */
	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
405 406
	if (state)
		wmb();
407 408
}

409 410 411 412 413 414 415
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
416
	return READ_ONCE(rq->sched.attr.priority);
417 418
}

419 420
static int effective_prio(const struct i915_request *rq)
{
421 422
	int prio = rq_prio(rq);

423 424 425 426 427 428 429 430 431 432 433
	/*
	 * If this request is special and must not be interrupted at any
	 * cost, so be it. Note we are only checking the most recent request
	 * in the context and so may be masking an earlier vip request. It
	 * is hoped that under the conditions where nopreempt is used, this
	 * will not matter (i.e. all requests to that context will be
	 * nopreempt for as long as desired).
	 */
	if (i915_request_has_nopreempt(rq))
		prio = I915_PRIORITY_UNPREEMPTABLE;

434
	return prio;
435 436
}

437 438 439 440 441 442 443 444 445 446 447 448 449 450
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
451 452 453
	if (!I915_USER_PRIORITY_SHIFT)
		return p->priority;

454 455 456
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

457
static inline bool need_preempt(const struct intel_engine_cs *engine,
458 459
				const struct i915_request *rq,
				struct rb_node *rb)
460
{
461
	int last_prio;
462

463 464 465
	if (!intel_engine_has_semaphores(engine))
		return false;

466 467 468 469 470 471 472 473 474 475 476
	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
477 478 479 480 481 482
	 *
	 * More naturally we would write
	 *      prio >= max(0, last);
	 * except that we wish to prevent triggering preemption at the same
	 * priority level: the task that is running should remain running
	 * to preserve FIFO ordering of dependencies.
483
	 */
484 485
	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
	if (engine->execlists.queue_priority_hint <= last_prio)
486 487 488 489 490 491
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
492 493
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
494 495
		return true;

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

515 516 517 518 519 520 521 522 523 524 525 526 527 528
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
529
assert_priority_queue(const struct i915_request *prev,
530
		      const struct i915_request *next)
531
{
532 533 534 535 536 537 538
	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
539
	if (i915_request_is_active(prev))
540 541 542
		return true;

	return rq_prio(prev) >= rq_prio(next);
543 544
}

545
/*
546 547 548 549 550
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
551 552
 * This is what a descriptor looks like, from LSB to MSB::
 *
553
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
554
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
555
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
556 557
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
558 559 560 561 562 563 564 565 566 567 568 569
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
570
 */
571
static u32
572
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
573
{
574
	u32 desc;
575

576 577 578 579 580 581 582 583
	desc = INTEL_LEGACY_32B_CONTEXT;
	if (i915_vm_is_4lvl(ce->vm))
		desc = INTEL_LEGACY_64B_CONTEXT;
	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;

	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
	if (IS_GEN(engine->i915, 8))
		desc |= GEN8_CTX_L3LLC_COHERENT;
584

585
	return i915_ggtt_offset(ce->state) | desc;
586 587
}

588 589 590 591 592 593
static inline unsigned int dword_in_page(void *addr)
{
	return offset_in_page(addr) / sizeof(u32);
}

static void set_offsets(u32 *regs,
594
			const u8 *data,
595 596
			const struct intel_engine_cs *engine,
			bool clear)
597
#define NOP(x) (BIT(7) | (x))
598
#define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
599 600 601 602 603
#define POSTED BIT(0)
#define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
#define REG16(x) \
	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
	(((x) >> 2) & 0x7f)
604
#define END(total_state_size) 0, (total_state_size)
605 606 607 608 609 610 611
{
	const u32 base = engine->mmio_base;

	while (*data) {
		u8 count, flags;

		if (*data & BIT(7)) { /* skip */
612 613 614 615
			count = *data++ & ~BIT(7);
			if (clear)
				memset32(regs, MI_NOOP, count);
			regs += count;
616 617 618 619 620 621 622 623 624 625 626
			continue;
		}

		count = *data & 0x3f;
		flags = *data >> 6;
		data++;

		*regs = MI_LOAD_REGISTER_IMM(count);
		if (flags & POSTED)
			*regs |= MI_LRI_FORCE_POSTED;
		if (INTEL_GEN(engine->i915) >= 11)
627
			*regs |= MI_LRI_LRM_CS_MMIO;
628 629 630 631 632 633 634 635 636 637 638 639 640
		regs++;

		GEM_BUG_ON(!count);
		do {
			u32 offset = 0;
			u8 v;

			do {
				v = *data++;
				offset <<= 7;
				offset |= v & ~BIT(7);
			} while (v & BIT(7));

641 642 643
			regs[0] = base + (offset << 2);
			if (clear)
				regs[1] = 0;
644 645 646 647
			regs += 2;
		} while (--count);
	}

648 649 650 651 652 653 654 655 656 657 658 659
	if (clear) {
		u8 count = *++data;

		/* Clear past the tail for HW access */
		GEM_BUG_ON(dword_in_page(regs) > count);
		memset32(regs, MI_NOOP, count - dword_in_page(regs));

		/* Close the batch; used mainly by live_lrc_layout() */
		*regs = MI_BATCH_BUFFER_END;
		if (INTEL_GEN(engine->i915) >= 10)
			*regs |= BIT(0);
	}
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

static const u8 gen8_xcs_offsets[] = {
	NOP(1),
	LRI(11, 0),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),

	NOP(9),
	LRI(9, 0),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(2, 0),
	REG16(0x200),
	REG(0x028),

694
	END(80)
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static const u8 gen9_xcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, POSTED),
	REG16(0x200),

	NOP(13),
	LRI(44, POSTED),
	REG(0x028),
	REG(0x09c),
	REG(0x0c0),
	REG(0x178),
	REG(0x17c),
	REG16(0x358),
	REG(0x170),
	REG(0x150),
	REG(0x154),
	REG(0x158),
	REG16(0x41c),
	REG16(0x600),
	REG16(0x604),
	REG16(0x608),
	REG16(0x60c),
	REG16(0x610),
	REG16(0x614),
	REG16(0x618),
	REG16(0x61c),
	REG16(0x620),
	REG16(0x624),
	REG16(0x628),
	REG16(0x62c),
	REG16(0x630),
	REG16(0x634),
	REG16(0x638),
	REG16(0x63c),
	REG16(0x640),
	REG16(0x644),
	REG16(0x648),
	REG16(0x64c),
	REG16(0x650),
	REG16(0x654),
	REG16(0x658),
	REG16(0x65c),
	REG16(0x660),
	REG16(0x664),
	REG16(0x668),
	REG16(0x66c),
	REG16(0x670),
	REG16(0x674),
	REG16(0x678),
	REG16(0x67c),
	REG(0x068),

778
	END(176)
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
};

static const u8 gen12_xcs_offsets[] = {
	NOP(1),
	LRI(13, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),
	REG16(0x2b4),

	NOP(5),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

810
	END(80)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
};

static const u8 gen8_rcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, 0),
	REG(0x0c8),

847
	END(80)
848 849
};

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static const u8 gen9_rcs_offsets[] = {
	NOP(1),
	LRI(14, POSTED),
	REG16(0x244),
	REG(0x34),
	REG(0x30),
	REG(0x38),
	REG(0x3c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),

	NOP(3),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	NOP(13),
	LRI(1, 0),
	REG(0xc8),

	NOP(13),
	LRI(44, POSTED),
	REG(0x28),
	REG(0x9c),
	REG(0xc0),
	REG(0x178),
	REG(0x17c),
	REG16(0x358),
	REG(0x170),
	REG(0x150),
	REG(0x154),
	REG(0x158),
	REG16(0x41c),
	REG16(0x600),
	REG16(0x604),
	REG16(0x608),
	REG16(0x60c),
	REG16(0x610),
	REG16(0x614),
	REG16(0x618),
	REG16(0x61c),
	REG16(0x620),
	REG16(0x624),
	REG16(0x628),
	REG16(0x62c),
	REG16(0x630),
	REG16(0x634),
	REG16(0x638),
	REG16(0x63c),
	REG16(0x640),
	REG16(0x644),
	REG16(0x648),
	REG16(0x64c),
	REG16(0x650),
	REG16(0x654),
	REG16(0x658),
	REG16(0x65c),
	REG16(0x660),
	REG16(0x664),
	REG16(0x668),
	REG16(0x66c),
	REG16(0x670),
	REG16(0x674),
	REG16(0x678),
	REG16(0x67c),
	REG(0x68),

931
	END(176)
932 933
};

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
static const u8 gen11_rcs_offsets[] = {
	NOP(1),
	LRI(15, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x11c),
	REG(0x114),
	REG(0x118),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),

	NOP(1),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	LRI(1, POSTED),
	REG(0x1b0),

	NOP(10),
	LRI(1, 0),
	REG(0x0c8),

972
	END(80)
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
};

static const u8 gen12_rcs_offsets[] = {
	NOP(1),
	LRI(13, POSTED),
	REG16(0x244),
	REG(0x034),
	REG(0x030),
	REG(0x038),
	REG(0x03c),
	REG(0x168),
	REG(0x140),
	REG(0x110),
	REG(0x1c0),
	REG(0x1c4),
	REG(0x1c8),
	REG(0x180),
	REG16(0x2b4),

	NOP(5),
	LRI(9, POSTED),
	REG16(0x3a8),
	REG16(0x28c),
	REG16(0x288),
	REG16(0x284),
	REG16(0x280),
	REG16(0x27c),
	REG16(0x278),
	REG16(0x274),
	REG16(0x270),

	LRI(3, POSTED),
	REG(0x1b0),
	REG16(0x5a8),
	REG16(0x5ac),

	NOP(6),
	LRI(1, 0),
	REG(0x0c8),
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	NOP(3 + 9 + 1),

	LRI(51, POSTED),
	REG16(0x588),
	REG16(0x588),
	REG16(0x588),
	REG16(0x588),
	REG16(0x588),
	REG16(0x588),
	REG(0x028),
	REG(0x09c),
	REG(0x0c0),
	REG(0x178),
	REG(0x17c),
	REG16(0x358),
	REG(0x170),
	REG(0x150),
	REG(0x154),
	REG(0x158),
	REG16(0x41c),
	REG16(0x600),
	REG16(0x604),
	REG16(0x608),
	REG16(0x60c),
	REG16(0x610),
	REG16(0x614),
	REG16(0x618),
	REG16(0x61c),
	REG16(0x620),
	REG16(0x624),
	REG16(0x628),
	REG16(0x62c),
	REG16(0x630),
	REG16(0x634),
	REG16(0x638),
	REG16(0x63c),
	REG16(0x640),
	REG16(0x644),
	REG16(0x648),
	REG16(0x64c),
	REG16(0x650),
	REG16(0x654),
	REG16(0x658),
	REG16(0x65c),
	REG16(0x660),
	REG16(0x664),
	REG16(0x668),
	REG16(0x66c),
	REG16(0x670),
	REG16(0x674),
	REG16(0x678),
	REG16(0x67c),
	REG(0x068),
	REG(0x084),
	NOP(1),
1067

1068
	END(192)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
};

#undef END
#undef REG16
#undef REG
#undef LRI
#undef NOP

static const u8 *reg_offsets(const struct intel_engine_cs *engine)
{
1079 1080 1081 1082 1083 1084 1085 1086 1087
	/*
	 * The gen12+ lists only have the registers we program in the basic
	 * default state. We rely on the context image using relative
	 * addressing to automatic fixup the register state between the
	 * physical engines for virtual engine.
	 */
	GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
		   !intel_engine_has_relative_mmio(engine));

1088 1089 1090 1091 1092
	if (engine->class == RENDER_CLASS) {
		if (INTEL_GEN(engine->i915) >= 12)
			return gen12_rcs_offsets;
		else if (INTEL_GEN(engine->i915) >= 11)
			return gen11_rcs_offsets;
1093 1094
		else if (INTEL_GEN(engine->i915) >= 9)
			return gen9_rcs_offsets;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		else
			return gen8_rcs_offsets;
	} else {
		if (INTEL_GEN(engine->i915) >= 12)
			return gen12_xcs_offsets;
		else if (INTEL_GEN(engine->i915) >= 9)
			return gen9_xcs_offsets;
		else
			return gen8_xcs_offsets;
	}
}

1107
static struct i915_request *
1108
__unwind_incomplete_requests(struct intel_engine_cs *engine)
1109
{
1110
	struct i915_request *rq, *rn, *active = NULL;
1111
	struct list_head *pl;
1112
	int prio = I915_PRIORITY_INVALID;
1113

1114
	lockdep_assert_held(&engine->active.lock);
1115 1116

	list_for_each_entry_safe_reverse(rq, rn,
1117 1118
					 &engine->active.requests,
					 sched.link) {
1119 1120 1121 1122
		if (i915_request_completed(rq)) {
			list_del_init(&rq->sched.link);
			continue;
		}
1123

1124
		__i915_request_unsubmit(rq);
1125

1126 1127 1128 1129 1130 1131 1132
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
1133
		if (likely(rq->execution_mask == engine->mask)) {
1134 1135 1136 1137 1138 1139
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1140

1141
			list_move(&rq->sched.link, pl);
1142 1143
			set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

1144 1145
			/* Check in case we rollback so far we wrap [size/2] */
			if (intel_ring_direction(rq->ring,
1146 1147
						 rq->tail,
						 rq->ring->tail + 8) > 0)
1148 1149
				rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;

1150 1151
			active = rq;
		} else {
1152
			struct intel_engine_cs *owner = rq->context->engine;
1153

1154
			WRITE_ONCE(rq->engine, owner);
1155 1156 1157
			owner->submit_request(rq);
			active = NULL;
		}
1158 1159
	}

1160
	return active;
1161 1162
}

1163
struct i915_request *
1164 1165 1166 1167 1168
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

1169
	return __unwind_incomplete_requests(engine);
1170 1171
}

1172
static inline void
1173
execlists_context_status_change(struct i915_request *rq, unsigned long status)
1174
{
1175 1176 1177 1178 1179 1180
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
1181

1182 1183
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
1184 1185
}

1186 1187 1188 1189
static void intel_engine_context_in(struct intel_engine_cs *engine)
{
	unsigned long flags;

1190
	if (atomic_add_unless(&engine->stats.active, 1, 0))
1191 1192 1193
		return;

	write_seqlock_irqsave(&engine->stats.lock, flags);
1194 1195 1196
	if (!atomic_add_unless(&engine->stats.active, 1, 0)) {
		engine->stats.start = ktime_get();
		atomic_inc(&engine->stats.active);
1197 1198 1199 1200 1201 1202 1203 1204
	}
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
}

static void intel_engine_context_out(struct intel_engine_cs *engine)
{
	unsigned long flags;

1205 1206 1207
	GEM_BUG_ON(!atomic_read(&engine->stats.active));

	if (atomic_add_unless(&engine->stats.active, -1, 1))
1208 1209 1210
		return;

	write_seqlock_irqsave(&engine->stats.lock, flags);
1211 1212 1213 1214
	if (atomic_dec_and_test(&engine->stats.active)) {
		engine->stats.total =
			ktime_add(engine->stats.total,
				  ktime_sub(ktime_get(), engine->stats.start));
1215 1216 1217 1218
	}
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
}

1219 1220
static void
execlists_check_context(const struct intel_context *ce,
1221 1222
			const struct intel_engine_cs *engine,
			const char *when)
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	const struct intel_ring *ring = ce->ring;
	u32 *regs = ce->lrc_reg_state;
	bool valid = true;
	int x;

	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
		       engine->name,
		       regs[CTX_RING_START],
		       i915_ggtt_offset(ring->vma));
		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
		valid = false;
	}

	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
		       engine->name,
		       regs[CTX_RING_CTL],
		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
		valid = false;
	}

	x = lrc_ring_mi_mode(engine);
	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
		       engine->name, regs[x + 1]);
		regs[x + 1] &= ~STOP_RING;
		regs[x + 1] |= STOP_RING << 16;
		valid = false;
	}

1257
	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1258 1259
}

1260 1261 1262
static void restore_default_state(struct intel_context *ce,
				  struct intel_engine_cs *engine)
{
1263
	u32 *regs;
1264

1265 1266
	regs = memset(ce->lrc_reg_state, 0, engine->context_size - PAGE_SIZE);
	execlists_init_reg_state(regs, ce, engine, ce->ring, true);
1267

1268
	ce->runtime.last = intel_context_get_runtime(ce);
1269 1270 1271 1272 1273
}

static void reset_active(struct i915_request *rq,
			 struct intel_engine_cs *engine)
{
1274
	struct intel_context * const ce = rq->context;
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	u32 head;

	/*
	 * The executing context has been cancelled. We want to prevent
	 * further execution along this context and propagate the error on
	 * to anything depending on its results.
	 *
	 * In __i915_request_submit(), we apply the -EIO and remove the
	 * requests' payloads for any banned requests. But first, we must
	 * rewind the context back to the start of the incomplete request so
	 * that we do not jump back into the middle of the batch.
	 *
	 * We preserve the breadcrumbs and semaphores of the incomplete
	 * requests so that inter-timeline dependencies (i.e other timelines)
	 * remain correctly ordered. And we defer to __i915_request_submit()
	 * so that all asynchronous waits are correctly handled.
	 */
1292 1293
	ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
		     rq->fence.context, rq->fence.seqno);
1294 1295 1296 1297 1298 1299

	/* On resubmission of the active request, payload will be scrubbed */
	if (i915_request_completed(rq))
		head = rq->tail;
	else
		head = active_request(ce->timeline, rq)->head;
1300
	head = intel_ring_wrap(ce->ring, head);
1301 1302 1303

	/* Scrub the context image to prevent replaying the previous batch */
	restore_default_state(ce, engine);
1304
	__execlists_update_reg_state(ce, engine, head);
1305 1306

	/* We've switched away, so this should be a no-op, but intent matters */
1307
	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
1308 1309
}

1310 1311 1312
static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
{
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1313
	ce->runtime.num_underflow++;
1314 1315 1316 1317
	ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
#endif
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
static void intel_context_update_runtime(struct intel_context *ce)
{
	u32 old;
	s32 dt;

	if (intel_context_is_barrier(ce))
		return;

	old = ce->runtime.last;
	ce->runtime.last = intel_context_get_runtime(ce);
	dt = ce->runtime.last - old;

1330
	if (unlikely(dt < 0)) {
1331 1332
		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
			 old, ce->runtime.last, dt);
1333
		st_update_runtime_underflow(ce, dt);
1334 1335 1336 1337 1338 1339 1340
		return;
	}

	ewma_runtime_add(&ce->runtime.avg, dt);
	ce->runtime.total += dt;
}

1341 1342 1343 1344
static inline struct intel_engine_cs *
__execlists_schedule_in(struct i915_request *rq)
{
	struct intel_engine_cs * const engine = rq->engine;
1345
	struct intel_context * const ce = rq->context;
1346 1347 1348

	intel_context_get(ce);

1349
	if (unlikely(intel_context_is_banned(ce)))
1350 1351
		reset_active(rq, engine);

1352
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1353
		execlists_check_context(ce, engine, "before");
1354

C
Chris Wilson 已提交
1355 1356
	if (ce->tag) {
		/* Use a fixed tag for OA and friends */
1357
		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
1358
		ce->lrc.ccid = ce->tag;
C
Chris Wilson 已提交
1359 1360
	} else {
		/* We don't need a strict matching tag, just different values */
1361
		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
1362 1363 1364 1365 1366 1367

		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
		clear_bit(tag - 1, &engine->context_tag);
		ce->lrc.ccid = tag << (GEN11_SW_CTX_ID_SHIFT - 32);

		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
C
Chris Wilson 已提交
1368 1369
	}

1370 1371
	ce->lrc.ccid |= engine->execlists.ccid;

1372
	__intel_gt_pm_get(engine->gt);
1373 1374
	if (engine->fw_domain && !atomic_fetch_inc(&engine->fw_active))
		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
1375 1376 1377 1378 1379 1380
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
	intel_engine_context_in(engine);

	return engine;
}

1381 1382
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
1383
{
1384
	struct intel_context * const ce = rq->context;
1385
	struct intel_engine_cs *old;
1386

1387
	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
1388
	trace_i915_request_in(rq, idx);
1389

1390 1391 1392 1393 1394 1395 1396
	old = READ_ONCE(ce->inflight);
	do {
		if (!old) {
			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
			break;
		}
	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
1397 1398 1399

	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
	return i915_request_get(rq);
1400 1401
}

1402
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
1403
{
1404
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
1405 1406
	struct i915_request *next = READ_ONCE(ve->request);

1407
	if (next == rq || (next && next->execution_mask & ~rq->execution_mask))
1408
		tasklet_hi_schedule(&ve->base.execlists.tasklet);
1409 1410
}

1411
static inline void
1412
__execlists_schedule_out(struct i915_request *rq,
1413 1414
			 struct intel_engine_cs * const engine,
			 unsigned int ccid)
1415
{
1416
	struct intel_context * const ce = rq->context;
1417

1418 1419 1420 1421 1422 1423
	/*
	 * NB process_csb() is not under the engine->active.lock and hence
	 * schedule_out can race with schedule_in meaning that we should
	 * refrain from doing non-trivial work here.
	 */

1424 1425 1426
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		execlists_check_context(ce, engine, "after");

1427 1428 1429 1430
	/*
	 * If we have just completed this context, the engine may now be
	 * idle and we want to re-enter powersaving.
	 */
1431
	if (list_is_last_rcu(&rq->link, &ce->timeline->requests) &&
1432 1433 1434
	    i915_request_completed(rq))
		intel_engine_add_retire(engine, ce->timeline);

1435 1436 1437 1438 1439 1440 1441 1442
	ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
	ccid &= GEN12_MAX_CONTEXT_HW_ID;
	if (ccid < BITS_PER_LONG) {
		GEM_BUG_ON(ccid == 0);
		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
		set_bit(ccid - 1, &engine->context_tag);
	}

1443
	intel_context_update_runtime(ce);
1444 1445
	intel_engine_context_out(engine);
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
1446 1447
	if (engine->fw_domain && !atomic_dec_return(&engine->fw_active))
		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
1448
	intel_gt_pm_put_async(engine->gt);
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	/*
	 * If this is part of a virtual engine, its next request may
	 * have been blocked waiting for access to the active context.
	 * We have to kick all the siblings again in case we need to
	 * switch (e.g. the next request is not runnable on this
	 * engine). Hopefully, we will already have submitted the next
	 * request before the tasklet runs and do not need to rebuild
	 * each virtual tree and kick everyone again.
	 */
	if (ce->engine != engine)
		kick_siblings(rq, ce);
1461

1462 1463
	intel_context_put(ce);
}
1464

1465 1466 1467
static inline void
execlists_schedule_out(struct i915_request *rq)
{
1468
	struct intel_context * const ce = rq->context;
1469
	struct intel_engine_cs *cur, *old;
1470
	u32 ccid;
1471

1472 1473
	trace_i915_request_out(rq);

1474
	ccid = rq->context->lrc.ccid;
1475 1476 1477 1478 1479
	old = READ_ONCE(ce->inflight);
	do
		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
	while (!try_cmpxchg(&ce->inflight, &old, cur));
	if (!cur)
1480
		__execlists_schedule_out(rq, old, ccid);
1481 1482

	i915_request_put(rq);
1483 1484
}

1485
static u64 execlists_update_context(struct i915_request *rq)
1486
{
1487
	struct intel_context *ce = rq->context;
1488
	u64 desc = ce->lrc.desc;
1489
	u32 tail, prev;
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * WaIdleLiteRestore:bdw,skl
	 *
	 * We should never submit the context with the same RING_TAIL twice
	 * just in case we submit an empty ring, which confuses the HW.
	 *
	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
	 * the normal request to be able to always advance the RING_TAIL on
	 * subsequent resubmissions (for lite restore). Should that fail us,
	 * and we try and submit the same tail again, force the context
	 * reload.
1502 1503 1504 1505 1506
	 *
	 * If we need to return to a preempted context, we need to skip the
	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
	 * HW has a tendency to ignore us rewinding the TAIL to the end of
	 * an earlier request.
1507
	 */
1508 1509
	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
	prev = rq->ring->tail;
1510
	tail = intel_ring_set_tail(rq->ring, rq->tail);
1511
	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
1512 1513 1514
		desc |= CTX_DESC_FORCE_RESTORE;
	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
	rq->tail = rq->wa_tail;
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
	 */
1526
	wmb();
1527

1528
	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
1529
	return desc;
1530 1531
}

1532
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
1533
{
1534 1535 1536 1537 1538 1539 1540
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
1541 1542
}

1543 1544 1545 1546 1547 1548
static __maybe_unused char *
dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
{
	if (!rq)
		return "";

1549
	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
1550
		 prefix,
1551
		 rq->context->lrc.ccid,
1552 1553 1554 1555 1556 1557 1558 1559 1560
		 rq->fence.context, rq->fence.seqno,
		 i915_request_completed(rq) ? "!" :
		 i915_request_started(rq) ? "*" :
		 "",
		 rq_prio(rq));

	return buf;
}

1561 1562 1563 1564 1565 1566 1567
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
	    const char *msg,
	    struct i915_request * const *ports)
{
	const struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
1568
	char __maybe_unused p0[40], p1[40];
1569

1570 1571 1572
	if (!ports[0])
		return;

1573 1574 1575
	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
		     dump_port(p0, sizeof(p0), "", ports[0]),
		     dump_port(p1, sizeof(p1), ", ", ports[1]));
1576 1577
}

1578 1579 1580 1581 1582 1583
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1584 1585 1586 1587
static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
		     const char *msg)
{
1588 1589
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
1590 1591
	struct i915_request * const *port, *rq;
	struct intel_context *ce = NULL;
1592
	bool sentinel = false;
1593
	u32 ccid = -1;
1594 1595 1596

	trace_ports(execlists, msg, execlists->pending);

1597 1598 1599 1600
	/* We may be messing around with the lists during reset, lalala */
	if (reset_in_progress(execlists))
		return true;

1601
	if (!execlists->pending[0]) {
1602 1603
		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
			      engine->name);
1604
		return false;
1605
	}
1606

1607
	if (execlists->pending[execlists_num_ports(execlists)]) {
1608 1609
		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
			      engine->name, execlists_num_ports(execlists));
1610
		return false;
1611
	}
1612 1613

	for (port = execlists->pending; (rq = *port); port++) {
1614 1615 1616
		unsigned long flags;
		bool ok = true;

1617 1618 1619
		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
		GEM_BUG_ON(!i915_request_is_active(rq));

1620
		if (ce == rq->context) {
1621 1622
			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
				      engine->name,
1623
				      ce->timeline->fence_context,
1624
				      port - execlists->pending);
1625
			return false;
1626
		}
1627
		ce = rq->context;
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637
		if (ccid == ce->lrc.ccid) {
			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
				      engine->name,
				      ccid, ce->timeline->fence_context,
				      port - execlists->pending);
			return false;
		}
		ccid = ce->lrc.ccid;

1638
		/*
1639 1640 1641
		 * Sentinels are supposed to be the last request so they flush
		 * the current execution off the HW. Check that they are the only
		 * request in the pending submission.
1642 1643
		 */
		if (sentinel) {
1644 1645
			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
				      engine->name,
1646 1647 1648 1649 1650 1651
				      ce->timeline->fence_context,
				      port - execlists->pending);
			return false;
		}
		sentinel = i915_request_has_sentinel(rq);

1652
		/* Hold tightly onto the lock to prevent concurrent retires! */
1653 1654
		if (!spin_trylock_irqsave(&rq->lock, flags))
			continue;
1655

1656
		if (i915_request_completed(rq))
1657
			goto unlock;
1658

1659 1660
		if (i915_active_is_idle(&ce->active) &&
		    !intel_context_is_barrier(ce)) {
1661 1662
			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
				      engine->name,
1663
				      ce->timeline->fence_context,
1664
				      port - execlists->pending);
1665 1666
			ok = false;
			goto unlock;
1667 1668 1669
		}

		if (!i915_vma_is_pinned(ce->state)) {
1670 1671
			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
				      engine->name,
1672
				      ce->timeline->fence_context,
1673
				      port - execlists->pending);
1674 1675
			ok = false;
			goto unlock;
1676
		}
1677

1678
		if (!i915_vma_is_pinned(ce->ring->vma)) {
1679 1680
			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
				      engine->name,
1681
				      ce->timeline->fence_context,
1682
				      port - execlists->pending);
1683 1684
			ok = false;
			goto unlock;
1685
		}
1686 1687 1688 1689 1690

unlock:
		spin_unlock_irqrestore(&rq->lock, flags);
		if (!ok)
			return false;
1691 1692 1693 1694 1695
	}

	return ce;
}

1696
static void execlists_submit_ports(struct intel_engine_cs *engine)
1697
{
1698
	struct intel_engine_execlists *execlists = &engine->execlists;
1699
	unsigned int n;
1700

1701 1702
	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));

1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
1711
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1712

1713 1714 1715 1716 1717 1718 1719
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
1720
		struct i915_request *rq = execlists->pending[n];
1721

1722 1723 1724
		write_desc(execlists,
			   rq ? execlists_update_context(rq) : 0,
			   n);
1725
	}
1726 1727 1728 1729

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
1730 1731
}

1732
static bool ctx_single_port_submission(const struct intel_context *ce)
1733
{
1734
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
1735
		intel_context_force_single_submission(ce));
1736
}
1737

1738 1739
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
1740 1741 1742
{
	if (prev != next)
		return false;
1743

1744 1745
	if (ctx_single_port_submission(prev))
		return false;
1746

1747
	return true;
1748 1749
}

1750 1751 1752 1753 1754
static unsigned long i915_request_flags(const struct i915_request *rq)
{
	return READ_ONCE(rq->fence.flags);
}

1755 1756 1757
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
1758
	GEM_BUG_ON(prev == next);
1759 1760
	GEM_BUG_ON(!assert_priority_queue(prev, next));

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * We do not submit known completed requests. Therefore if the next
	 * request is already completed, we can pretend to merge it in
	 * with the previous context (and we will skip updating the ELSP
	 * and tracking). Thus hopefully keeping the ELSP full with active
	 * contexts, despite the best efforts of preempt-to-busy to confuse
	 * us.
	 */
	if (i915_request_completed(next))
		return true;

1772
	if (unlikely((i915_request_flags(prev) ^ i915_request_flags(next)) &
1773 1774
		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
		      BIT(I915_FENCE_FLAG_SENTINEL))))
1775 1776
		return false;

1777
	if (!can_merge_ctx(prev->context, next->context))
1778 1779
		return false;

1780
	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
1781 1782 1783
	return true;
}

1784 1785 1786
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
1787
	set_offsets(regs, reg_offsets(engine), engine, false);
1788 1789 1790 1791 1792 1793
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
1794
	const struct intel_engine_cs *inflight;
1795

1796 1797 1798
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

1799 1800 1801 1802 1803 1804 1805 1806 1807
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
1808
	inflight = intel_context_inflight(&ve->context);
1809
	if (inflight && inflight != engine)
1810 1811 1812 1813 1814
		return false;

	return true;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static void virtual_xfer_context(struct virtual_engine *ve,
				 struct intel_engine_cs *engine)
{
	unsigned int n;

	if (likely(engine == ve->siblings[0]))
		return;

	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
	if (!intel_engine_has_relative_mmio(engine))
		virtual_update_register_offsets(ve->context.lrc_reg_state,
						engine);

	/*
	 * Move the bound engine to the top of the list for
	 * future execution. We then kick this tasklet first
	 * before checking others, so that we preferentially
	 * reuse this set of bound registers.
	 */
	for (n = 1; n < ve->num_siblings; n++) {
		if (ve->siblings[n] == engine) {
			swap(ve->siblings[n], ve->siblings[0]);
			break;
		}
	}
}

1842
static void defer_request(struct i915_request *rq, struct list_head * const pl)
1843
{
1844
	LIST_HEAD(list);
1845 1846 1847 1848 1849 1850 1851 1852

	/*
	 * We want to move the interrupted request to the back of
	 * the round-robin list (i.e. its priority level), but
	 * in doing so, we must then move all requests that were in
	 * flight and were waiting for the interrupted request to
	 * be run after it again.
	 */
1853 1854
	do {
		struct i915_dependency *p;
1855

1856 1857
		GEM_BUG_ON(i915_request_is_active(rq));
		list_move_tail(&rq->sched.link, pl);
1858

1859
		for_each_waiter(p, rq) {
1860 1861
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);
1862

1863 1864 1865
			if (p->flags & I915_DEPENDENCY_WEAK)
				continue;

1866 1867 1868
			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;
1869

1870
			/* No waiter should start before its signaler */
1871
			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1872
				   i915_request_started(w) &&
1873
				   !i915_request_completed(rq));
1874

1875
			GEM_BUG_ON(i915_request_is_active(w));
1876 1877
			if (!i915_request_is_ready(w))
				continue;
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887
			if (rq_prio(w) < rq_prio(rq))
				continue;

			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
}

static void defer_active(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = __unwind_incomplete_requests(engine);
	if (!rq)
		return;

	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}

static bool
1902
need_timeslice(const struct intel_engine_cs *engine,
1903 1904
	       const struct i915_request *rq,
	       const struct rb_node *rb)
1905 1906 1907
{
	int hint;

1908
	if (!intel_engine_has_timeslices(engine))
1909 1910
		return false;

1911
	hint = engine->execlists.queue_priority_hint;
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

	if (rb) {
		const struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		const struct intel_engine_cs *inflight =
			intel_context_inflight(&ve->context);

		if (!inflight || inflight == engine) {
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				hint = max(hint, rq_prio(next));
			rcu_read_unlock();
		}
	}

1930 1931
	if (!list_is_last(&rq->sched.link, &engine->active.requests))
		hint = max(hint, rq_prio(list_next_entry(rq, sched.link)));
1932

1933
	GEM_BUG_ON(hint >= I915_PRIORITY_UNPREEMPTABLE);
1934
	return hint >= effective_prio(rq);
1935 1936
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static bool
timeslice_yield(const struct intel_engine_execlists *el,
		const struct i915_request *rq)
{
	/*
	 * Once bitten, forever smitten!
	 *
	 * If the active context ever busy-waited on a semaphore,
	 * it will be treated as a hog until the end of its timeslice (i.e.
	 * until it is scheduled out and replaced by a new submission,
	 * possibly even its own lite-restore). The HW only sends an interrupt
	 * on the first miss, and we do know if that semaphore has been
	 * signaled, or even if it is now stuck on another semaphore. Play
	 * safe, yield if it might be stuck -- it will be given a fresh
	 * timeslice in the near future.
	 */
1953
	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1954 1955 1956 1957 1958 1959 1960 1961 1962
}

static bool
timeslice_expired(const struct intel_engine_execlists *el,
		  const struct i915_request *rq)
{
	return timer_expired(&el->timer) || timeslice_yield(el, rq);
}

1963 1964 1965 1966
static int
switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	if (list_is_last(&rq->sched.link, &engine->active.requests))
1967
		return engine->execlists.queue_priority_hint;
1968 1969 1970 1971

	return rq_prio(list_next_entry(rq, sched.link));
}

1972 1973 1974 1975 1976 1977
static inline unsigned long
timeslice(const struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->props.timeslice_duration_ms);
}

1978
static unsigned long active_timeslice(const struct intel_engine_cs *engine)
1979
{
1980 1981
	const struct intel_engine_execlists *execlists = &engine->execlists;
	const struct i915_request *rq = *execlists->active;
1982

1983
	if (!rq || i915_request_completed(rq))
1984
		return 0;
1985

1986
	if (READ_ONCE(execlists->switch_priority_hint) < effective_prio(rq))
1987 1988 1989 1990 1991 1992 1993
		return 0;

	return timeslice(engine);
}

static void set_timeslice(struct intel_engine_cs *engine)
{
1994 1995
	unsigned long duration;

1996 1997 1998
	if (!intel_engine_has_timeslices(engine))
		return;

1999 2000 2001 2002
	duration = active_timeslice(engine);
	ENGINE_TRACE(engine, "bump timeslicing, interval:%lu", duration);

	set_timer_ms(&engine->execlists.timer, duration);
2003 2004
}

2005
static void start_timeslice(struct intel_engine_cs *engine, int prio)
2006 2007
{
	struct intel_engine_execlists *execlists = &engine->execlists;
2008 2009 2010 2011
	unsigned long duration;

	if (!intel_engine_has_timeslices(engine))
		return;
2012

2013 2014 2015
	WRITE_ONCE(execlists->switch_priority_hint, prio);
	if (prio == INT_MIN)
		return;
2016 2017 2018 2019

	if (timer_pending(&execlists->timer))
		return;

2020 2021 2022 2023 2024 2025
	duration = timeslice(engine);
	ENGINE_TRACE(engine,
		     "start timeslicing, prio:%d, interval:%lu",
		     prio, duration);

	set_timer_ms(&execlists->timer, duration);
2026 2027
}

2028 2029 2030 2031 2032
static void record_preemption(struct intel_engine_execlists *execlists)
{
	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}

2033 2034
static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
					    const struct i915_request *rq)
2035 2036 2037 2038
{
	if (!rq)
		return 0;

2039
	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
2040
	if (unlikely(intel_context_is_banned(rq->context)))
2041 2042
		return 1;

2043 2044 2045
	return READ_ONCE(engine->props.preempt_timeout_ms);
}

2046 2047
static void set_preempt_timeout(struct intel_engine_cs *engine,
				const struct i915_request *rq)
2048 2049 2050 2051 2052
{
	if (!intel_engine_has_preempt_reset(engine))
		return;

	set_timer_ms(&engine->execlists.preempt,
2053
		     active_preempt_timeout(engine, rq));
2054 2055
}

2056 2057 2058 2059 2060
static inline void clear_ports(struct i915_request **ports, int count)
{
	memset_p((void **)ports, NULL, count);
}

2061 2062 2063 2064 2065 2066 2067 2068
static inline void
copy_ports(struct i915_request **dst, struct i915_request **src, int count)
{
	/* A memcpy_p() would be very useful here! */
	while (count--)
		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
}

2069
static void execlists_dequeue(struct intel_engine_cs *engine)
2070
{
2071
	struct intel_engine_execlists * const execlists = &engine->execlists;
2072 2073
	struct i915_request **port = execlists->pending;
	struct i915_request ** const last_port = port + execlists->port_mask;
2074
	struct i915_request * const *active;
2075
	struct i915_request *last;
2076
	struct rb_node *rb;
2077 2078
	bool submit = false;

2079 2080
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
2099
	 */
2100

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

2121 2122 2123 2124 2125 2126 2127 2128
	/*
	 * If the queue is higher priority than the last
	 * request in the currently active context, submit afresh.
	 * We will resubmit again afterwards in case we need to split
	 * the active context to interject the preemption request,
	 * i.e. we will retrigger preemption following the ack in case
	 * of trouble.
	 */
2129 2130
	active = READ_ONCE(execlists->active);

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * In theory we can skip over completed contexts that have not
	 * yet been processed by events (as those events are in flight):
	 *
	 * while ((last = *active) && i915_request_completed(last))
	 *	active++;
	 *
	 * However, the GPU cannot handle this as it will ultimately
	 * find itself trying to jump back into a context it has just
	 * completed and barf.
	 */

	if ((last = *active)) {
2144
		if (need_preempt(engine, last, rb)) {
2145 2146 2147 2148 2149
			if (i915_request_completed(last)) {
				tasklet_hi_schedule(&execlists->tasklet);
				return;
			}

2150 2151 2152 2153 2154 2155
			ENGINE_TRACE(engine,
				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
				     last->fence.context,
				     last->fence.seqno,
				     last->sched.attr.priority,
				     execlists->queue_priority_hint);
2156 2157
			record_preemption(execlists);

2158 2159 2160 2161 2162 2163
			/*
			 * Don't let the RING_HEAD advance past the breadcrumb
			 * as we unwind (and until we resubmit) so that we do
			 * not accidentally tell it to go backwards.
			 */
			ring_set_paused(engine, 1);
2164

2165 2166 2167 2168 2169 2170 2171 2172
			/*
			 * Note that we have not stopped the GPU at this point,
			 * so we are unwinding the incomplete requests as they
			 * remain inflight and so by the time we do complete
			 * the preemption, some of the unwound requests may
			 * complete!
			 */
			__unwind_incomplete_requests(engine);
2173

2174
			last = NULL;
2175
		} else if (need_timeslice(engine, last, rb) &&
2176
			   timeslice_expired(execlists, last)) {
2177 2178 2179 2180 2181
			if (i915_request_completed(last)) {
				tasklet_hi_schedule(&execlists->tasklet);
				return;
			}

2182
			ENGINE_TRACE(engine,
2183
				     "expired last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
2184 2185 2186
				     last->fence.context,
				     last->fence.seqno,
				     last->sched.attr.priority,
2187 2188
				     execlists->queue_priority_hint,
				     yesno(timeslice_yield(execlists, last)));
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

			ring_set_paused(engine, 1);
			defer_active(engine);

			/*
			 * Unlike for preemption, if we rewind and continue
			 * executing the same context as previously active,
			 * the order of execution will remain the same and
			 * the tail will only advance. We do not need to
			 * force a full context restore, as a lite-restore
			 * is sufficient to resample the monotonic TAIL.
			 *
			 * If we switch to any other context, similarly we
			 * will not rewind TAIL of current context, and
			 * normal save/restore will preserve state and allow
			 * us to later continue executing the same request.
			 */
			last = NULL;
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		} else {
			/*
			 * Otherwise if we already have a request pending
			 * for execution after the current one, we can
			 * just wait until the next CS event before
			 * queuing more. In either case we will force a
			 * lite-restore preemption event, but if we wait
			 * we hopefully coalesce several updates into a single
			 * submission.
			 */
			if (!list_is_last(&last->sched.link,
2218 2219 2220 2221 2222
					  &engine->active.requests)) {
				/*
				 * Even if ELSP[1] is occupied and not worthy
				 * of timeslices, our queue might be.
				 */
2223
				start_timeslice(engine, queue_prio(execlists));
2224
				return;
2225
			}
2226
		}
C
Chris Wilson 已提交
2227 2228
	}

2229 2230 2231 2232 2233
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

2234
		spin_lock(&ve->base.active.lock);
2235 2236 2237

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
2238
			spin_unlock(&ve->base.active.lock);
2239 2240 2241 2242 2243 2244 2245 2246
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
2247
		GEM_BUG_ON(rq->context != &ve->context);
2248 2249 2250

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
2251
				spin_unlock(&ve->base.active.lock);
2252 2253 2254 2255 2256
				rb = rb_next(rb);
				continue;
			}

			if (last && !can_merge_rq(last, rq)) {
2257
				spin_unlock(&ve->base.active.lock);
2258
				start_timeslice(engine, rq_prio(rq));
2259
				return; /* leave this for another sibling */
2260 2261
			}

2262 2263 2264 2265 2266 2267 2268 2269
			ENGINE_TRACE(engine,
				     "virtual rq=%llx:%lld%s, new engine? %s\n",
				     rq->fence.context,
				     rq->fence.seqno,
				     i915_request_completed(rq) ? "!" :
				     i915_request_started(rq) ? "*" :
				     "",
				     yesno(engine != ve->siblings[0]));
2270

2271 2272 2273
			WRITE_ONCE(ve->request, NULL);
			WRITE_ONCE(ve->base.execlists.queue_priority_hint,
				   INT_MIN);
2274 2275 2276
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

2277
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
2278
			WRITE_ONCE(rq->engine, engine);
2279

2280
			if (__i915_request_submit(rq)) {
2281
				/*
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
				 * Only after we confirm that we will submit
				 * this request (i.e. it has not already
				 * completed), do we want to update the context.
				 *
				 * This serves two purposes. It avoids
				 * unnecessary work if we are resubmitting an
				 * already completed request after timeslicing.
				 * But more importantly, it prevents us altering
				 * ve->siblings[] on an idle context, where
				 * we may be using ve->siblings[] in
				 * virtual_context_enter / virtual_context_exit.
2293
				 */
2294
				virtual_xfer_context(ve, engine);
2295 2296
				GEM_BUG_ON(ve->siblings[0] != engine);

2297 2298 2299
				submit = true;
				last = rq;
			}
2300
			i915_request_put(rq);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

			/*
			 * Hmm, we have a bunch of virtual engine requests,
			 * but the first one was already completed (thanks
			 * preempt-to-busy!). Keep looking at the veng queue
			 * until we have no more relevant requests (i.e.
			 * the normal submit queue has higher priority).
			 */
			if (!submit) {
				spin_unlock(&ve->base.active.lock);
				rb = rb_first_cached(&execlists->virtual);
				continue;
			}
2314 2315
		}

2316
		spin_unlock(&ve->base.active.lock);
2317 2318 2319
		break;
	}

2320
	while ((rb = rb_first_cached(&execlists->queue))) {
2321
		struct i915_priolist *p = to_priolist(rb);
2322
		struct i915_request *rq, *rn;
2323
		int i;
2324

2325
		priolist_for_each_request_consume(rq, rn, p, i) {
2326
			bool merge = true;
2327

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
2338
			 */
2339
			if (last && !can_merge_rq(last, rq)) {
2340 2341 2342 2343 2344
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
2345
				if (port == last_port)
2346 2347
					goto done;

2348 2349 2350 2351 2352
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
2353
				if (last->context == rq->context)
2354 2355
					goto done;

2356 2357 2358
				if (i915_request_has_sentinel(last))
					goto done;

2359 2360 2361 2362 2363 2364 2365
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
2366 2367
				if (ctx_single_port_submission(last->context) ||
				    ctx_single_port_submission(rq->context))
2368 2369
					goto done;

2370
				merge = false;
2371
			}
2372

2373 2374 2375 2376 2377 2378 2379 2380
			if (__i915_request_submit(rq)) {
				if (!merge) {
					*port = execlists_schedule_in(last, port - execlists->pending);
					port++;
					last = NULL;
				}

				GEM_BUG_ON(last &&
2381 2382
					   !can_merge_ctx(last->context,
							  rq->context));
2383 2384 2385
				GEM_BUG_ON(last &&
					   i915_seqno_passed(last->fence.seqno,
							     rq->fence.seqno));
2386 2387 2388 2389

				submit = true;
				last = rq;
			}
2390
		}
2391

2392
		rb_erase_cached(&p->node, &execlists->queue);
2393
		i915_priolist_free(p);
2394
	}
2395

2396
done:
2397 2398 2399
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
2400
	 * We choose the priority hint such that if we add a request of greater
2401 2402 2403
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
2404
	 * HW. We derive the priority hint then as the first "hole" in
2405 2406 2407 2408
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
2409
	 * user, see queue_request(), the priority hint is bumped to that
2410 2411 2412
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
2413
	execlists->queue_priority_hint = queue_prio(execlists);
2414

2415
	if (submit) {
2416
		*port = execlists_schedule_in(last, port - execlists->pending);
2417 2418
		execlists->switch_priority_hint =
			switch_prio(engine, *execlists->pending);
2419 2420 2421 2422 2423

		/*
		 * Skip if we ended up with exactly the same set of requests,
		 * e.g. trying to timeslice a pair of ordered contexts
		 */
2424
		if (!memcmp(active, execlists->pending,
2425 2426 2427 2428 2429 2430 2431
			    (port - execlists->pending + 1) * sizeof(*port))) {
			do
				execlists_schedule_out(fetch_and_zero(port));
			while (port-- != execlists->pending);

			goto skip_submit;
		}
2432
		clear_ports(port + 1, last_port - port);
2433

2434
		WRITE_ONCE(execlists->yield, -1);
2435
		set_preempt_timeout(engine, *active);
2436
		execlists_submit_ports(engine);
2437
	} else {
2438
		start_timeslice(engine, execlists->queue_priority_hint);
2439
skip_submit:
2440
		ring_set_paused(engine, 0);
2441
	}
2442 2443
}

2444 2445
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
2446
{
2447
	struct i915_request * const *port;
2448

2449 2450
	for (port = execlists->pending; *port; port++)
		execlists_schedule_out(*port);
2451
	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
2452

2453
	/* Mark the end of active before we overwrite *active */
2454 2455
	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
		execlists_schedule_out(*port);
2456 2457
	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));

2458
	smp_wmb(); /* complete the seqlock for execlists_active() */
2459
	WRITE_ONCE(execlists->active, execlists->inflight);
2460 2461
}

2462
static inline void
2463
invalidate_csb_entries(const u64 *first, const u64 *last)
2464 2465 2466 2467 2468
{
	clflush((void *)first);
	clflush((void *)last);
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * Starting with Gen12, the status has a new format:
 *
 *     bit  0:     switched to new queue
 *     bit  1:     reserved
 *     bit  2:     semaphore wait mode (poll or signal), only valid when
 *                 switch detail is set to "wait on semaphore"
 *     bits 3-5:   engine class
 *     bits 6-11:  engine instance
 *     bits 12-14: reserved
 *     bits 15-25: sw context id of the lrc the GT switched to
 *     bits 26-31: sw counter of the lrc the GT switched to
 *     bits 32-35: context switch detail
 *                  - 0: ctx complete
 *                  - 1: wait on sync flip
 *                  - 2: wait on vblank
 *                  - 3: wait on scanline
 *                  - 4: wait on semaphore
 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
 *                       WAIT_FOR_EVENT)
 *     bit  36:    reserved
 *     bits 37-43: wait detail (for switch detail 1 to 4)
 *     bits 44-46: reserved
 *     bits 47-57: sw context id of the lrc the GT switched away from
 *     bits 58-63: sw counter of the lrc the GT switched away from
 */
2495
static inline bool gen12_csb_parse(const u64 csb)
2496
{
2497 2498 2499
	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_32_bits(csb));
	bool new_queue =
		lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
2500 2501 2502 2503 2504 2505 2506 2507

	/*
	 * The context switch detail is not guaranteed to be 5 when a preemption
	 * occurs, so we can't just check for that. The check below works for
	 * all the cases we care about, including preemptions of WAIT
	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
	 * would require some extra handling, but we don't support that.
	 */
2508
	if (!ctx_away_valid || new_queue) {
2509
		GEM_BUG_ON(!GEN12_CSB_CTX_VALID(lower_32_bits(csb)));
2510
		return true;
2511
	}
2512 2513 2514 2515 2516 2517

	/*
	 * switch detail = 5 is covered by the case above and we do not expect a
	 * context switch on an unsuccessful wait instruction since we always
	 * use polling mode.
	 */
2518
	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
2519
	return false;
2520 2521
}

2522 2523 2524 2525 2526
static inline bool gen8_csb_parse(const u64 csb)
{
	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
}

2527 2528
static noinline u64
wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
2529
{
2530 2531
	u64 entry;

2532 2533 2534 2535 2536 2537 2538 2539 2540
	/*
	 * Reading from the HWSP has one particular advantage: we can detect
	 * a stale entry. Since the write into HWSP is broken, we have no reason
	 * to trust the HW at all, the mmio entry may equally be unordered, so
	 * we prefer the path that is self-checking and as a last resort,
	 * return the mmio value.
	 *
	 * tgl,dg1:HSDES#22011327657
	 */
2541
	preempt_disable();
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
		int idx = csb - engine->execlists.csb_status;
		int status;

		status = GEN8_EXECLISTS_STATUS_BUF;
		if (idx >= 6) {
			status = GEN11_EXECLISTS_STATUS_BUF2;
			idx -= 6;
		}
		status += sizeof(u64) * idx;

		entry = intel_uncore_read64(engine->uncore,
					    _MMIO(engine->mmio_base + status));
	}
2556 2557 2558 2559 2560
	preempt_enable();

	return entry;
}

2561 2562
static inline u64
csb_read(const struct intel_engine_cs *engine, u64 * const csb)
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
{
	u64 entry = READ_ONCE(*csb);

	/*
	 * Unfortunately, the GPU does not always serialise its write
	 * of the CSB entries before its write of the CSB pointer, at least
	 * from the perspective of the CPU, using what is known as a Global
	 * Observation Point. We may read a new CSB tail pointer, but then
	 * read the stale CSB entries, causing us to misinterpret the
	 * context-switch events, and eventually declare the GPU hung.
	 *
	 * icl:HSDES#1806554093
	 * tgl:HSDES#22011248461
	 */
	if (unlikely(entry == -1))
2578
		entry = wa_csb_read(engine, csb);
2579 2580 2581 2582 2583 2584

	/* Consume this entry so that we can spot its future reuse. */
	WRITE_ONCE(*csb, -1);

	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
	return entry;
2585 2586
}

2587
static void process_csb(struct intel_engine_cs *engine)
2588
{
2589
	struct intel_engine_execlists * const execlists = &engine->execlists;
2590
	u64 * const buf = execlists->csb_status;
2591
	const u8 num_entries = execlists->csb_size;
2592
	u8 head, tail;
2593

2594 2595 2596 2597 2598 2599 2600
	/*
	 * As we modify our execlists state tracking we require exclusive
	 * access. Either we are inside the tasklet, or the tasklet is disabled
	 * and we assume that is only inside the reset paths and so serialised.
	 */
	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
		   !reset_in_progress(execlists));
2601
	GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
2602

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	if (unlikely(head == tail))
		return;
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * We will consume all events from HW, or at least pretend to.
	 *
	 * The sequence of events from the HW is deterministic, and derived
	 * from our writes to the ELSP, with a smidgen of variability for
	 * the arrival of the asynchronous requests wrt to the inflight
	 * execution. If the HW sends an event that does not correspond with
	 * the one we are expecting, we have to abandon all hope as we lose
	 * all tracking of what the engine is actually executing. We will
	 * only detect we are out of sequence with the HW when we get an
	 * 'impossible' event because we have already drained our own
	 * preemption/promotion queue. If this occurs, we know that we likely
	 * lost track of execution earlier and must unwind and restart, the
	 * simplest way is by stop processing the event queue and force the
	 * engine to reset.
	 */
	execlists->csb_head = tail;
	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
	do {
2647
		bool promote;
2648
		u64 csb;
2649

2650
		if (++head == num_entries)
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

2671
		csb = csb_read(engine, buf + head);
2672
		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
2673
			     head, upper_32_bits(csb), lower_32_bits(csb));
2674

2675
		if (INTEL_GEN(engine->i915) >= 12)
2676
			promote = gen12_csb_parse(csb);
2677
		else
2678
			promote = gen8_csb_parse(csb);
2679
		if (promote) {
2680 2681
			struct i915_request * const *old = execlists->active;

2682 2683 2684 2685 2686
			if (GEM_WARN_ON(!*execlists->pending)) {
				execlists->error_interrupt |= ERROR_CSB;
				break;
			}

2687 2688
			ring_set_paused(engine, 0);

2689 2690
			/* Point active to the new ELSP; prevent overwriting */
			WRITE_ONCE(execlists->active, execlists->pending);
2691
			smp_wmb(); /* notify execlists_active() */
2692

2693
			/* cancel old inflight, prepare for switch */
2694 2695 2696
			trace_ports(execlists, "preempted", old);
			while (*old)
				execlists_schedule_out(*old++);
2697

2698
			/* switch pending to inflight */
2699
			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
2700 2701 2702
			copy_ports(execlists->inflight,
				   execlists->pending,
				   execlists_num_ports(execlists));
2703 2704
			smp_wmb(); /* complete the seqlock */
			WRITE_ONCE(execlists->active, execlists->inflight);
2705

2706 2707 2708
			/* XXX Magic delay for tgl */
			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);

2709
			WRITE_ONCE(execlists->pending[0], NULL);
2710
		} else {
2711 2712 2713 2714
			if (GEM_WARN_ON(!*execlists->active)) {
				execlists->error_interrupt |= ERROR_CSB;
				break;
			}
2715

2716
			/* port0 completed, advanced to port1 */
2717
			trace_ports(execlists, "completed", execlists->active);
2718

2719 2720 2721 2722
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
2723 2724 2725 2726 2727
			 * user interrupt is processed. One might assume
			 * that the breadcrumb write being before the
			 * user interrupt and the CS event for the context
			 * switch would therefore be before the CS event
			 * itself...
2728
			 */
2729
			if (GEM_SHOW_DEBUG() &&
2730 2731
			    !i915_request_completed(*execlists->active)) {
				struct i915_request *rq = *execlists->active;
2732 2733
				const u32 *regs __maybe_unused =
					rq->context->lrc_reg_state;
2734

2735 2736
				ENGINE_TRACE(engine,
					     "context completed before request!\n");
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
				ENGINE_TRACE(engine,
					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
					     ENGINE_READ(engine, RING_START),
					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
					     ENGINE_READ(engine, RING_CTL),
					     ENGINE_READ(engine, RING_MI_MODE));
				ENGINE_TRACE(engine,
					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
					     i915_ggtt_offset(rq->ring->vma),
					     rq->head, rq->tail,
					     rq->fence.context,
					     lower_32_bits(rq->fence.seqno),
					     hwsp_seqno(rq));
				ENGINE_TRACE(engine,
					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
					     regs[CTX_RING_START],
					     regs[CTX_RING_HEAD],
					     regs[CTX_RING_TAIL]);
			}

2758
			execlists_schedule_out(*execlists->active++);
C
Chris Wilson 已提交
2759

2760 2761
			GEM_BUG_ON(execlists->active - execlists->inflight >
				   execlists_num_ports(execlists));
2762
		}
2763
	} while (head != tail);
2764

2765
	set_timeslice(engine);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
2778
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2779
}
2780

2781
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
2782
{
2783
	lockdep_assert_held(&engine->active.lock);
2784
	if (!READ_ONCE(engine->execlists.pending[0])) {
2785
		rcu_read_lock(); /* protect peeking at execlists->active */
2786
		execlists_dequeue(engine);
2787 2788
		rcu_read_unlock();
	}
2789 2790
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static void __execlists_hold(struct i915_request *rq)
{
	LIST_HEAD(list);

	do {
		struct i915_dependency *p;

		if (i915_request_is_active(rq))
			__i915_request_unsubmit(rq);

		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
		i915_request_set_hold(rq);
2804
		RQ_TRACE(rq, "on hold\n");
2805

2806
		for_each_waiter(p, rq) {
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);

			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;

			if (!i915_request_is_ready(w))
				continue;

			if (i915_request_completed(w))
				continue;

2820
			if (i915_request_on_hold(w))
2821 2822 2823 2824 2825 2826 2827 2828 2829
				continue;

			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
}

2830
static bool execlists_hold(struct intel_engine_cs *engine,
2831 2832 2833 2834
			   struct i915_request *rq)
{
	spin_lock_irq(&engine->active.lock);

2835 2836 2837 2838 2839
	if (i915_request_completed(rq)) { /* too late! */
		rq = NULL;
		goto unlock;
	}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	if (rq->engine != engine) { /* preempted virtual engine */
		struct virtual_engine *ve = to_virtual_engine(rq->engine);

		/*
		 * intel_context_inflight() is only protected by virtue
		 * of process_csb() being called only by the tasklet (or
		 * directly from inside reset while the tasklet is suspended).
		 * Assert that neither of those are allowed to run while we
		 * poke at the request queues.
		 */
		GEM_BUG_ON(!reset_in_progress(&engine->execlists));

		/*
		 * An unsubmitted request along a virtual engine will
		 * remain on the active (this) engine until we are able
		 * to process the context switch away (and so mark the
		 * context as no longer in flight). That cannot have happened
		 * yet, otherwise we would not be hanging!
		 */
		spin_lock(&ve->base.active.lock);
		GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
		GEM_BUG_ON(ve->request != rq);
		ve->request = NULL;
		spin_unlock(&ve->base.active.lock);
		i915_request_put(rq);

		rq->engine = engine;
	}

2869 2870 2871 2872 2873 2874 2875 2876 2877
	/*
	 * Transfer this request onto the hold queue to prevent it
	 * being resumbitted to HW (and potentially completed) before we have
	 * released it. Since we may have already submitted following
	 * requests, we need to remove those as well.
	 */
	GEM_BUG_ON(i915_request_on_hold(rq));
	GEM_BUG_ON(rq->engine != engine);
	__execlists_hold(rq);
2878
	GEM_BUG_ON(list_empty(&engine->active.hold));
2879

2880
unlock:
2881
	spin_unlock_irq(&engine->active.lock);
2882
	return rq;
2883 2884 2885 2886 2887
}

static bool hold_request(const struct i915_request *rq)
{
	struct i915_dependency *p;
2888
	bool result = false;
2889 2890 2891 2892 2893

	/*
	 * If one of our ancestors is on hold, we must also be on hold,
	 * otherwise we will bypass it and execute before it.
	 */
2894
	rcu_read_lock();
2895
	for_each_signaler(p, rq) {
2896 2897 2898 2899 2900 2901
		const struct i915_request *s =
			container_of(p->signaler, typeof(*s), sched);

		if (s->engine != rq->engine)
			continue;

2902 2903 2904
		result = i915_request_on_hold(s);
		if (result)
			break;
2905
	}
2906
	rcu_read_unlock();
2907

2908
	return result;
2909 2910 2911 2912 2913 2914 2915 2916 2917
}

static void __execlists_unhold(struct i915_request *rq)
{
	LIST_HEAD(list);

	do {
		struct i915_dependency *p;

2918 2919
		RQ_TRACE(rq, "hold release\n");

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		GEM_BUG_ON(!i915_request_on_hold(rq));
		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));

		i915_request_clear_hold(rq);
		list_move_tail(&rq->sched.link,
			       i915_sched_lookup_priolist(rq->engine,
							  rq_prio(rq)));
		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);

		/* Also release any children on this engine that are ready */
2930
		for_each_waiter(p, rq) {
2931 2932 2933
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);

2934 2935 2936 2937
			/* Propagate any change in error status */
			if (rq->fence.error)
				i915_request_set_error_once(w, rq->fence.error);

2938 2939 2940
			if (w->engine != rq->engine)
				continue;

2941
			if (!i915_request_on_hold(w))
2942 2943 2944
				continue;

			/* Check that no other parents are also on hold */
2945
			if (hold_request(w))
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
				continue;

			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
}

static void execlists_unhold(struct intel_engine_cs *engine,
			     struct i915_request *rq)
{
	spin_lock_irq(&engine->active.lock);

	/*
	 * Move this request back to the priority queue, and all of its
	 * children and grandchildren that were suspended along with it.
	 */
	__execlists_unhold(rq);

	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = rq_prio(rq);
		tasklet_hi_schedule(&engine->execlists.tasklet);
	}

	spin_unlock_irq(&engine->active.lock);
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
struct execlists_capture {
	struct work_struct work;
	struct i915_request *rq;
	struct i915_gpu_coredump *error;
};

static void execlists_capture_work(struct work_struct *work)
{
	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
	struct intel_engine_cs *engine = cap->rq->engine;
	struct intel_gt_coredump *gt = cap->error->gt;
	struct intel_engine_capture_vma *vma;

	/* Compress all the objects attached to the request, slow! */
	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
	if (vma) {
		struct i915_vma_compress *compress =
			i915_vma_capture_prepare(gt);

		intel_engine_coredump_add_vma(gt->engine, vma, compress);
		i915_vma_capture_finish(gt, compress);
	}

	gt->simulated = gt->engine->simulated;
	cap->error->simulated = gt->simulated;

	/* Publish the error state, and announce it to the world */
	i915_error_state_store(cap->error);
	i915_gpu_coredump_put(cap->error);

	/* Return this request and all that depend upon it for signaling */
	execlists_unhold(engine, cap->rq);
3007
	i915_request_put(cap->rq);
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032

	kfree(cap);
}

static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
{
	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
	struct execlists_capture *cap;

	cap = kmalloc(sizeof(*cap), gfp);
	if (!cap)
		return NULL;

	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
	if (!cap->error)
		goto err_cap;

	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
	if (!cap->error->gt)
		goto err_gpu;

	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
	if (!cap->error->gt->engine)
		goto err_gt;

3033 3034
	cap->error->gt->engine->hung = true;

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	return cap;

err_gt:
	kfree(cap->error->gt);
err_gpu:
	kfree(cap->error);
err_cap:
	kfree(cap);
	return NULL;
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
static struct i915_request *
active_context(struct intel_engine_cs *engine, u32 ccid)
{
	const struct intel_engine_execlists * const el = &engine->execlists;
	struct i915_request * const *port, *rq;

	/*
	 * Use the most recent result from process_csb(), but just in case
	 * we trigger an error (via interrupt) before the first CS event has
	 * been written, peek at the next submission.
	 */

	for (port = el->active; (rq = *port); port++) {
3059
		if (rq->context->lrc.ccid == ccid) {
3060 3061 3062 3063 3064 3065 3066 3067
			ENGINE_TRACE(engine,
				     "ccid found at active:%zd\n",
				     port - el->active);
			return rq;
		}
	}

	for (port = el->pending; (rq = *port); port++) {
3068
		if (rq->context->lrc.ccid == ccid) {
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
			ENGINE_TRACE(engine,
				     "ccid found at pending:%zd\n",
				     port - el->pending);
			return rq;
		}
	}

	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
	return NULL;
}

static u32 active_ccid(struct intel_engine_cs *engine)
{
	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
}

3085
static void execlists_capture(struct intel_engine_cs *engine)
3086 3087 3088 3089
{
	struct execlists_capture *cap;

	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
3090
		return;
3091 3092 3093 3094 3095 3096 3097 3098

	/*
	 * We need to _quickly_ capture the engine state before we reset.
	 * We are inside an atomic section (softirq) here and we are delaying
	 * the forced preemption event.
	 */
	cap = capture_regs(engine);
	if (!cap)
3099
		return;
3100

3101
	spin_lock_irq(&engine->active.lock);
3102
	cap->rq = active_context(engine, active_ccid(engine));
3103 3104 3105 3106 3107
	if (cap->rq) {
		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
		cap->rq = i915_request_get_rcu(cap->rq);
	}
	spin_unlock_irq(&engine->active.lock);
3108 3109
	if (!cap->rq)
		goto err_free;
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

	/*
	 * Remove the request from the execlists queue, and take ownership
	 * of the request. We pass it to our worker who will _slowly_ compress
	 * all the pages the _user_ requested for debugging their batch, after
	 * which we return it to the queue for signaling.
	 *
	 * By removing them from the execlists queue, we also remove the
	 * requests from being processed by __unwind_incomplete_requests()
	 * during the intel_engine_reset(), and so they will *not* be replayed
	 * afterwards.
	 *
	 * Note that because we have not yet reset the engine at this point,
	 * it is possible for the request that we have identified as being
	 * guilty, did in fact complete and we will then hit an arbitration
	 * point allowing the outstanding preemption to succeed. The likelihood
	 * of that is very low (as capturing of the engine registers should be
	 * fast enough to run inside an irq-off atomic section!), so we will
	 * simply hold that request accountable for being non-preemptible
	 * long enough to force the reset.
	 */
3131 3132
	if (!execlists_hold(engine, cap->rq))
		goto err_rq;
3133 3134 3135

	INIT_WORK(&cap->work, execlists_capture_work);
	schedule_work(&cap->work);
3136
	return;
3137 3138 3139 3140 3141 3142

err_rq:
	i915_request_put(cap->rq);
err_free:
	i915_gpu_coredump_put(cap->error);
	kfree(cap);
3143 3144
}

3145
static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
3146 3147 3148 3149
{
	const unsigned int bit = I915_RESET_ENGINE + engine->id;
	unsigned long *lock = &engine->gt->reset.flags;

3150
	if (!intel_has_reset_engine(engine->gt))
3151 3152 3153 3154 3155
		return;

	if (test_and_set_bit(bit, lock))
		return;

3156 3157
	ENGINE_TRACE(engine, "reset for %s\n", msg);

3158 3159 3160
	/* Mark this tasklet as disabled to avoid waiting for it to complete */
	tasklet_disable_nosync(&engine->execlists.tasklet);

3161
	ring_set_paused(engine, 1); /* Freeze the current request in place */
3162 3163
	execlists_capture(engine);
	intel_engine_reset(engine, msg);
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181

	tasklet_enable(&engine->execlists.tasklet);
	clear_and_wake_up_bit(bit, lock);
}

static bool preempt_timeout(const struct intel_engine_cs *const engine)
{
	const struct timer_list *t = &engine->execlists.preempt;

	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
		return false;

	if (!timer_expired(t))
		return false;

	return READ_ONCE(engine->execlists.pending[0]);
}

3182 3183 3184 3185 3186 3187 3188
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
3189
	bool timeout = preempt_timeout(engine);
3190

3191
	process_csb(engine);
3192 3193

	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		const char *msg;

		/* Generate the error message in priority wrt to the user! */
		if (engine->execlists.error_interrupt & GENMASK(15, 0))
			msg = "CS error"; /* thrown by a user payload */
		else if (engine->execlists.error_interrupt & ERROR_CSB)
			msg = "invalid CSB event";
		else
			msg = "internal error";

3204
		engine->execlists.error_interrupt = 0;
3205
		execlists_reset(engine, msg);
3206 3207
	}

3208 3209 3210
	if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
		unsigned long flags;

3211 3212 3213
		spin_lock_irqsave(&engine->active.lock, flags);
		__execlists_submission_tasklet(engine);
		spin_unlock_irqrestore(&engine->active.lock, flags);
3214 3215

		/* Recheck after serialising with direct-submission */
3216 3217
		if (unlikely(timeout && preempt_timeout(engine)))
			execlists_reset(engine, "preemption time out");
3218
	}
3219 3220
}

3221
static void __execlists_kick(struct intel_engine_execlists *execlists)
3222 3223
{
	/* Kick the tasklet for some interrupt coalescing and reset handling */
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	tasklet_hi_schedule(&execlists->tasklet);
}

#define execlists_kick(t, member) \
	__execlists_kick(container_of(t, struct intel_engine_execlists, member))

static void execlists_timeslice(struct timer_list *timer)
{
	execlists_kick(timer, timer);
}

static void execlists_preempt(struct timer_list *timer)
{
	execlists_kick(timer, preempt);
3238 3239
}

3240
static void queue_request(struct intel_engine_cs *engine,
3241
			  struct i915_request *rq)
3242
{
3243 3244 3245 3246
	GEM_BUG_ON(!list_empty(&rq->sched.link));
	list_add_tail(&rq->sched.link,
		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3247 3248 3249 3250 3251 3252 3253 3254 3255
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

3256
	__execlists_submission_tasklet(engine);
3257 3258
}

3259 3260
static void submit_queue(struct intel_engine_cs *engine,
			 const struct i915_request *rq)
3261
{
3262 3263 3264 3265 3266 3267 3268
	struct intel_engine_execlists *execlists = &engine->execlists;

	if (rq_prio(rq) <= execlists->queue_priority_hint)
		return;

	execlists->queue_priority_hint = rq_prio(rq);
	__submit_queue_imm(engine);
3269 3270
}

3271 3272 3273 3274 3275 3276 3277
static bool ancestor_on_hold(const struct intel_engine_cs *engine,
			     const struct i915_request *rq)
{
	GEM_BUG_ON(i915_request_on_hold(rq));
	return !list_empty(&engine->active.hold) && hold_request(rq);
}

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
static void flush_csb(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists *el = &engine->execlists;

	if (READ_ONCE(el->pending[0]) && tasklet_trylock(&el->tasklet)) {
		if (!reset_in_progress(el))
			process_csb(engine);
		tasklet_unlock(&el->tasklet);
	}
}

3289
static void execlists_submit_request(struct i915_request *request)
3290
{
3291
	struct intel_engine_cs *engine = request->engine;
3292
	unsigned long flags;
3293

3294 3295 3296
	/* Hopefully we clear execlists->pending[] to let us through */
	flush_csb(engine);

3297
	/* Will be called from irq-context when using foreign fences. */
3298
	spin_lock_irqsave(&engine->active.lock, flags);
3299

3300
	if (unlikely(ancestor_on_hold(engine, request))) {
3301
		RQ_TRACE(request, "ancestor on hold\n");
3302 3303 3304 3305
		list_add_tail(&request->sched.link, &engine->active.hold);
		i915_request_set_hold(request);
	} else {
		queue_request(engine, request);
3306

3307 3308
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
		GEM_BUG_ON(list_empty(&request->sched.link));
3309

3310 3311
		submit_queue(engine, request);
	}
3312

3313
	spin_unlock_irqrestore(&engine->active.lock, flags);
3314 3315
}

3316
static void __execlists_context_fini(struct intel_context *ce)
3317
{
3318
	intel_ring_put(ce->ring);
3319
	i915_vma_put(ce->state);
3320 3321
}

3322
static void execlists_context_destroy(struct kref *kref)
3323
{
3324 3325
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

3326
	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
3327
	GEM_BUG_ON(intel_context_is_pinned(ce));
3328 3329 3330 3331

	if (ce->state)
		__execlists_context_fini(ce);

3332
	intel_context_fini(ce);
3333 3334 3335
	intel_context_free(ce);
}

3336 3337 3338 3339 3340 3341 3342 3343
static void
set_redzone(void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += engine->context_size;

3344
	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
}

static void
check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += engine->context_size;

3355
	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
3356
		drm_err_once(&engine->i915->drm,
3357 3358 3359 3360
			     "%s context redzone overwritten!\n",
			     engine->name);
}

3361
static void execlists_context_unpin(struct intel_context *ce)
3362
{
3363
	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
3364
		      ce->engine);
3365
}
3366

3367 3368
static void execlists_context_post_unpin(struct intel_context *ce)
{
3369
	i915_gem_object_unpin_map(ce->state->obj);
3370 3371
}

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static u32 *
gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
{
	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
		MI_SRM_LRM_GLOBAL_GTT |
		MI_LRI_LRM_CS_MMIO;
	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
		CTX_TIMESTAMP * sizeof(u32);
	*cs++ = 0;

	*cs++ = MI_LOAD_REGISTER_REG |
		MI_LRR_SOURCE_CS_MMIO |
		MI_LRI_LRM_CS_MMIO;
	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));

	*cs++ = MI_LOAD_REGISTER_REG |
		MI_LRR_SOURCE_CS_MMIO |
		MI_LRI_LRM_CS_MMIO;
	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));

	return cs;
}

static u32 *
gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
{
	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);

	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
		MI_SRM_LRM_GLOBAL_GTT |
		MI_LRI_LRM_CS_MMIO;
	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
	*cs++ = 0;

	return cs;
}

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
static u32 *
gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
{
	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);

	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
		MI_SRM_LRM_GLOBAL_GTT |
		MI_LRI_LRM_CS_MMIO;
	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
	*cs++ = 0;

	*cs++ = MI_LOAD_REGISTER_REG |
		MI_LRR_SOURCE_CS_MMIO |
		MI_LRI_LRM_CS_MMIO;
	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));

	return cs;
}

static u32 *
gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
{
	cs = gen12_emit_timestamp_wa(ce, cs);
	cs = gen12_emit_cmd_buf_wa(ce, cs);
	cs = gen12_emit_restore_scratch(ce, cs);

	return cs;
}

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
static u32 *
gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
{
	cs = gen12_emit_timestamp_wa(ce, cs);
	cs = gen12_emit_restore_scratch(ce, cs);

	return cs;
}

static inline u32 context_wa_bb_offset(const struct intel_context *ce)
{
	return PAGE_SIZE * ce->wa_bb_page;
}

static u32 *context_indirect_bb(const struct intel_context *ce)
{
	void *ptr;

	GEM_BUG_ON(!ce->wa_bb_page);

	ptr = ce->lrc_reg_state;
	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
	ptr += context_wa_bb_offset(ce);

	return ptr;
}

static void
setup_indirect_ctx_bb(const struct intel_context *ce,
		      const struct intel_engine_cs *engine,
		      u32 *(*emit)(const struct intel_context *, u32 *))
{
	u32 * const start = context_indirect_bb(ce);
	u32 *cs;

	cs = emit(ce, start);
	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
	while ((unsigned long)cs % CACHELINE_BYTES)
		*cs++ = MI_NOOP;

	lrc_ring_setup_indirect_ctx(ce->lrc_reg_state, engine,
				    i915_ggtt_offset(ce->state) +
				    context_wa_bb_offset(ce),
				    (cs - start) * sizeof(*cs));
}

3492
static void
3493
__execlists_update_reg_state(const struct intel_context *ce,
3494 3495
			     const struct intel_engine_cs *engine,
			     u32 head)
3496 3497
{
	struct intel_ring *ring = ce->ring;
3498 3499
	u32 *regs = ce->lrc_reg_state;

3500
	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
3501
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
3502

3503
	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
3504
	regs[CTX_RING_HEAD] = head;
3505
	regs[CTX_RING_TAIL] = ring->tail;
3506
	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
3507 3508

	/* RPCS */
3509
	if (engine->class == RENDER_CLASS) {
3510
		regs[CTX_R_PWR_CLK_STATE] =
3511
			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
3512

3513
		i915_oa_init_reg_state(ce, engine);
3514
	}
3515 3516

	if (ce->wa_bb_page) {
3517 3518 3519 3520 3521 3522
		u32 *(*fn)(const struct intel_context *ce, u32 *cs);

		fn = gen12_emit_indirect_ctx_xcs;
		if (ce->engine->class == RENDER_CLASS)
			fn = gen12_emit_indirect_ctx_rcs;

3523 3524
		/* Mutually exclusive wrt to global indirect bb */
		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
3525
		setup_indirect_ctx_bb(ce, engine, fn);
3526
	}
3527 3528
}

3529
static int
3530 3531
execlists_context_pre_pin(struct intel_context *ce,
			  struct i915_gem_ww_ctx *ww, void **vaddr)
3532
{
3533
	GEM_BUG_ON(!ce->state);
3534
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3535

3536 3537
	*vaddr = i915_gem_object_pin_map(ce->state->obj,
					i915_coherent_map_type(ce->engine->i915) |
3538
					I915_MAP_OVERRIDE);
3539

3540 3541 3542 3543 3544 3545 3546 3547
	return PTR_ERR_OR_ZERO(*vaddr);
}

static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine,
			void *vaddr)
{
3548
	ce->lrc.lrca = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
3549
	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
3550
	__execlists_update_reg_state(ce, engine, ce->ring->tail);
3551

3552
	return 0;
3553 3554
}

3555
static int execlists_context_pin(struct intel_context *ce, void *vaddr)
3556
{
3557
	return __execlists_context_pin(ce, ce->engine, vaddr);
3558 3559
}

3560 3561 3562 3563 3564
static int execlists_context_alloc(struct intel_context *ce)
{
	return __execlists_context_alloc(ce, ce->engine);
}

3565 3566
static void execlists_context_reset(struct intel_context *ce)
{
3567 3568 3569 3570 3571 3572 3573 3574
	CE_TRACE(ce, "reset\n");
	GEM_BUG_ON(!intel_context_is_pinned(ce));

	intel_ring_reset(ce->ring, ce->ring->emit);

	/* Scrub away the garbage */
	execlists_init_reg_state(ce->lrc_reg_state,
				 ce, ce->engine, ce->ring, true);
3575
	__execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
3576

3577
	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE;
3578 3579
}

3580
static const struct intel_context_ops execlists_context_ops = {
3581 3582
	.alloc = execlists_context_alloc,

3583
	.pre_pin = execlists_context_pre_pin,
3584
	.pin = execlists_context_pin,
3585
	.unpin = execlists_context_unpin,
3586
	.post_unpin = execlists_context_post_unpin,
3587

3588 3589 3590
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

3591
	.reset = execlists_context_reset,
3592 3593 3594
	.destroy = execlists_context_destroy,
};

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
static u32 hwsp_offset(const struct i915_request *rq)
{
	const struct intel_timeline_cacheline *cl;

	/* Before the request is executed, the timeline/cachline is fixed */

	cl = rcu_dereference_protected(rq->hwsp_cacheline, 1);
	if (cl)
		return cl->ggtt_offset;

	return rcu_dereference_protected(rq->timeline, 1)->hwsp_offset;
}

3608 3609 3610 3611
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

3612
	GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
3613 3614
	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
		return 0;
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
3630
	*cs++ = hwsp_offset(rq);
3631 3632 3633 3634
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
3635 3636 3637 3638

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

3639 3640
	__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);

3641 3642 3643
	return 0;
}

3644 3645 3646 3647 3648 3649 3650
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
	int err, i;
	u32 *cs;

3651
	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
		u32 base = engine->mmio_base;

		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	return 0;
}

3692
static int execlists_request_alloc(struct i915_request *request)
3693
{
3694
	int ret;
3695

3696
	GEM_BUG_ON(!intel_context_is_pinned(request->context));
3697

3698 3699
	/*
	 * Flush enough space to reduce the likelihood of waiting after
3700 3701 3702 3703 3704
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

3705 3706
	/*
	 * Note that after this point, we have committed to using
3707 3708 3709 3710 3711 3712
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

3713 3714 3715 3716 3717 3718
	if (!i915_vm_is_4lvl(request->context->vm)) {
		ret = emit_pdps(request);
		if (ret)
			return ret;
	}

3719
	/* Unconditionally invalidate GPU caches and TLBs. */
3720
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
3721 3722 3723
	if (ret)
		return ret;

3724 3725 3726 3727
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
3744 3745
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
3746
{
3747
	/* NB no one else is allowed to scribble over scratch + 256! */
3748 3749
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3750 3751
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3752 3753 3754 3755 3756 3757
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

3758 3759 3760 3761
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
3762 3763 3764

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
3765 3766
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
3767 3768 3769
	*batch++ = 0;

	return batch;
3770 3771
}

3772 3773 3774 3775 3776 3777
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
3778
 *
3779 3780
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
3781
 *
3782 3783 3784 3785
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
3786
 */
3787
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
3788
{
3789
	/* WaDisableCtxRestoreArbitration:bdw,chv */
3790
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3791

3792
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
3793 3794
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3795

3796 3797
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
3798 3799
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
3800
				       PIPE_CONTROL_STORE_DATA_INDEX |
3801 3802
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
3803
				       LRC_PPHWSP_SCRATCH_ADDR);
3804

C
Chris Wilson 已提交
3805 3806
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

3807
	/* Pad to end of cacheline */
3808 3809
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
3810 3811 3812 3813 3814 3815 3816

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

3817
	return batch;
3818 3819
}

3820 3821 3822 3823 3824 3825
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
3826
{
3827
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
3828

3829 3830 3831 3832 3833 3834
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
3835

3836 3837
	return batch;
}
3838

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
3863

3864
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
3865

3866 3867
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
3868

3869 3870 3871 3872 3873 3874 3875 3876
	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_STORE_DATA_INDEX |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       LRC_PPHWSP_SCRATCH_ADDR);

3877
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
3878

3879
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
3894 3895 3896 3897 3898 3899
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
3900 3901
	}

C
Chris Wilson 已提交
3902 3903
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

3904
	/* Pad to end of cacheline */
3905 3906
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
3907

3908
	return batch;
3909 3910
}

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

3945 3946 3947
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
3948
{
3949 3950 3951
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
3952

3953
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
3954 3955
	if (IS_ERR(obj))
		return PTR_ERR(obj);
3956

3957
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
3958 3959 3960
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
3961 3962
	}

3963
	err = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
3964 3965 3966 3967
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
3968
	return 0;
3969 3970 3971 3972

err:
	i915_gem_object_put(obj);
	return err;
3973 3974
}

3975
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
3976
{
3977
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
3978 3979
}

3980 3981
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

3982
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
3983
{
3984
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
3985 3986 3987 3988 3989
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
	void *batch, *batch_ptr;
	unsigned int i;
3990
	int ret;
3991

3992 3993
	if (engine->class != RENDER_CLASS)
		return 0;
3994

3995
	switch (INTEL_GEN(engine->i915)) {
3996
	case 12:
3997 3998
	case 11:
		return 0;
3999
	case 10:
4000 4001 4002
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
4003 4004
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
4005
		wa_bb_fn[1] = NULL;
4006 4007 4008
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
4009
		wa_bb_fn[1] = NULL;
4010 4011 4012
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
4013
		return 0;
4014
	}
4015

4016
	ret = lrc_setup_wa_ctx(engine);
4017
	if (ret) {
4018 4019
		drm_dbg(&engine->i915->drm,
			"Failed to setup context WA page: %d\n", ret);
4020 4021 4022
		return ret;
	}

4023
	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
4024

4025 4026 4027 4028 4029
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
4030
	batch_ptr = batch;
4031 4032
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
4033 4034
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
4035 4036 4037
			ret = -EINVAL;
			break;
		}
4038 4039
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
4040
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
4041
	}
4042
	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
4043

4044
	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
4045
	__i915_gem_object_release_map(wa_ctx->vma->obj);
4046
	if (ret)
4047
		lrc_destroy_wa_ctx(engine);
4048 4049 4050 4051

	return ret;
}

4052 4053 4054 4055 4056 4057 4058
static void reset_csb_pointers(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	const unsigned int reset_value = execlists->csb_size - 1;

	ring_set_paused(engine, 0);

4059 4060 4061 4062 4063 4064 4065 4066
	/*
	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
	 * Bludgeon them with a mmio update to be sure.
	 */
	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
		     0xffff << 16 | reset_value << 8 | reset_value);
	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
	wmb(); /* Make sure this is visible to HW (paranoia?) */

4080 4081
	/* Check that the GPU does indeed update the CSB entries! */
	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
4082 4083 4084 4085
	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);

	/* Once more for luck and our trusty paranoia */
4086
	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
4087
		     0xffff << 16 | reset_value << 8 | reset_value);
4088 4089
	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);

4090
	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
4091 4092 4093 4094
}

static void execlists_sanitize(struct intel_engine_cs *engine)
{
4095 4096
	GEM_BUG_ON(execlists_active(&engine->execlists));

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	/*
	 * Poison residual state on resume, in case the suspend didn't!
	 *
	 * We have to assume that across suspend/resume (or other loss
	 * of control) that the contents of our pinned buffers has been
	 * lost, replaced by garbage. Since this doesn't always happen,
	 * let's poison such state so that we more quickly spot when
	 * we falsely assume it has been preserved.
	 */
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);

4109
	reset_csb_pointers(engine);
4110 4111 4112 4113 4114 4115 4116

	/*
	 * The kernel_context HWSP is stored in the status_page. As above,
	 * that may be lost on resume/initialisation, and so we need to
	 * reset the value in the HWSP.
	 */
	intel_timeline_reset_seqno(engine->kernel_context->timeline);
C
Chris Wilson 已提交
4117 4118 4119

	/* And scrub the dirty cachelines for the HWSP */
	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
4120 4121
}

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
static void enable_error_interrupt(struct intel_engine_cs *engine)
{
	u32 status;

	engine->execlists.error_interrupt = 0;
	ENGINE_WRITE(engine, RING_EMR, ~0u);
	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */

	status = ENGINE_READ(engine, RING_ESR);
	if (unlikely(status)) {
4132
		drm_err(&engine->i915->drm,
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
			"engine '%s' resumed still in error: %08x\n",
			engine->name, status);
		__intel_gt_reset(engine->gt, engine->mask);
	}

	/*
	 * On current gen8+, we have 2 signals to play with
	 *
	 * - I915_ERROR_INSTUCTION (bit 0)
	 *
	 *    Generate an error if the command parser encounters an invalid
	 *    instruction
	 *
	 *    This is a fatal error.
	 *
	 * - CP_PRIV (bit 2)
	 *
	 *    Generate an error on privilege violation (where the CP replaces
	 *    the instruction with a no-op). This also fires for writes into
	 *    read-only scratch pages.
	 *
	 *    This is a non-fatal error, parsing continues.
	 *
	 * * there are a few others defined for odd HW that we do not use
	 *
	 * Since CP_PRIV fires for cases where we have chosen to ignore the
	 * error (as the HW is validating and suppressing the mistakes), we
	 * only unmask the instruction error bit.
	 */
	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
}

4165
static void enable_execlists(struct intel_engine_cs *engine)
4166
{
4167 4168 4169 4170
	u32 mode;

	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

4171
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4172

4173
	if (INTEL_GEN(engine->i915) >= 11)
4174
		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
4175
	else
4176 4177
		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
4178

4179
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4180

4181 4182 4183
	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
4184
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
4185

4186 4187
	enable_error_interrupt(engine);

4188
	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
4189 4190
}

4191 4192 4193 4194
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

4195
	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
4196 4197
		drm_dbg(&engine->i915->drm,
			"STOP_RING still set in RING_MI_MODE\n");
4198 4199 4200 4201 4202 4203
		unexpected = true;
	}

	return unexpected;
}

4204
static int execlists_resume(struct intel_engine_cs *engine)
4205
{
4206
	intel_mocs_init_engine(engine);
4207

4208
	intel_breadcrumbs_reset(engine->breadcrumbs);
4209

4210 4211 4212 4213 4214 4215
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

4216
	enable_execlists(engine);
4217

4218
	return 0;
4219 4220
}

4221
static void execlists_reset_prepare(struct intel_engine_cs *engine)
4222 4223
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
4224
	unsigned long flags;
4225

4226 4227
	ENGINE_TRACE(engine, "depth<-%d\n",
		     atomic_read(&execlists->tasklet.count));
4228 4229 4230 4231 4232 4233

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
4234
	 * calling engine->resume() and also writing the ELSP.
4235 4236 4237 4238
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
4239
	GEM_BUG_ON(!reset_in_progress(execlists));
4240

4241
	/* And flush any current direct submission. */
4242 4243
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256

	/*
	 * We stop engines, otherwise we might get failed reset and a
	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
	 * from system hang if batchbuffer is progressing when
	 * the reset is issued, regardless of READY_TO_RESET ack.
	 * Thus assume it is best to stop engines on all gens
	 * where we have a gpu reset.
	 *
	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
	 *
	 * FIXME: Wa for more modern gens needs to be validated
	 */
4257
	ring_set_paused(engine, 1);
4258
	intel_engine_stop_cs(engine);
4259 4260

	engine->execlists.reset_ccid = active_ccid(engine);
4261 4262
}

4263
static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
4264
{
4265
	int x;
4266

4267 4268 4269 4270
	x = lrc_ring_mi_mode(engine);
	if (x != -1) {
		regs[x + 1] &= ~STOP_RING;
		regs[x + 1] |= STOP_RING << 16;
4271 4272 4273
	}
}

4274 4275 4276 4277 4278 4279 4280 4281
static void __execlists_reset_reg_state(const struct intel_context *ce,
					const struct intel_engine_cs *engine)
{
	u32 *regs = ce->lrc_reg_state;

	__reset_stop_ring(regs, engine);
}

4282
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
4283
{
4284
	struct intel_engine_execlists * const execlists = &engine->execlists;
4285
	struct intel_context *ce;
4286
	struct i915_request *rq;
4287
	u32 head;
4288

4289 4290 4291 4292
	mb(); /* paranoia: read the CSB pointers from after the reset */
	clflush(execlists->csb_write);
	mb();

4293 4294 4295
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
4296
	reset_csb_pointers(engine);
4297 4298 4299 4300 4301 4302

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
4303
	rq = active_context(engine, engine->execlists.reset_ccid);
4304
	if (!rq)
4305
		goto unwind;
4306

4307
	ce = rq->context;
4308
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
4309

4310
	if (i915_request_completed(rq)) {
4311
		/* Idle context; tidy up the ring so we can restart afresh */
4312
		head = intel_ring_wrap(ce->ring, rq->tail);
4313
		goto out_replay;
4314 4315
	}

4316 4317 4318
	/* We still have requests in-flight; the engine should be active */
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));

4319 4320
	/* Context has requests still in-flight; it should not be idle! */
	GEM_BUG_ON(i915_active_is_idle(&ce->active));
4321

4322
	rq = active_request(ce->timeline, rq);
4323 4324
	head = intel_ring_wrap(ce->ring, rq->head);
	GEM_BUG_ON(head == ce->ring->tail);
4325

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
4338
	if (!i915_request_started(rq))
4339
		goto out_replay;
4340

4341 4342
	/*
	 * If the request was innocent, we leave the request in the ELSP
4343 4344 4345 4346 4347 4348 4349 4350 4351
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
4352
	__i915_request_reset(rq, stalled);
4353

4354 4355
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
4356 4357 4358 4359 4360 4361
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
4362
out_replay:
4363
	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
4364
		     head, ce->ring->tail);
4365
	__execlists_reset_reg_state(ce, engine);
4366
	__execlists_update_reg_state(ce, engine, head);
4367
	ce->lrc.desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
4368

4369
unwind:
4370
	/* Push back any incomplete requests for replay after the reset. */
4371
	cancel_port_requests(execlists);
4372
	__unwind_incomplete_requests(engine);
4373
}
4374

4375
static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
4376 4377 4378
{
	unsigned long flags;

4379
	ENGINE_TRACE(engine, "\n");
4380

4381
	spin_lock_irqsave(&engine->active.lock, flags);
4382 4383 4384

	__execlists_reset(engine, stalled);

4385
	spin_unlock_irqrestore(&engine->active.lock, flags);
4386 4387 4388 4389
}

static void nop_submission_tasklet(unsigned long data)
{
4390 4391
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;

4392
	/* The driver is wedged; don't process any more events. */
4393
	WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
4394 4395
}

4396
static void execlists_reset_cancel(struct intel_engine_cs *engine)
4397 4398 4399 4400 4401 4402
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

4403
	ENGINE_TRACE(engine, "\n");
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
4419
	spin_lock_irqsave(&engine->active.lock, flags);
4420 4421 4422 4423

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
4424 4425
	list_for_each_entry(rq, &engine->active.requests, sched.link)
		mark_eio(rq);
4426
	intel_engine_signal_breadcrumbs(engine);
4427 4428 4429 4430 4431 4432 4433

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
4434
			mark_eio(rq);
4435 4436 4437 4438 4439 4440 4441
			__i915_request_submit(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

4442 4443 4444 4445
	/* On-hold requests will be flushed to timeline upon their release */
	list_for_each_entry(rq, &engine->active.hold, sched.link)
		mark_eio(rq);

4446 4447 4448 4449 4450 4451 4452 4453
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

4454
		spin_lock(&ve->base.active.lock);
4455 4456 4457 4458 4459 4460
		rq = fetch_and_zero(&ve->request);
		if (rq) {
			mark_eio(rq);

			rq->engine = engine;
			__i915_request_submit(rq);
4461
			i915_request_put(rq);
4462

4463 4464
			ve->base.execlists.queue_priority_hint = INT_MIN;
		}
4465
		spin_unlock(&ve->base.active.lock);
4466 4467
	}

4468 4469 4470 4471 4472 4473 4474
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
4475

4476
	spin_unlock_irqrestore(&engine->active.lock, flags);
4477 4478
}

4479 4480
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
4481 4482
	struct intel_engine_execlists * const execlists = &engine->execlists;

4483
	/*
4484 4485 4486
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
4487
	 */
4488
	GEM_BUG_ON(!reset_in_progress(execlists));
4489 4490
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
4491

4492 4493 4494
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
4495 4496
	ENGINE_TRACE(engine, "depth->%d\n",
		     atomic_read(&execlists->tasklet.count));
4497 4498
}

4499 4500 4501
static int gen8_emit_bb_start_noarb(struct i915_request *rq,
				    u64 offset, u32 len,
				    const unsigned int flags)
4502
{
4503
	u32 *cs;
4504

4505
	cs = intel_ring_begin(rq, 4);
4506 4507
	if (IS_ERR(cs))
		return PTR_ERR(cs);
4508

4509 4510 4511 4512 4513 4514 4515
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
4516 4517 4518 4519 4520
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
4521
	 */
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

4535
static int gen8_emit_bb_start(struct i915_request *rq,
4536 4537 4538 4539 4540 4541 4542 4543 4544
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

4545 4546
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

4547
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4548
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4549 4550
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
4551 4552 4553

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
4554

4555
	intel_ring_advance(rq, cs);
4556 4557 4558 4559

	return 0;
}

4560
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
4561
{
4562 4563 4564
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
4565 4566
}

4567
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
4568
{
4569
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
4570 4571
}

4572
static int gen8_emit_flush(struct i915_request *request, u32 mode)
4573
{
4574
	u32 cmd, *cs;
4575

4576 4577 4578
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
4579 4580 4581

	cmd = MI_FLUSH_DW + 1;

4582 4583 4584 4585 4586 4587 4588
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

4589
	if (mode & EMIT_INVALIDATE) {
4590
		cmd |= MI_INVALIDATE_TLB;
4591
		if (request->engine->class == VIDEO_DECODE_CLASS)
4592
			cmd |= MI_INVALIDATE_BSD;
4593 4594
	}

4595
	*cs++ = cmd;
4596
	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
4597 4598 4599
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
4600 4601 4602 4603

	return 0;
}

4604
static int gen8_emit_flush_render(struct i915_request *request,
4605
				  u32 mode)
4606
{
M
Mika Kuoppala 已提交
4607
	bool vf_flush_wa = false, dc_flush_wa = false;
4608
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
4609
	int len;
4610 4611 4612

	flags |= PIPE_CONTROL_CS_STALL;

4613
	if (mode & EMIT_FLUSH) {
4614 4615
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
4616
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
4617
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
4618 4619
	}

4620
	if (mode & EMIT_INVALIDATE) {
4621 4622 4623 4624 4625 4626 4627
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
4628
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4629

4630 4631 4632 4633
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
4634
		if (IS_GEN(request->engine->i915, 9))
4635
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
4636 4637

		/* WaForGAMHang:kbl */
4638
		if (IS_KBL_GT_REVID(request->engine->i915, 0, KBL_REVID_B0))
M
Mika Kuoppala 已提交
4639
			dc_flush_wa = true;
4640
	}
4641

M
Mika Kuoppala 已提交
4642 4643 4644 4645 4646 4647 4648 4649
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

4650 4651 4652
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
4653

4654 4655
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
4656

4657 4658 4659
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
4660

4661
	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
M
Mika Kuoppala 已提交
4662

4663 4664
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
4665

4666
	intel_ring_advance(request, cs);
4667 4668 4669 4670

	return 0;
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
static int gen11_emit_flush_render(struct i915_request *request,
				   u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_QW_WRITE;
4686
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4687 4688 4689 4690 4691

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4692
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4693 4694 4695 4696 4697 4698 4699 4700 4701
		intel_ring_advance(request, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

4702
		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
4703 4704 4705 4706 4707 4708 4709
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
4710
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4711 4712 4713 4714 4715

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4716
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4717 4718 4719 4720 4721 4722
		intel_ring_advance(request, cs);
	}

	return 0;
}

4723 4724 4725 4726 4727
static u32 preparser_disable(bool state)
{
	return MI_ARB_CHECK | 1 << 8 | state;
}

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
{
	static const i915_reg_t vd[] = {
		GEN12_VD0_AUX_NV,
		GEN12_VD1_AUX_NV,
		GEN12_VD2_AUX_NV,
		GEN12_VD3_AUX_NV,
	};

	static const i915_reg_t ve[] = {
		GEN12_VE0_AUX_NV,
		GEN12_VE1_AUX_NV,
	};

	if (engine->class == VIDEO_DECODE_CLASS)
		return vd[engine->instance];

	if (engine->class == VIDEO_ENHANCEMENT_CLASS)
		return ve[engine->instance];

	GEM_BUG_ON("unknown aux_inv_reg\n");

	return INVALID_MMIO_REG;
}

4753
static u32 *
4754
gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
4755 4756
{
	*cs++ = MI_LOAD_REGISTER_IMM(1);
4757
	*cs++ = i915_mmio_reg_offset(inv_reg);
4758 4759 4760 4761 4762 4763
	*cs++ = AUX_INV;
	*cs++ = MI_NOOP;

	return cs;
}

4764 4765 4766 4767 4768 4769 4770 4771
static int gen12_emit_flush_render(struct i915_request *request,
				   u32 mode)
{
	if (mode & EMIT_FLUSH) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
M
Mika Kuoppala 已提交
4772
		flags |= PIPE_CONTROL_FLUSH_L3;
4773 4774
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
M
Mika Kuoppala 已提交
4775 4776
		/* Wa_1409600907:tgl */
		flags |= PIPE_CONTROL_DEPTH_STALL;
4777 4778 4779
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;

4780
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4781 4782 4783 4784 4785 4786 4787 4788
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

4789 4790 4791
		cs = gen12_emit_pipe_control(cs,
					     PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
					     flags, LRC_PPHWSP_SCRATCH_ADDR);
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
		intel_ring_advance(request, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 flags = 0;
		u32 *cs;

		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;

4807
		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
4808 4809 4810 4811
		flags |= PIPE_CONTROL_QW_WRITE;

		flags |= PIPE_CONTROL_CS_STALL;

4812
		cs = intel_ring_begin(request, 8 + 4);
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		/*
		 * Prevent the pre-parser from skipping past the TLB
		 * invalidate and loading a stale page for the batch
		 * buffer / request payload.
		 */
		*cs++ = preparser_disable(true);

4823
		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
4824

4825
		/* hsdes: 1809175790 */
4826
		cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
4827

4828 4829 4830 4831 4832 4833 4834
		*cs++ = preparser_disable(false);
		intel_ring_advance(request, cs);
	}

	return 0;
}

4835 4836 4837 4838 4839
static int gen12_emit_flush(struct i915_request *request, u32 mode)
{
	intel_engine_mask_t aux_inv = 0;
	u32 cmd, *cs;

4840 4841 4842
	cmd = 4;
	if (mode & EMIT_INVALIDATE)
		cmd += 2;
4843 4844
	if (mode & EMIT_INVALIDATE)
		aux_inv = request->engine->mask & ~BIT(BCS0);
4845 4846
	if (aux_inv)
		cmd += 2 * hweight8(aux_inv) + 2;
4847

4848
	cs = intel_ring_begin(request, cmd);
4849 4850 4851
	if (IS_ERR(cs))
		return PTR_ERR(cs);

4852 4853 4854
	if (mode & EMIT_INVALIDATE)
		*cs++ = preparser_disable(true);

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
	cmd = MI_FLUSH_DW + 1;

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (mode & EMIT_INVALIDATE) {
		cmd |= MI_INVALIDATE_TLB;
		if (request->engine->class == VIDEO_DECODE_CLASS)
			cmd |= MI_INVALIDATE_BSD;
	}

	*cs++ = cmd;
	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */

	if (aux_inv) { /* hsdes: 1809175790 */
		struct intel_engine_cs *engine;
		unsigned int tmp;

		*cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
		for_each_engine_masked(engine, request->engine->gt,
				       aux_inv, tmp) {
			*cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
			*cs++ = AUX_INV;
		}
		*cs++ = MI_NOOP;
	}
4887 4888 4889 4890

	if (mode & EMIT_INVALIDATE)
		*cs++ = preparser_disable(false);

4891 4892 4893 4894 4895
	intel_ring_advance(request, cs);

	return 0;
}

4896 4897 4898 4899 4900 4901 4902 4903
static void assert_request_valid(struct i915_request *rq)
{
	struct intel_ring *ring __maybe_unused = rq->ring;

	/* Can we unwind this request without appearing to go forwards? */
	GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
}

4904 4905 4906 4907 4908
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
4909
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
4910
{
C
Chris Wilson 已提交
4911 4912
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
4913 4914
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
4915

4916 4917 4918
	/* Check that entire request is less than half the ring */
	assert_request_valid(request);

4919
	return cs;
C
Chris Wilson 已提交
4920
}
4921

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;

	return cs;
}

4935
static __always_inline u32*
4936
gen8_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
4937
{
4938
	*cs++ = MI_USER_INTERRUPT;
4939

4940
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4941 4942
	if (intel_engine_has_semaphores(request->engine))
		cs = emit_preempt_busywait(request, cs);
4943

4944
	request->tail = intel_ring_offset(request, cs);
4945
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
4946

4947
	return gen8_emit_wa_tail(request, cs);
4948
}
4949

4950
static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
4951
{
4952
	return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
4953 4954 4955 4956 4957
}

static u32 *gen8_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
{
	return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
4958 4959
}

4960
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
4961
{
4962 4963 4964 4965 4966 4967 4968
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				    PIPE_CONTROL_DC_FLUSH_ENABLE,
				    0);

	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
4969
	cs = gen8_emit_ggtt_write_rcs(cs,
4970
				      request->fence.seqno,
4971
				      hwsp_offset(request),
4972 4973
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);
4974

4975
	return gen8_emit_fini_breadcrumb_tail(request, cs);
4976
}
4977

4978 4979 4980 4981 4982
static u32 *
gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write_rcs(cs,
				      request->fence.seqno,
4983
				      hwsp_offset(request),
4984 4985 4986 4987 4988 4989 4990
				      PIPE_CONTROL_CS_STALL |
				      PIPE_CONTROL_TILE_CACHE_FLUSH |
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE);

4991
	return gen8_emit_fini_breadcrumb_tail(request, cs);
4992 4993
}

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
/*
 * Note that the CS instruction pre-parser will not stall on the breadcrumb
 * flush and will continue pre-fetching the instructions after it before the
 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
 * of the next request before the memory has been flushed, we're guaranteed that
 * we won't access the batch itself too early.
 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
 * so, if the current request is modifying an instruction in the next request on
 * the same intel_context, we might pre-fetch and then execute the pre-update
 * instruction. To avoid this, the users of self-modifying code should either
 * disable the parser around the code emitting the memory writes, via a new flag
 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
 * the in-kernel use-cases we've opted to use a separate context, see
 * reloc_gpu() as an example.
 * All the above applies only to the instructions themselves. Non-inline data
 * used by the instructions is not pre-fetched.
 */
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;

	return cs;
}

static __always_inline u32*
5029
gen12_emit_fini_breadcrumb_tail(struct i915_request *request, u32 *cs)
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
{
	*cs++ = MI_USER_INTERRUPT;

	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	if (intel_engine_has_semaphores(request->engine))
		cs = gen12_emit_preempt_busywait(request, cs);

	request->tail = intel_ring_offset(request, cs);
	assert_ring_tail_valid(request->ring, request->tail);

	return gen8_emit_wa_tail(request, cs);
}

5043
static u32 *gen12_emit_fini_breadcrumb(struct i915_request *rq, u32 *cs)
5044
{
5045 5046 5047
	/* XXX Stalling flush before seqno write; post-sync not */
	cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
	return gen12_emit_fini_breadcrumb_tail(rq, cs);
5048 5049 5050 5051
}

static u32 *
gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
5052
{
5053 5054
	cs = gen12_emit_ggtt_write_rcs(cs,
				       request->fence.seqno,
5055
				       hwsp_offset(request),
5056 5057 5058
				       PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_TILE_CACHE_FLUSH |
M
Mika Kuoppala 已提交
5059
				       PIPE_CONTROL_FLUSH_L3 |
5060 5061 5062 5063 5064 5065
				       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				       /* Wa_1409600907:tgl */
				       PIPE_CONTROL_DEPTH_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE |
				       PIPE_CONTROL_FLUSH_ENABLE);
C
Chris Wilson 已提交
5066

5067
	return gen12_emit_fini_breadcrumb_tail(request, cs);
5068
}
5069

5070 5071
static void execlists_park(struct intel_engine_cs *engine)
{
5072
	cancel_timer(&engine->execlists.timer);
5073
	cancel_timer(&engine->execlists.preempt);
5074 5075
}

5076
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
5077
{
5078
	engine->submit_request = execlists_submit_request;
5079
	engine->schedule = i915_schedule;
5080
	engine->execlists.tasklet.func = execlists_submission_tasklet;
5081

5082
	engine->reset.prepare = execlists_reset_prepare;
5083 5084
	engine->reset.rewind = execlists_reset_rewind;
	engine->reset.cancel = execlists_reset_cancel;
5085
	engine->reset.finish = execlists_reset_finish;
5086

5087
	engine->park = execlists_park;
5088
	engine->unpark = NULL;
5089 5090

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
5091
	if (!intel_vgpu_active(engine->i915)) {
5092
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
5093
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915)) {
5094
			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
5095 5096 5097
			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
		}
5098
	}
5099

5100
	if (INTEL_GEN(engine->i915) >= 12)
5101
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
5102 5103 5104 5105 5106

	if (intel_engine_has_preemption(engine))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen8_emit_bb_start_noarb;
5107 5108
}

5109 5110 5111 5112 5113 5114 5115 5116
static void execlists_shutdown(struct intel_engine_cs *engine)
{
	/* Synchronise with residual timers and any softirq they raise */
	del_timer_sync(&engine->execlists.timer);
	del_timer_sync(&engine->execlists.preempt);
	tasklet_kill(&engine->execlists.tasklet);
}

5117
static void execlists_release(struct intel_engine_cs *engine)
5118
{
5119 5120
	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */

5121 5122
	execlists_shutdown(engine);

5123 5124 5125 5126
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
}

5127
static void
5128
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
5129 5130
{
	/* Default vfuncs which can be overriden by each engine. */
5131

5132
	engine->resume = execlists_resume;
5133

5134
	engine->cops = &execlists_context_ops;
5135 5136
	engine->request_alloc = execlists_request_alloc;

5137
	engine->emit_flush = gen8_emit_flush;
5138 5139
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
5140
	if (INTEL_GEN(engine->i915) >= 12) {
5141
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
5142 5143
		engine->emit_flush = gen12_emit_flush;
	}
5144
	engine->set_default_submission = intel_execlists_set_default_submission;
5145

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
5157 5158
}

5159
static inline void
5160
logical_ring_default_irqs(struct intel_engine_cs *engine)
5161
{
5162 5163 5164 5165
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
5166 5167 5168 5169 5170
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
5171 5172 5173 5174 5175
		};

		shift = irq_shifts[engine->id];
	}

5176 5177
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
5178
	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
5179
	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
5180 5181
}

5182 5183 5184 5185
static void rcs_submission_override(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 12:
5186
		engine->emit_flush = gen12_emit_flush_render;
5187 5188
		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
		break;
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	case 11:
		engine->emit_flush = gen11_emit_flush_render;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
	}
}

5200
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
5201
{
5202 5203 5204 5205 5206
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
	u32 base = engine->mmio_base;

5207 5208
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
5209 5210
	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
5211 5212 5213

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
5214

5215 5216
	if (engine->class == RENDER_CLASS)
		rcs_submission_override(engine);
5217 5218 5219 5220 5221 5222 5223

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
5224
		drm_err(&i915->drm, "WA batch buffer initialization failed\n");
5225

5226
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
5227
		execlists->submit_reg = uncore->regs +
5228
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
5229
		execlists->ctrl_reg = uncore->regs +
5230
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
5231
	} else {
5232
		execlists->submit_reg = uncore->regs +
5233
			i915_mmio_reg_offset(RING_ELSP(base));
5234
	}
5235

5236
	execlists->csb_status =
5237
		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
5238

5239
	execlists->csb_write =
5240
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
5241

5242
	if (INTEL_GEN(i915) < 11)
5243 5244 5245
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
5246

5247 5248 5249 5250 5251
	if (INTEL_GEN(engine->i915) >= 11) {
		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
	}

5252
	/* Finally, take ownership and responsibility for cleanup! */
5253
	engine->sanitize = execlists_sanitize;
5254 5255
	engine->release = execlists_release;

5256 5257 5258
	return 0;
}

5259
static void init_common_reg_state(u32 * const regs,
5260
				  const struct intel_engine_cs *engine,
5261 5262
				  const struct intel_ring *ring,
				  bool inhibit)
5263
{
5264 5265 5266 5267 5268 5269
	u32 ctl;

	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
	if (inhibit)
		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
5270
	if (INTEL_GEN(engine->i915) < 11)
5271 5272 5273
		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					   CTX_CTRL_RS_CTX_ENABLE);
	regs[CTX_CONTEXT_CONTROL] = ctl;
5274

5275
	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
5276
	regs[CTX_TIMESTAMP] = 0;
5277
}
5278

5279
static void init_wa_bb_reg_state(u32 * const regs,
5280
				 const struct intel_engine_cs *engine)
5281
{
5282 5283 5284 5285 5286
	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;

	if (wa_ctx->per_ctx.size) {
		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);

5287 5288
		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
5289 5290
			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
	}
5291

5292
	if (wa_ctx->indirect_ctx.size) {
5293 5294 5295 5296
		lrc_ring_setup_indirect_ctx(regs, engine,
					    i915_ggtt_offset(wa_ctx->vma) +
					    wa_ctx->indirect_ctx.offset,
					    wa_ctx->indirect_ctx.size);
5297
	}
5298 5299
}

5300
static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
5301
{
5302
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
5303 5304 5305 5306
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
5307
		ASSIGN_CTX_PML4(ppgtt, regs);
5308
	} else {
5309 5310 5311 5312
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
5313
	}
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
}

static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
{
	if (i915_is_ggtt(vm))
		return i915_vm_to_ggtt(vm)->alias;
	else
		return i915_vm_to_ppgtt(vm);
}

static void execlists_init_reg_state(u32 *regs,
5325 5326 5327
				     const struct intel_context *ce,
				     const struct intel_engine_cs *engine,
				     const struct intel_ring *ring,
5328
				     bool inhibit)
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
{
	/*
	 * A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 *
	 * Must keep consistent with virtual_update_register_offsets().
	 */
5340
	set_offsets(regs, reg_offsets(engine), engine, inhibit);
5341

5342
	init_common_reg_state(regs, engine, ring, inhibit);
5343 5344
	init_ppgtt_reg_state(regs, vm_alias(ce->vm));

5345
	init_wa_bb_reg_state(regs, engine);
5346 5347

	__reset_stop_ring(regs, engine);
5348 5349
}

5350
static int
5351
populate_lr_context(struct intel_context *ce,
5352 5353 5354 5355
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
5356
	bool inhibit = true;
5357 5358 5359 5360
	void *vaddr;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
5361 5362
		drm_dbg(&engine->i915->drm, "Could not map object pages!\n");
		return PTR_ERR(vaddr);
5363 5364
	}

5365 5366
	set_redzone(vaddr, engine);

5367
	if (engine->default_state) {
5368 5369
		shmem_read(engine->default_state, 0,
			   vaddr, engine->context_size);
5370
		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
5371
		inhibit = false;
5372 5373
	}

5374 5375 5376 5377 5378 5379 5380
	/* Clear the ppHWSP (inc. per-context counters) */
	memset(vaddr, 0, PAGE_SIZE);

	/*
	 * The second page of the context object contains some registers which
	 * must be set up prior to the first execution.
	 */
5381
	execlists_init_reg_state(vaddr + LRC_STATE_OFFSET,
5382
				 ce, engine, ring, inhibit);
5383

5384
	__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
5385
	i915_gem_object_unpin_map(ctx_obj);
5386
	return 0;
5387 5388
}

5389 5390 5391 5392 5393 5394 5395 5396
static struct intel_timeline *pinned_timeline(struct intel_context *ce)
{
	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);

	return intel_timeline_create_from_engine(ce->engine,
						 page_unmask_bits(tl));
}

5397 5398
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine)
5399
{
5400
	struct drm_i915_gem_object *ctx_obj;
5401
	struct intel_ring *ring;
5402
	struct i915_vma *vma;
5403
	u32 context_size;
5404 5405
	int ret;

5406
	GEM_BUG_ON(ce->state);
5407
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
5408

5409 5410
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
5411

5412 5413 5414 5415 5416
	if (INTEL_GEN(engine->i915) == 12) {
		ce->wa_bb_page = context_size / PAGE_SIZE;
		context_size += PAGE_SIZE;
	}

5417
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
5418 5419
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
5420

5421
	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
5422 5423 5424 5425 5426
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

5427
	if (!page_mask_bits(ce->timeline)) {
5428
		struct intel_timeline *tl;
5429 5430 5431 5432 5433

		/*
		 * Use the static global HWSP for the kernel context, and
		 * a dynamically allocated cacheline for everyone else.
		 */
5434 5435 5436 5437
		if (unlikely(ce->timeline))
			tl = pinned_timeline(ce);
		else
			tl = intel_timeline_create(engine->gt);
5438 5439 5440 5441 5442 5443
		if (IS_ERR(tl)) {
			ret = PTR_ERR(tl);
			goto error_deref_obj;
		}

		ce->timeline = tl;
5444 5445
	}

5446
	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
5447 5448
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
5449
		goto error_deref_obj;
5450 5451
	}

5452
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
5453
	if (ret) {
5454 5455
		drm_dbg(&engine->i915->drm,
			"Failed to populate LRC: %d\n", ret);
5456
		goto error_ring_free;
5457 5458
	}

5459
	ce->ring = ring;
5460
	ce->state = vma;
5461 5462

	return 0;
5463

5464
error_ring_free:
5465
	intel_ring_put(ring);
5466
error_deref_obj:
5467
	i915_gem_object_put(ctx_obj);
5468
	return ret;
5469
}
5470

5471 5472 5473 5474 5475
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

5476
static void rcu_virtual_context_destroy(struct work_struct *wrk)
5477 5478
{
	struct virtual_engine *ve =
5479
		container_of(wrk, typeof(*ve), rcu.work);
5480 5481
	unsigned int n;

5482
	GEM_BUG_ON(ve->context.inflight);
5483

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	/* Preempt-to-busy may leave a stale request behind. */
	if (unlikely(ve->request)) {
		struct i915_request *old;

		spin_lock_irq(&ve->base.active.lock);

		old = fetch_and_zero(&ve->request);
		if (old) {
			GEM_BUG_ON(!i915_request_completed(old));
			__i915_request_submit(old);
			i915_request_put(old);
		}

		spin_unlock_irq(&ve->base.active.lock);
	}

	/*
	 * Flush the tasklet in case it is still running on another core.
	 *
	 * This needs to be done before we remove ourselves from the siblings'
	 * rbtrees as in the case it is running in parallel, it may reinsert
	 * the rb_node into a sibling.
	 */
	tasklet_kill(&ve->base.execlists.tasklet);

	/* Decouple ourselves from the siblings, no more access allowed. */
5510 5511 5512 5513 5514 5515 5516
	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;

		if (RB_EMPTY_NODE(node))
			continue;

5517
		spin_lock_irq(&sibling->active.lock);
5518 5519 5520 5521 5522

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

5523
		spin_unlock_irq(&sibling->active.lock);
5524 5525
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
5526
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
5527 5528 5529

	if (ve->context.state)
		__execlists_context_fini(&ve->context);
5530
	intel_context_fini(&ve->context);
5531

5532
	intel_breadcrumbs_free(ve->base.breadcrumbs);
5533 5534
	intel_engine_free_request_pool(&ve->base);

5535
	kfree(ve->bonds);
5536 5537 5538
	kfree(ve);
}

5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);

	GEM_BUG_ON(!list_empty(&ve->context.signals));

	/*
	 * When destroying the virtual engine, we have to be aware that
	 * it may still be in use from an hardirq/softirq context causing
	 * the resubmission of a completed request (background completion
	 * due to preempt-to-busy). Before we can free the engine, we need
	 * to flush the submission code and tasklets that are still potentially
	 * accessing the engine. Flushing the tasklets requires process context,
	 * and since we can guard the resubmit onto the engine with an RCU read
	 * lock, we can delegate the free of the engine to an RCU worker.
	 */
	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
	queue_rcu_work(system_wq, &ve->rcu);
}

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
5578 5579
	if (swp)
		swap(ve->siblings[swp], ve->siblings[0]);
5580 5581
}

5582 5583 5584 5585 5586 5587 5588
static int virtual_context_alloc(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);

	return __execlists_context_alloc(ce, ve->siblings[0]);
}

5589
static int virtual_context_pin(struct intel_context *ce, void *vaddr)
5590 5591 5592 5593
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);

	/* Note: we must use a real engine class for setting up reg state */
5594
	return __execlists_context_pin(ce, ve->siblings[0], vaddr);
5595 5596 5597 5598 5599 5600 5601 5602 5603
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
5604 5605

	intel_timeline_enter(ce->timeline);
5606 5607 5608 5609 5610 5611 5612
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

5613 5614
	intel_timeline_exit(ce->timeline);

5615 5616 5617 5618 5619
	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
5620 5621
	.alloc = virtual_context_alloc,

5622
	.pre_pin = execlists_context_pre_pin,
5623 5624
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,
5625
	.post_unpin = execlists_context_post_unpin,
5626 5627 5628 5629 5630 5631 5632

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
5646
		i915_request_set_error_once(rq, -ENODEV);
5647 5648 5649
		mask = ve->siblings[0]->mask;
	}

5650 5651 5652
	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
		     rq->fence.context, rq->fence.seqno,
		     mask, ve->base.execlists.queue_priority_hint);
5653 5654 5655 5656

	return mask;
}

5657 5658 5659
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
5660
	const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
5661
	intel_engine_mask_t mask;
5662 5663
	unsigned int n;

5664 5665 5666 5667 5668 5669
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

5670
	local_irq_disable();
5671 5672
	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
5673 5674 5675 5676
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

5677 5678 5679
		if (!READ_ONCE(ve->request))
			break; /* already handled by a sibling's tasklet */

5680 5681
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
5682
				spin_lock(&sibling->active.lock);
5683 5684 5685
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
5686
				spin_unlock(&sibling->active.lock);
5687 5688 5689 5690
			}
			continue;
		}

5691
		spin_lock(&sibling->active.lock);
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
5730
		if (first && prio > sibling->execlists.queue_priority_hint)
5731 5732
			tasklet_hi_schedule(&sibling->execlists.tasklet);

5733
		spin_unlock(&sibling->active.lock);
5734 5735 5736 5737 5738 5739 5740
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5741 5742
	struct i915_request *old;
	unsigned long flags;
5743

5744 5745 5746
	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
		     rq->fence.context,
		     rq->fence.seqno);
5747 5748 5749

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

5750 5751 5752 5753 5754 5755 5756 5757
	spin_lock_irqsave(&ve->base.active.lock, flags);

	old = ve->request;
	if (old) { /* background completion event from preempt-to-busy */
		GEM_BUG_ON(!i915_request_completed(old));
		__i915_request_submit(old);
		i915_request_put(old);
	}
5758

5759 5760
	if (i915_request_completed(rq)) {
		__i915_request_submit(rq);
5761

5762 5763 5764 5765 5766 5767 5768 5769 5770
		ve->base.execlists.queue_priority_hint = INT_MIN;
		ve->request = NULL;
	} else {
		ve->base.execlists.queue_priority_hint = rq_prio(rq);
		ve->request = i915_request_get(rq);

		GEM_BUG_ON(!list_empty(virtual_queue(ve)));
		list_move_tail(&rq->sched.link, virtual_queue(ve));

5771
		tasklet_hi_schedule(&ve->base.execlists.tasklet);
5772
	}
5773

5774
	spin_unlock_irqrestore(&ve->base.active.lock, flags);
5775 5776
}

5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
5795
	intel_engine_mask_t allowed, exec;
5796 5797
	struct ve_bond *bond;

5798 5799
	allowed = ~to_request(signal)->engine->mask;

5800
	bond = virtual_find_bond(ve, to_request(signal)->engine);
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
	if (bond)
		allowed &= bond->sibling_mask;

	/* Restrict the bonded request to run on only the available engines */
	exec = READ_ONCE(rq->execution_mask);
	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
		;

	/* Prevent the master from being re-run on the bonded engines */
	to_request(signal)->execution_mask &= ~allowed;
5811 5812
}

5813
struct intel_context *
5814
intel_execlists_create_virtual(struct intel_engine_cs **siblings,
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
5825
		return intel_context_create(siblings[0]);
5826 5827 5828 5829 5830

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

5831
	ve->base.i915 = siblings[0]->i915;
5832
	ve->base.gt = siblings[0]->gt;
5833
	ve->base.uncore = siblings[0]->uncore;
5834
	ve->base.id = -1;
5835

5836 5837 5838
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5839
	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5840

5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
	/*
	 * The decision on whether to submit a request using semaphores
	 * depends on the saturated state of the engine. We only compute
	 * this during HW submission of the request, and we need for this
	 * state to be globally applied to all requests being submitted
	 * to this engine. Virtual engines encompass more than one physical
	 * engine and so we cannot accurately tell in advance if one of those
	 * engines is already saturated and so cannot afford to use a semaphore
	 * and be pessimized in priority for doing so -- if we are the only
	 * context using semaphores after all other clients have stopped, we
	 * will be starved on the saturated system. Such a global switch for
	 * semaphores is less than ideal, but alas is the current compromise.
	 */
	ve->base.saturated = ALL_ENGINES;

5856 5857
	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

5858
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
5859 5860 5861 5862 5863 5864 5865
	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
5866
	ve->base.bond_execute = virtual_bond_execute;
5867

5868
	INIT_LIST_HEAD(virtual_queue(ve));
5869 5870 5871 5872 5873
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

5874
	intel_context_init(&ve->context, &ve->base);
5875

5876 5877 5878 5879 5880 5881
	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
	if (!ve->base.breadcrumbs) {
		err = -ENOMEM;
		goto err_put;
	}

5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
5941 5942

		ve->base.flags = sibling->flags;
5943 5944
	}

5945 5946
	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;

5947
	virtual_engine_initial_hint(ve);
5948 5949 5950 5951 5952 5953 5954 5955
	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
5956
intel_execlists_clone_virtual(struct intel_engine_cs *src)
5957 5958 5959 5960
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

5961
	dst = intel_execlists_create_virtual(se->siblings,
5962 5963 5964 5965
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

5980 5981 5982
	return dst;
}

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

6019 6020 6021
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
C
Chris Wilson 已提交
6022
							const struct i915_request *rq,
6023 6024
							const char *prefix,
							int indent),
6025 6026 6027 6028 6029 6030 6031 6032
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

6033
	spin_lock_irqsave(&engine->active.lock, flags);
6034 6035 6036

	last = NULL;
	count = 0;
6037
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
6038
		if (count++ < max - 1)
6039
			show_request(m, rq, "\t\t", 0);
6040 6041 6042 6043 6044 6045 6046 6047 6048
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
6049
		show_request(m, last, "\t\t", 0);
6050 6051
	}

6052 6053
	if (execlists->switch_priority_hint != INT_MIN)
		drm_printf(m, "\t\tSwitch priority hint: %d\n",
6054
			   READ_ONCE(execlists->switch_priority_hint));
6055 6056
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
6057
			   READ_ONCE(execlists->queue_priority_hint));
6058 6059 6060

	last = NULL;
	count = 0;
6061 6062 6063 6064 6065 6066
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
6067
				show_request(m, rq, "\t\t", 0);
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
6078
		show_request(m, last, "\t\t", 0);
6079 6080
	}

6081 6082 6083 6084 6085 6086 6087 6088 6089
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
6090
				show_request(m, rq, "\t\t", 0);
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
6101
		show_request(m, last, "\t\t", 0);
6102 6103
	}

6104
	spin_unlock_irqrestore(&engine->active.lock, flags);
6105 6106
}

6107 6108 6109 6110 6111
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
6112 6113
	GEM_BUG_ON(!intel_context_is_pinned(ce));

6114 6115 6116 6117 6118 6119 6120 6121
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
6122 6123
	if (scrub)
		restore_default_state(ce, engine);
6124 6125

	/* Rerun the request; its payload has been neutered (if guilty). */
6126
	__execlists_update_reg_state(ce, engine, head);
6127 6128
}

6129 6130 6131 6132 6133 6134 6135
bool
intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
{
	return engine->set_default_submission ==
	       intel_execlists_set_default_submission;
}

6136
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6137
#include "selftest_lrc.c"
6138
#endif