mmu.c 40.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/sections.h>
26
#include <asm/setup.h>
27
#include <asm/smp_plat.h>
28
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
29
#include <asm/highmem.h>
30
#include <asm/system_info.h>
31
#include <asm/traps.h>
32 33
#include <asm/procinfo.h>
#include <asm/memory.h>
34 35 36

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
37
#include <asm/mach/pci.h>
38 39

#include "mm.h"
40
#include "tcm.h"
41 42 43 44 45 46

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
47
EXPORT_SYMBOL(empty_zero_page);
48 49 50 51 52 53

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

54 55 56 57 58 59 60 61
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
62
pgprot_t pgprot_user;
63
pgprot_t pgprot_kernel;
64 65 66
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
67

68
EXPORT_SYMBOL(pgprot_user);
69 70 71 72 73
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
74
	pmdval_t	pmd;
75
	pteval_t	pte;
76
	pteval_t	pte_s2;
77 78
};

79 80 81 82 83 84
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

85 86 87 88 89
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
90
		.pte		= L_PTE_MT_UNCACHED,
91
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
92 93 94 95
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
96
		.pte		= L_PTE_MT_BUFFERABLE,
97
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
98 99 100 101
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
102
		.pte		= L_PTE_MT_WRITETHROUGH,
103
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 105 106 107
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
108
		.pte		= L_PTE_MT_WRITEBACK,
109
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
110 111 112 113
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
114
		.pte		= L_PTE_MT_WRITEALLOC,
115
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
116 117 118
	}
};

119
#ifdef CONFIG_CPU_CP15
120
/*
S
Simon Arlott 已提交
121
 * These are useful for identifying cache coherency
122 123 124 125
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
126
static int __init early_cachepolicy(char *p)
127
{
128
	unsigned long cr = get_cr();
129 130 131 132 133
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

134
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
135
			cachepolicy = i;
136
			cr = __clear_cr(cache_policies[i].cr_mask);
137 138 139 140 141
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 143 144 145 146 147 148
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
149 150 151 152
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
153
	flush_cache_all();
154
	set_cr(cr);
155
	return 0;
156
}
157
early_param("cachepolicy", early_cachepolicy);
158

159
static int __init early_nocache(char *__unused)
160 161 162
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 164
	early_cachepolicy(p);
	return 0;
165
}
166
early_param("nocache", early_nocache);
167

168
static int __init early_nowrite(char *__unused)
169 170 171
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 173
	early_cachepolicy(p);
	return 0;
174
}
175
early_param("nowb", early_nowrite);
176

177
#ifndef CONFIG_ARM_LPAE
178
static int __init early_ecc(char *p)
179
{
180
	if (memcmp(p, "on", 2) == 0)
181
		ecc_mask = PMD_PROTECTION;
182
	else if (memcmp(p, "off", 3) == 0)
183
		ecc_mask = 0;
184
	return 0;
185
}
186
early_param("ecc", early_ecc);
187
#endif
188 189 190

static int __init noalign_setup(char *__unused)
{
191
	set_cr(__clear_cr(CR_A));
192 193 194 195
	return 1;
}
__setup("noalign", noalign_setup);

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

232
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
233
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
234
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
235

236
static struct mem_type mem_types[] = {
237
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
238 239
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
240 241 242
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
243
		.prot_l1	= PMD_TYPE_TABLE,
244
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
245 246 247
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
248
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
249
		.prot_l1	= PMD_TYPE_TABLE,
250
		.prot_sect	= PROT_SECT_DEVICE,
251 252 253
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
254
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
255 256 257
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
258
	},
259
	[MT_DEVICE_WC] = {	/* ioremap_wc */
260
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
261
		.prot_l1	= PMD_TYPE_TABLE,
262
		.prot_sect	= PROT_SECT_DEVICE,
263
		.domain		= DOMAIN_IO,
264
	},
265 266 267 268 269 270
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
271
	[MT_CACHECLEAN] = {
272
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
273 274
		.domain    = DOMAIN_KERNEL,
	},
275
#ifndef CONFIG_ARM_LPAE
276
	[MT_MINICLEAN] = {
277
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
278 279
		.domain    = DOMAIN_KERNEL,
	},
280
#endif
281 282
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283
				L_PTE_RDONLY,
284 285 286 287 288
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
289
				L_PTE_USER | L_PTE_RDONLY,
290 291 292
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
293
	[MT_MEMORY_RWX] = {
294
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
295
		.prot_l1   = PMD_TYPE_TABLE,
296
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 298
		.domain    = DOMAIN_KERNEL,
	},
299 300 301 302 303 304 305
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
306
	[MT_ROM] = {
307
		.prot_sect = PMD_TYPE_SECT,
308 309
		.domain    = DOMAIN_KERNEL,
	},
310
	[MT_MEMORY_RWX_NONCACHED] = {
311
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
312
				L_PTE_MT_BUFFERABLE,
313
		.prot_l1   = PMD_TYPE_TABLE,
314 315 316
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
317
	[MT_MEMORY_RW_DTCM] = {
318
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319
				L_PTE_XN,
320 321 322
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
323
	},
324
	[MT_MEMORY_RWX_ITCM] = {
325
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
326
		.prot_l1   = PMD_TYPE_TABLE,
327
		.domain    = DOMAIN_KERNEL,
328
	},
329
	[MT_MEMORY_RW_SO] = {
330
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331
				L_PTE_MT_UNCACHED | L_PTE_XN,
332 333 334 335 336
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
337
	[MT_MEMORY_DMA_READY] = {
338 339
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
340 341 342
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
343 344
};

345 346 347 348
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
349
EXPORT_SYMBOL(get_mem_type);
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
#define PTE_SET_FN(_name, pteop) \
static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
			void *data) \
{ \
	pte_t pte = pteop(*ptep); \
\
	set_pte_ext(ptep, pte, 0); \
	return 0; \
} \

#define SET_MEMORY_FN(_name, callback) \
int set_memory_##_name(unsigned long addr, int numpages) \
{ \
	unsigned long start = addr; \
	unsigned long size = PAGE_SIZE*numpages; \
	unsigned end = start + size; \
\
	if (start < MODULES_VADDR || start >= MODULES_END) \
		return -EINVAL;\
\
	if (end < MODULES_VADDR || end >= MODULES_END) \
		return -EINVAL; \
\
	apply_to_page_range(&init_mm, start, size, callback, NULL); \
	flush_tlb_kernel_range(start, end); \
	return 0;\
}

PTE_SET_FN(ro, pte_wrprotect)
PTE_SET_FN(rw, pte_mkwrite)
PTE_SET_FN(x, pte_mkexec)
PTE_SET_FN(nx, pte_mknexec)

SET_MEMORY_FN(ro, pte_set_ro)
SET_MEMORY_FN(rw, pte_set_rw)
SET_MEMORY_FN(x, pte_set_x)
SET_MEMORY_FN(nx, pte_set_nx)

389 390 391 392 393 394 395
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
396
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
397
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
398 399 400
	int cpu_arch = cpu_architecture();
	int i;

401
	if (cpu_arch < CPU_ARCH_ARMv6) {
402
#if defined(CONFIG_CPU_DCACHE_DISABLE)
403 404
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
405
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
406 407
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
408
#endif
409
	}
410 411 412 413 414
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
415 416
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
417

418
	/*
419 420 421
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
422
	 */
423 424 425 426 427 428
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
429 430

	/*
431 432 433
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
434
	 */
435
	if (cpu_is_xscale() || cpu_is_xsc3()) {
436
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
437
			mem_types[i].prot_sect &= ~PMD_BIT4;
438 439 440 441
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
442 443
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
444 445 446 447
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
448

449 450 451 452 453 454 455 456 457 458 459 460 461
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
462 463 464

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
510
	cp = &cache_policies[cachepolicy];
511
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
512
	s2_pgprot = cp->pte_s2;
513 514
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
515

516 517 518 519 520 521 522 523 524
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
#ifndef CONFIG_ARM_LPAE
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
#endif
525

526 527 528 529
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
530
#ifndef CONFIG_ARM_LPAE
531 532 533 534 535 536 537
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
538
#endif
539

540 541 542 543 544 545 546 547
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
548
			s2_pgprot |= L_PTE_SHARED;
549 550 551 552
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
553 554
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
555 556
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
557
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
558 559
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
560
		}
561 562
	}

563 564 565 566 567 568 569
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
570
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
571 572 573
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
574
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
575 576 577
				PMD_SECT_TEX(1);
		}
	} else {
578
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
579 580
	}

581 582 583 584 585 586
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
587 588
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
589 590 591 592 593
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

594
	for (i = 0; i < 16; i++) {
595
		pteval_t v = pgprot_val(protection_map[i]);
596
		protection_map[i] = __pgprot(v | user_pgprot);
597 598
	}

599 600
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
601

602
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
603
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
604
				 L_PTE_DIRTY | kern_pgprot);
605 606 607
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
608 609 610

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
611 612
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
613 614
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
615
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
616
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
617 618 619 620 621 622 623 624 625 626 627
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
628 629
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
630 631 632 633 634 635 636 637

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

653 654
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

655
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
656
{
657
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
658 659
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
660 661
}

662 663 664 665 666
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
667
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
668
{
669
	if (pmd_none(*pmd)) {
670
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
671
		__pmd_populate(pmd, __pa(pte), prot);
672
	}
R
Russell King 已提交
673 674 675
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
676

R
Russell King 已提交
677 678 679 680 681
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
682
	do {
683
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
684 685
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
686 687
}

688
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
689 690
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
691
{
692 693
	pmd_t *p = pmd;

694
#ifndef CONFIG_ARM_LPAE
695
	/*
696 697 698 699 700 701 702
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
703
	 */
704 705
	if (addr & SECTION_SIZE)
		pmd++;
706
#endif
707 708 709 710
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
711

712
	flush_pmd_entry(p);
713
}
714

715 716 717 718 719 720 721 722
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
723
		/*
724 725
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
726
		 */
727 728 729 730 731 732 733 734
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
735
			__map_init_section(pmd, addr, next, phys, type);
736 737 738 739 740 741 742 743
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
744 745
}

746
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
747 748
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
749 750 751 752 753 754
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
755
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
756 757 758 759
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

760
#ifndef CONFIG_ARM_LPAE
761 762 763
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
764 765
	unsigned long addr, length, end;
	phys_addr_t phys;
766 767 768
	pgd_t *pgd;

	addr = md->virtual;
769
	phys = __pfn_to_phys(md->pfn);
770 771 772 773 774
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
775
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
776 777 778 779 780 781 782 783 784 785 786 787
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
788
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
789 790 791 792
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
793 794 795
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
796 797 798 799 800 801 802 803 804 805 806 807
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
808 809
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
810 811 812 813 814 815 816 817 818 819
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
820
#endif	/* !CONFIG_ARM_LPAE */
821

822 823 824 825 826 827 828
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
829
static void __init create_mapping(struct map_desc *md)
830
{
831 832
	unsigned long addr, length, end;
	phys_addr_t phys;
833
	const struct mem_type *type;
834
	pgd_t *pgd;
835 836

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
837 838 839
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
840 841 842 843
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
844 845
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
846
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
847
		       " at 0x%08lx out of vmalloc space\n",
848
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
849 850
	}

851
	type = &mem_types[md->type];
852

853
#ifndef CONFIG_ARM_LPAE
854 855 856
	/*
	 * Catch 36-bit addresses
	 */
857 858 859
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
860
	}
861
#endif
862

863
	addr = md->virtual & PAGE_MASK;
864
	phys = __pfn_to_phys(md->pfn);
865
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
866

867
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
868
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
869
		       "be mapped using pages, ignoring.\n",
870
		       (long long)__pfn_to_phys(md->pfn), addr);
871 872 873
		return;
	}

874 875 876 877
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
878

R
Russell King 已提交
879
		alloc_init_pud(pgd, addr, next, phys, type);
880

881 882 883
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
884 885 886 887 888 889 890
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
891 892
	struct map_desc *md;
	struct vm_struct *vm;
893
	struct static_vm *svm;
894 895 896

	if (!nr)
		return;
897

898
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
899 900 901

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
902 903

		vm = &svm->vm;
904 905
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
906 907
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
908
		vm->flags |= VM_ARM_MTYPE(md->type);
909
		vm->caller = iotable_init;
910
		add_static_vm_early(svm++);
911
	}
912 913
}

R
Rob Herring 已提交
914 915 916 917
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
918 919 920
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
921

922
	vm = &svm->vm;
R
Rob Herring 已提交
923 924
	vm->addr = (void *)addr;
	vm->size = size;
925
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
926
	vm->caller = caller;
927
	add_static_vm_early(svm);
R
Rob Herring 已提交
928 929
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
947
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
948 949 950 951
}

static void __init fill_pmd_gaps(void)
{
952
	struct static_vm *svm;
953 954 955 956
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

957 958
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
995 996 997
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
998
	struct static_vm *svm;
R
Rob Herring 已提交
999

1000 1001 1002
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1003 1004 1005 1006 1007 1008 1009

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1022
	iotable_init(&map, 1);
R
Rob Herring 已提交
1023 1024 1025
}
#endif

1026 1027
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1028 1029 1030 1031

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1032
 * area - the default is 240m.
1033
 */
1034
static int __init early_vmalloc(char *arg)
1035
{
R
Russell King 已提交
1036
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1037 1038 1039 1040 1041 1042 1043

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
1044 1045 1046 1047 1048 1049 1050

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1051 1052

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1053
	return 0;
1054
}
1055
early_param("vmalloc", early_vmalloc);
1056

1057
phys_addr_t arm_lowmem_limit __initdata = 0;
1058

1059
void __init sanity_check_meminfo(void)
1060
{
1061
	phys_addr_t memblock_limit = 0;
R
Russell King 已提交
1062
	int i, j, highmem = 0;
1063
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1064

1065
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1066
		struct membank *bank = &meminfo.bank[j];
1067
		phys_addr_t size_limit;
1068

1069
		*bank = meminfo.bank[i];
1070
		size_limit = bank->size;
1071

1072
		if (bank->start >= vmalloc_limit)
R
Russell King 已提交
1073
			highmem = 1;
1074 1075
		else
			size_limit = vmalloc_limit - bank->start;
R
Russell King 已提交
1076 1077 1078

		bank->highmem = highmem;

1079
#ifdef CONFIG_HIGHMEM
1080 1081 1082 1083
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
1084
		if (!highmem && bank->size > size_limit) {
1085 1086 1087 1088 1089 1090 1091 1092
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
1093
				bank[1].size -= size_limit;
1094
				bank[1].start = vmalloc_limit;
R
Russell King 已提交
1095
				bank[1].highmem = highmem = 1;
1096 1097
				j++;
			}
1098
			bank->size = size_limit;
1099 1100
		}
#else
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

1112 1113 1114 1115
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
1116
		if (bank->size > size_limit) {
1117 1118 1119 1120
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
1121 1122
			       (unsigned long long)bank->start + size_limit - 1);
			bank->size = size_limit;
1123 1124
		}
#endif
1125 1126
		if (!bank->highmem) {
			phys_addr_t bank_end = bank->start + bank->size;
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
			if (bank_end > arm_lowmem_limit)
				arm_lowmem_limit = bank_end;

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
					memblock_limit = bank->start;
				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
					memblock_limit = bank_end;
			}
		}
1151
		j++;
1152
	}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1173
	meminfo.nr_banks = j;
1174
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1187 1188
}

1189
static inline void prepare_page_table(void)
1190 1191
{
	unsigned long addr;
1192
	phys_addr_t end;
1193 1194 1195 1196

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1197
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1198 1199 1200 1201
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1202
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1203
#endif
1204
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1205 1206
		pmd_clear(pmd_off_k(addr));

1207 1208 1209 1210
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1211 1212
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1213

1214 1215
	/*
	 * Clear out all the kernel space mappings, except for the first
1216
	 * memory bank, up to the vmalloc region.
1217
	 */
1218
	for (addr = __phys_to_virt(end);
1219
	     addr < VMALLOC_START; addr += PMD_SIZE)
1220 1221 1222
		pmd_clear(pmd_off_k(addr));
}

1223 1224 1225 1226 1227
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1228
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1229
#endif
1230

1231
/*
R
Russell King 已提交
1232
 * Reserve the special regions of memory
1233
 */
R
Russell King 已提交
1234
void __init arm_mm_memblock_reserve(void)
1235 1236 1237 1238 1239
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1240
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1241 1242 1243 1244 1245 1246

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1247
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1248 1249 1250 1251
#endif
}

/*
1252 1253
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1254 1255 1256 1257
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1258
static void __init devicemaps_init(const struct machine_desc *mdesc)
1259 1260 1261
{
	struct map_desc map;
	unsigned long addr;
1262
	void *vectors;
1263 1264 1265 1266

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1267
	vectors = early_alloc(PAGE_SIZE * 2);
1268 1269

	early_trap_init(vectors);
1270

1271
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1272 1273 1274 1275 1276 1277 1278 1279
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1280
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1281
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1309
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1310 1311
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1312
#ifdef CONFIG_KUSER_HELPERS
1313
	map.type = MT_HIGH_VECTORS;
1314 1315 1316
#else
	map.type = MT_LOW_VECTORS;
#endif
1317 1318 1319 1320
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1321
		map.length = PAGE_SIZE * 2;
1322 1323 1324 1325
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1326 1327 1328 1329 1330 1331 1332
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1333 1334 1335 1336 1337
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1338 1339
	else
		debug_ll_io_init();
1340
	fill_pmd_gaps();
1341

R
Rob Herring 已提交
1342 1343 1344
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1355 1356 1357
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1358 1359
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1360 1361 1362
#endif
}

1363 1364
static void __init map_lowmem(void)
{
1365
	struct memblock_region *reg;
1366 1367
	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1368 1369

	/* Map all the lowmem memory banks. */
1370 1371 1372 1373 1374
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1375 1376
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1377 1378 1379
		if (start >= end)
			break;

1380 1381 1382 1383 1384
		if (end < kernel_x_start || start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1414 1415 1416
	}
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
	map_start = init_mm.start_code;
	map_end   = init_mm.brk;

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
	dsb();
	isb();

	/* remap level 1 table */
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

	/* remap pmds for kernel mapping */
	phys = __pa(map_start) & PMD_MASK;
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

	flush_cache_all();
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1497 1498 1499 1500
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1501
void __init paging_init(const struct machine_desc *mdesc)
1502 1503 1504 1505
{
	void *zero_page;

	build_mem_type_table();
1506
	prepare_page_table();
1507
	map_lowmem();
1508
	dma_contiguous_remap();
1509
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1510
	kmap_init();
1511
	tcm_init();
1512 1513 1514

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1515 1516
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1517

1518
	bootmem_init();
R
Russell King 已提交
1519

1520
	empty_zero_page = virt_to_page(zero_page);
1521
	__flush_dcache_page(NULL, empty_zero_page);
1522
}