kvm-s390.c 107.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * hosting IBM Z kernel virtual machines (s390x)
4
 *
5
 * Copyright IBM Corp. 2008, 2018
6 7 8 9
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
10
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
11
 *               Jason J. Herne <jjherne@us.ibm.com>
12 13 14 15 16
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
17
#include <linux/hrtimer.h>
18 19 20
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
21
#include <linux/mman.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/random.h>
25
#include <linux/slab.h>
26
#include <linux/timer.h>
27
#include <linux/vmalloc.h>
28
#include <linux/bitmap.h>
29
#include <linux/sched/signal.h>
30
#include <linux/string.h>
31

32
#include <asm/asm-offsets.h>
33
#include <asm/lowcore.h>
34
#include <asm/stp.h>
35
#include <asm/pgtable.h>
36
#include <asm/gmap.h>
37
#include <asm/nmi.h>
38
#include <asm/switch_to.h>
39
#include <asm/isc.h>
40
#include <asm/sclp.h>
41
#include <asm/cpacf.h>
42
#include <asm/timex.h>
43
#include "kvm-s390.h"
44 45
#include "gaccess.h"

46 47 48 49
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

50 51
#define CREATE_TRACE_POINTS
#include "trace.h"
52
#include "trace-s390.h"
53

54
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
55 56 57
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
58

59
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
61 62 63

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
64
	{ "exit_null", VCPU_STAT(exit_null) },
65 66 67
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
68
	{ "exit_io_request", VCPU_STAT(exit_io_request) },
69
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
70
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
71
	{ "exit_pei", VCPU_STAT(exit_pei) },
72 73
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
74
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
75
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
76
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
77
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
78
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
79
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
80
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
81 82
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
83 84
	{ "deliver_ckc", VCPU_STAT(deliver_ckc) },
	{ "deliver_cputm", VCPU_STAT(deliver_cputm) },
85
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
86
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
88
	{ "deliver_virtio", VCPU_STAT(deliver_virtio) },
89 90 91
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
92 93
	{ "deliver_program", VCPU_STAT(deliver_program) },
	{ "deliver_io", VCPU_STAT(deliver_io) },
94
	{ "deliver_machine_check", VCPU_STAT(deliver_machine_check) },
95
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	{ "inject_ckc", VCPU_STAT(inject_ckc) },
	{ "inject_cputm", VCPU_STAT(inject_cputm) },
	{ "inject_external_call", VCPU_STAT(inject_external_call) },
	{ "inject_float_mchk", VM_STAT(inject_float_mchk) },
	{ "inject_emergency_signal", VCPU_STAT(inject_emergency_signal) },
	{ "inject_io", VM_STAT(inject_io) },
	{ "inject_mchk", VCPU_STAT(inject_mchk) },
	{ "inject_pfault_done", VM_STAT(inject_pfault_done) },
	{ "inject_program", VCPU_STAT(inject_program) },
	{ "inject_restart", VCPU_STAT(inject_restart) },
	{ "inject_service_signal", VM_STAT(inject_service_signal) },
	{ "inject_set_prefix", VCPU_STAT(inject_set_prefix) },
	{ "inject_stop_signal", VCPU_STAT(inject_stop_signal) },
	{ "inject_pfault_init", VCPU_STAT(inject_pfault_init) },
	{ "inject_virtio", VM_STAT(inject_virtio) },
111 112 113 114 115
	{ "instruction_epsw", VCPU_STAT(instruction_epsw) },
	{ "instruction_gs", VCPU_STAT(instruction_gs) },
	{ "instruction_io_other", VCPU_STAT(instruction_io_other) },
	{ "instruction_lpsw", VCPU_STAT(instruction_lpsw) },
	{ "instruction_lpswe", VCPU_STAT(instruction_lpswe) },
116
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
117
	{ "instruction_ptff", VCPU_STAT(instruction_ptff) },
118
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
119 120
	{ "instruction_sck", VCPU_STAT(instruction_sck) },
	{ "instruction_sckpf", VCPU_STAT(instruction_sckpf) },
121 122 123
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
124 125 126 127
	{ "instruction_iske", VCPU_STAT(instruction_iske) },
	{ "instruction_ri", VCPU_STAT(instruction_ri) },
	{ "instruction_rrbe", VCPU_STAT(instruction_rrbe) },
	{ "instruction_sske", VCPU_STAT(instruction_sske) },
128
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
129
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
130 131
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
132 133
	{ "instruction_tb", VCPU_STAT(instruction_tb) },
	{ "instruction_tpi", VCPU_STAT(instruction_tpi) },
134
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
135
	{ "instruction_tsch", VCPU_STAT(instruction_tsch) },
J
Janosch Frank 已提交
136
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
137
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
138
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
139
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
140
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
141
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
142 143
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
144
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
145 146
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
147
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
148 149 150
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
151 152 153
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
154 155 156 157 158 159
	{ "instruction_diag_10", VCPU_STAT(diagnose_10) },
	{ "instruction_diag_44", VCPU_STAT(diagnose_44) },
	{ "instruction_diag_9c", VCPU_STAT(diagnose_9c) },
	{ "instruction_diag_258", VCPU_STAT(diagnose_258) },
	{ "instruction_diag_308", VCPU_STAT(diagnose_308) },
	{ "instruction_diag_500", VCPU_STAT(diagnose_500) },
160
	{ "instruction_diag_other", VCPU_STAT(diagnose_other) },
161 162 163
	{ NULL }
};

164 165 166 167 168 169
struct kvm_s390_tod_clock_ext {
	__u8 epoch_idx;
	__u64 tod;
	__u8 reserved[7];
} __packed;

170 171 172 173 174
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/*
 * For now we handle at most 16 double words as this is what the s390 base
 * kernel handles and stores in the prefix page. If we ever need to go beyond
 * this, this requires changes to code, but the external uapi can stay.
 */
#define SIZE_INTERNAL 16

/*
 * Base feature mask that defines default mask for facilities. Consists of the
 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
 */
static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
/*
 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
 * and defines the facilities that can be enabled via a cpu model.
 */
static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };

static unsigned long kvm_s390_fac_size(void)
195
{
196 197 198 199 200 201
	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
	BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
	BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
		sizeof(S390_lowcore.stfle_fac_list));

	return SIZE_INTERNAL;
202 203
}

204 205
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
206 207
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
208

209
static struct gmap_notifier gmap_notifier;
210
static struct gmap_notifier vsie_gmap_notifier;
211
debug_info_t *kvm_s390_dbf;
212

213
/* Section: not file related */
214
int kvm_arch_hardware_enable(void)
215 216
{
	/* every s390 is virtualization enabled ;-) */
217
	return 0;
218 219
}

220 221
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
{
	u8 delta_idx = 0;

	/*
	 * The TOD jumps by delta, we have to compensate this by adding
	 * -delta to the epoch.
	 */
	delta = -delta;

	/* sign-extension - we're adding to signed values below */
	if ((s64)delta < 0)
		delta_idx = -1;

	scb->epoch += delta;
	if (scb->ecd & ECD_MEF) {
		scb->epdx += delta_idx;
		if (scb->epoch < delta)
			scb->epdx += 1;
	}
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm_for_each_vcpu(i, vcpu, kvm) {
261 262 263 264 265
			kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
			if (i == 0) {
				kvm->arch.epoch = vcpu->arch.sie_block->epoch;
				kvm->arch.epdx = vcpu->arch.sie_block->epdx;
			}
266 267
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
268
			if (vcpu->arch.vsie_block)
269 270
				kvm_clock_sync_scb(vcpu->arch.vsie_block,
						   *delta);
271 272 273 274 275 276 277 278 279
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

280 281
int kvm_arch_hardware_setup(void)
{
282
	gmap_notifier.notifier_call = kvm_gmap_notifier;
283
	gmap_register_pte_notifier(&gmap_notifier);
284 285
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
286 287
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
288 289 290 291 292
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
293
	gmap_unregister_pte_notifier(&gmap_notifier);
294
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
295 296
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
297 298
}

299 300 301 302 303
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

304 305 306
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
307
	int cc;
308 309 310 311 312 313 314 315 316 317 318 319

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

320 321
static void kvm_s390_cpu_feat_init(void)
{
322 323 324 325 326 327 328 329
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
330 331 332
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
333 334

	if (test_facility(17)) { /* MSA */
335 336 337 338 339 340 341 342 343 344
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
345 346
	}
	if (test_facility(76)) /* MSA3 */
347 348
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
349
	if (test_facility(77)) { /* MSA4 */
350 351 352 353 354 355 356 357
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
358 359
	}
	if (test_facility(57)) /* MSA5 */
360
		__cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
361
			      kvm_s390_available_subfunc.ppno);
362

363 364 365 366
	if (test_facility(146)) /* MSA8 */
		__cpacf_query(CPACF_KMA, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kma);

367 368
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
369 370 371 372 373
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
374
	    !test_facility(3) || !nested)
375 376
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
377 378
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
379 380
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
381 382
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
383 384
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
385 386
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
387 388
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
389 390
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
391 392
	if (sclp.has_kss)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
411 412
}

413 414
int kvm_arch_init(void *opaque)
{
415 416 417 418 419 420 421 422 423
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

424 425
	kvm_s390_cpu_feat_init();

426 427
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
428 429
}

430 431 432 433 434
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

435 436 437 438 439 440 441 442 443
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

444
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
445
{
446 447
	int r;

448
	switch (ext) {
449
	case KVM_CAP_S390_PSW:
450
	case KVM_CAP_S390_GMAP:
451
	case KVM_CAP_SYNC_MMU:
452 453 454
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
455
	case KVM_CAP_ASYNC_PF:
456
	case KVM_CAP_SYNC_REGS:
457
	case KVM_CAP_ONE_REG:
458
	case KVM_CAP_ENABLE_CAP:
459
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
460
	case KVM_CAP_IOEVENTFD:
461
	case KVM_CAP_DEVICE_CTRL:
462
	case KVM_CAP_ENABLE_CAP_VM:
463
	case KVM_CAP_S390_IRQCHIP:
464
	case KVM_CAP_VM_ATTRIBUTES:
465
	case KVM_CAP_MP_STATE:
466
	case KVM_CAP_IMMEDIATE_EXIT:
467
	case KVM_CAP_S390_INJECT_IRQ:
468
	case KVM_CAP_S390_USER_SIGP:
469
	case KVM_CAP_S390_USER_STSI:
470
	case KVM_CAP_S390_SKEYS:
471
	case KVM_CAP_S390_IRQ_STATE:
472
	case KVM_CAP_S390_USER_INSTR0:
473
	case KVM_CAP_S390_CMMA_MIGRATION:
474
	case KVM_CAP_S390_AIS:
475
	case KVM_CAP_S390_AIS_MIGRATION:
476 477
		r = 1;
		break;
478 479 480
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
481 482
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
483
		r = KVM_S390_BSCA_CPU_SLOTS;
484 485 486
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
487
			r = KVM_S390_ESCA_CPU_SLOTS;
488
		break;
489 490 491
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
492
	case KVM_CAP_S390_COW:
493
		r = MACHINE_HAS_ESOP;
494
		break;
495 496 497
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
498 499 500
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
F
Fan Zhang 已提交
501 502 503
	case KVM_CAP_S390_GS:
		r = test_facility(133);
		break;
504 505 506
	case KVM_CAP_S390_BPB:
		r = test_facility(82);
		break;
507
	default:
508
		r = 0;
509
	}
510
	return r;
511 512
}

513
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
514
				    struct kvm_memory_slot *memslot)
515
{
516
	int i;
517
	gfn_t cur_gfn, last_gfn;
518
	unsigned long gaddr, vmaddr;
519
	struct gmap *gmap = kvm->arch.gmap;
520
	DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
521

522 523
	/* Loop over all guest segments */
	cur_gfn = memslot->base_gfn;
524
	last_gfn = memslot->base_gfn + memslot->npages;
525 526 527 528 529 530 531 532 533 534 535 536
	for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
		gaddr = gfn_to_gpa(cur_gfn);
		vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
		if (kvm_is_error_hva(vmaddr))
			continue;

		bitmap_zero(bitmap, _PAGE_ENTRIES);
		gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
		for (i = 0; i < _PAGE_ENTRIES; i++) {
			if (test_bit(i, bitmap))
				mark_page_dirty(kvm, cur_gfn + i);
		}
537

538 539
		if (fatal_signal_pending(current))
			return;
540
		cond_resched();
541 542 543
	}
}

544
/* Section: vm related */
545 546
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

547 548 549 550 551 552
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
553 554
	int r;
	unsigned long n;
555
	struct kvm_memslots *slots;
556 557 558
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

559 560 561
	if (kvm_is_ucontrol(kvm))
		return -EINVAL;

562 563 564 565 566 567
	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

568 569
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
588 589
}

590 591 592 593 594 595 596 597 598 599
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

600 601 602 603 604 605 606 607
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
608
	case KVM_CAP_S390_IRQCHIP:
609
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
610 611 612
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
613
	case KVM_CAP_S390_USER_SIGP:
614
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
615 616 617
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
618
	case KVM_CAP_S390_VECTOR_REGISTERS:
619
		mutex_lock(&kvm->lock);
620
		if (kvm->created_vcpus) {
621 622
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
623 624
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
625 626 627 628
			if (test_facility(134)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 134);
				set_kvm_facility(kvm->arch.model.fac_list, 134);
			}
629 630 631 632
			if (test_facility(135)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 135);
				set_kvm_facility(kvm->arch.model.fac_list, 135);
			}
633 634 635
			r = 0;
		} else
			r = -EINVAL;
636
		mutex_unlock(&kvm->lock);
637 638
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
639
		break;
640 641 642
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
643
		if (kvm->created_vcpus) {
644 645
			r = -EBUSY;
		} else if (test_facility(64)) {
646 647
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
648 649 650 651 652 653
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
654 655 656 657 658 659 660 661 662 663 664 665 666
	case KVM_CAP_S390_AIS:
		mutex_lock(&kvm->lock);
		if (kvm->created_vcpus) {
			r = -EBUSY;
		} else {
			set_kvm_facility(kvm->arch.model.fac_mask, 72);
			set_kvm_facility(kvm->arch.model.fac_list, 72);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: AIS %s",
			 r ? "(not available)" : "(success)");
		break;
F
Fan Zhang 已提交
667 668 669
	case KVM_CAP_S390_GS:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
670
		if (kvm->created_vcpus) {
F
Fan Zhang 已提交
671 672 673 674 675 676 677 678 679 680
			r = -EBUSY;
		} else if (test_facility(133)) {
			set_kvm_facility(kvm->arch.model.fac_mask, 133);
			set_kvm_facility(kvm->arch.model.fac_list, 133);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
			 r ? "(not available)" : "(success)");
		break;
681
	case KVM_CAP_S390_USER_STSI:
682
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
683 684 685
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
686 687 688 689 690 691
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
692 693 694 695 696 697 698
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

699 700 701 702 703 704 705
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
706
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
707 708
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
709 710 711 712 713 714 715 716 717 718
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
719 720 721 722 723
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
724
		ret = -ENXIO;
725
		if (!sclp.has_cmma)
726 727
			break;

728
		ret = -EBUSY;
729
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
730
		mutex_lock(&kvm->lock);
731
		if (!kvm->created_vcpus) {
732
			kvm->arch.use_cmma = 1;
733 734
			/* Not compatible with cmma. */
			kvm->arch.use_pfmfi = 0;
735 736 737 738 739
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
740 741 742
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
743 744 745 746
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

747
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
748 749
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
750
		s390_reset_cmma(kvm->arch.gmap->mm);
751 752 753 754
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
755 756 757 758 759 760 761 762 763
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

764 765
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
766 767
			return -E2BIG;

768 769 770
		if (!new_limit)
			return -EINVAL;

771
		/* gmap_create takes last usable address */
772 773 774
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

775 776
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
777
		if (!kvm->created_vcpus) {
778 779
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
780 781 782 783

			if (!new) {
				ret = -ENOMEM;
			} else {
784
				gmap_remove(kvm->arch.gmap);
785 786 787 788 789 790
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
791 792 793
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
794 795
		break;
	}
796 797 798 799 800 801 802
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

803 804
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

805
void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
806 807 808 809
{
	struct kvm_vcpu *vcpu;
	int i;

810 811 812 813 814 815 816 817 818 819
	kvm_s390_vcpu_block_all(kvm);

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_s390_vcpu_crypto_setup(vcpu);

	kvm_s390_vcpu_unblock_all(kvm);
}

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
820
	if (!test_kvm_facility(kvm, 76))
821 822 823 824 825 826 827 828 829
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
830
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
831 832 833 834 835 836
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
837
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
838 839 840 841 842
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
843
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
844 845 846 847 848
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
849
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
850 851 852 853 854 855
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

856
	kvm_s390_vcpu_crypto_reset_all(kvm);
857 858 859 860
	mutex_unlock(&kvm->lock);
	return 0;
}

861 862 863 864 865 866 867 868 869 870 871
static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
{
	int cx;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(cx, vcpu, kvm)
		kvm_s390_sync_request(req, vcpu);
}

/*
 * Must be called with kvm->srcu held to avoid races on memslots, and with
872
 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
 */
static int kvm_s390_vm_start_migration(struct kvm *kvm)
{
	struct kvm_s390_migration_state *mgs;
	struct kvm_memory_slot *ms;
	/* should be the only one */
	struct kvm_memslots *slots;
	unsigned long ram_pages;
	int slotnr;

	/* migration mode already enabled */
	if (kvm->arch.migration_state)
		return 0;

	slots = kvm_memslots(kvm);
	if (!slots || !slots->used_slots)
		return -EINVAL;

	mgs = kzalloc(sizeof(*mgs), GFP_KERNEL);
	if (!mgs)
		return -ENOMEM;
	kvm->arch.migration_state = mgs;

	if (kvm->arch.use_cmma) {
		/*
898 899 900 901
		 * Get the first slot. They are reverse sorted by base_gfn, so
		 * the first slot is also the one at the end of the address
		 * space. We have verified above that at least one slot is
		 * present.
902
		 */
903
		ms = slots->memslots;
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		/* round up so we only use full longs */
		ram_pages = roundup(ms->base_gfn + ms->npages, BITS_PER_LONG);
		/* allocate enough bytes to store all the bits */
		mgs->pgste_bitmap = vmalloc(ram_pages / 8);
		if (!mgs->pgste_bitmap) {
			kfree(mgs);
			kvm->arch.migration_state = NULL;
			return -ENOMEM;
		}

		mgs->bitmap_size = ram_pages;
		atomic64_set(&mgs->dirty_pages, ram_pages);
		/* mark all the pages in active slots as dirty */
		for (slotnr = 0; slotnr < slots->used_slots; slotnr++) {
			ms = slots->memslots + slotnr;
			bitmap_set(mgs->pgste_bitmap, ms->base_gfn, ms->npages);
		}

		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
	}
	return 0;
}

/*
928
 * Must be called with kvm->slots_lock to avoid races with ourselves and
929 930 931 932 933 934 935 936 937 938 939 940 941 942
 * kvm_s390_vm_start_migration.
 */
static int kvm_s390_vm_stop_migration(struct kvm *kvm)
{
	struct kvm_s390_migration_state *mgs;

	/* migration mode already disabled */
	if (!kvm->arch.migration_state)
		return 0;
	mgs = kvm->arch.migration_state;
	kvm->arch.migration_state = NULL;

	if (kvm->arch.use_cmma) {
		kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
943 944
		/* We have to wait for the essa emulation to finish */
		synchronize_srcu(&kvm->srcu);
945 946 947 948 949 950 951 952 953
		vfree(mgs->pgste_bitmap);
	}
	kfree(mgs);
	return 0;
}

static int kvm_s390_vm_set_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
954
	int res = -ENXIO;
955

956
	mutex_lock(&kvm->slots_lock);
957 958 959 960 961 962 963 964 965 966
	switch (attr->attr) {
	case KVM_S390_VM_MIGRATION_START:
		res = kvm_s390_vm_start_migration(kvm);
		break;
	case KVM_S390_VM_MIGRATION_STOP:
		res = kvm_s390_vm_stop_migration(kvm);
		break;
	default:
		break;
	}
967
	mutex_unlock(&kvm->slots_lock);
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

	return res;
}

static int kvm_s390_vm_get_migration(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	u64 mig = (kvm->arch.migration_state != NULL);

	if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
		return -ENXIO;

	if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
		return -EFAULT;
	return 0;
}

985 986 987 988 989 990 991
static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

992
	if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
993
		return -EINVAL;
994
	kvm_s390_set_tod_clock(kvm, &gtod);
995 996 997 998 999 1000 1001

	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);

	return 0;
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
1012
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1013 1014 1015 1016 1017 1018

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
1019
	struct kvm_s390_vm_tod_clock gtod = { 0 };
1020

1021 1022
	if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
			   sizeof(gtod.tod)))
1023 1024
		return -EFAULT;

1025 1026
	kvm_s390_set_tod_clock(kvm, &gtod);
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
1038 1039 1040
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_set_tod_ext(kvm, attr);
		break;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

1054 1055
static void kvm_s390_get_tod_clock(struct kvm *kvm,
				   struct kvm_s390_vm_tod_clock *gtod)
1056 1057 1058 1059 1060 1061 1062 1063
{
	struct kvm_s390_tod_clock_ext htod;

	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	gtod->tod = htod.tod + kvm->arch.epoch;
1064 1065 1066 1067 1068 1069
	gtod->epoch_idx = 0;
	if (test_kvm_facility(kvm, 139)) {
		gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx;
		if (gtod->tod < htod.tod)
			gtod->epoch_idx += 1;
	}
1070 1071 1072 1073 1074 1075 1076 1077 1078

	preempt_enable();
}

static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_tod_clock gtod;

	memset(&gtod, 0, sizeof(gtod));
1079
	kvm_s390_get_tod_clock(kvm, &gtod);
1080 1081 1082 1083 1084 1085 1086 1087
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
		gtod.epoch_idx, gtod.tod);
	return 0;
}

1088 1089 1090 1091 1092 1093 1094
static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
1095
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1096 1097 1098 1099 1100 1101

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
1102
	u64 gtod;
1103

1104
	gtod = kvm_s390_get_tod_clock_fast(kvm);
1105 1106
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
1107
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
1120 1121 1122
	case KVM_S390_VM_TOD_EXT:
		ret = kvm_s390_get_tod_ext(kvm, attr);
		break;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

1136 1137 1138
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
1139
	u16 lowest_ibc, unblocked_ibc;
1140 1141 1142
	int ret = 0;

	mutex_lock(&kvm->lock);
1143
	if (kvm->created_vcpus) {
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
1154
		kvm->arch.model.cpuid = proc->cpuid;
1155 1156
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
1157
		if (lowest_ibc && proc->ibc) {
1158 1159 1160 1161 1162 1163 1164
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
1165
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
1166
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
1167 1168 1169 1170 1171 1172 1173
		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
			 kvm->arch.model.ibc,
			 kvm->arch.model.cpuid);
		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
			 kvm->arch.model.fac_list[0],
			 kvm->arch.model.fac_list[1],
			 kvm->arch.model.fac_list[2]);
1174 1175 1176 1177 1178 1179 1180 1181
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
1195 1196 1197
	if (kvm->created_vcpus) {
		mutex_unlock(&kvm->lock);
		return -EBUSY;
1198
	}
1199 1200
	bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
1201
	mutex_unlock(&kvm->lock);
1202 1203 1204 1205 1206
	VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
	return 0;
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

1219 1220 1221 1222 1223 1224 1225 1226
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
1227 1228 1229
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
1230 1231 1232
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
1247
	proc->cpuid = kvm->arch.model.cpuid;
1248
	proc->ibc = kvm->arch.model.ibc;
1249 1250
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1251 1252 1253 1254 1255 1256 1257
	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
		 kvm->arch.model.fac_list[0],
		 kvm->arch.model.fac_list[1],
		 kvm->arch.model.fac_list[2]);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
1276
	mach->ibc = sclp.ibc;
1277
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1278
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1279
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
1280
	       sizeof(S390_lowcore.stfle_fac_list));
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_mask[0],
		 mach->fac_mask[1],
		 mach->fac_mask[2]);
	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_list[0],
		 mach->fac_list[1],
		 mach->fac_list[2]);
1292 1293 1294 1295 1296 1297 1298
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

1299 1300 1301 1302 1303 1304 1305 1306 1307
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
1308 1309 1310 1311
	VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
1325 1326 1327 1328
	VM_EVENT(kvm, 3, "GET: host feat:  0x%16.16llx.0x%16.16llx.0x%16.16llx",
			 data.feat[0],
			 data.feat[1],
			 data.feat[2]);
1329 1330 1331
	return 0;
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
1362 1363 1364 1365 1366 1367
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
1368 1369 1370 1371 1372 1373
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
1374 1375 1376 1377
	}
	return ret;
}

1378 1379 1380 1381 1382
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1383
	case KVM_S390_VM_MEM_CTRL:
1384
		ret = kvm_s390_set_mem_control(kvm, attr);
1385
		break;
1386 1387 1388
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1389 1390 1391
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1392 1393 1394
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1395 1396 1397
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_set_migration(kvm, attr);
		break;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1408 1409 1410 1411 1412 1413
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1414 1415 1416
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1417 1418 1419
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1420 1421 1422
	case KVM_S390_VM_MIGRATION:
		ret = kvm_s390_vm_get_migration(kvm, attr);
		break;
1423 1424 1425 1426 1427 1428
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1429 1430 1431 1432 1433 1434 1435
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1436 1437 1438 1439
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1440 1441
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1442
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1443 1444 1445 1446 1447 1448 1449
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1461 1462 1463 1464
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1465 1466
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1467
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1468 1469
			ret = 0;
			break;
1470 1471
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1472 1473 1474 1475 1476
		default:
			ret = -ENXIO;
			break;
		}
		break;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1490 1491 1492
	case KVM_S390_VM_MIGRATION:
		ret = 0;
		break;
1493 1494 1495 1496 1497 1498 1499 1500
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1501 1502 1503 1504
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1505
	int srcu_idx, i, r = 0;
1506 1507 1508 1509 1510

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
1511
	if (!mm_uses_skeys(current->mm))
1512 1513 1514 1515 1516 1517
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1518
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1519 1520 1521
	if (!keys)
		return -ENOMEM;

1522
	down_read(&current->mm->mmap_sem);
1523
	srcu_idx = srcu_read_lock(&kvm->srcu);
1524 1525 1526 1527
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1528
			break;
1529 1530
		}

1531 1532
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1533
			break;
1534
	}
1535
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1536 1537 1538 1539 1540 1541 1542
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
1553
	int srcu_idx, i, r = 0;
1554
	bool unlocked;
1555 1556 1557 1558 1559 1560 1561 1562

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

1563
	keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1575 1576 1577
	r = s390_enable_skey();
	if (r)
		goto out;
1578

1579
	i = 0;
1580
	down_read(&current->mm->mmap_sem);
1581
	srcu_idx = srcu_read_lock(&kvm->srcu);
1582 1583
        while (i < args->count) {
		unlocked = false;
1584 1585 1586
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1587
			break;
1588 1589 1590 1591 1592
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1593
			break;
1594 1595
		}

1596
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1597 1598 1599 1600 1601 1602 1603 1604
		if (r) {
			r = fixup_user_fault(current, current->mm, hva,
					     FAULT_FLAG_WRITE, &unlocked);
			if (r)
				break;
		}
		if (!r)
			i++;
1605
	}
1606
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1607
	up_read(&current->mm->mmap_sem);
1608 1609 1610 1611 1612
out:
	kvfree(keys);
	return r;
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
/*
 * Base address and length must be sent at the start of each block, therefore
 * it's cheaper to send some clean data, as long as it's less than the size of
 * two longs.
 */
#define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
/* for consistency */
#define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)

/*
 * This function searches for the next page with dirty CMMA attributes, and
 * saves the attributes in the buffer up to either the end of the buffer or
 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
 * no trailing clean bytes are saved.
 * In case no dirty bits were found, or if CMMA was not enabled or used, the
 * output buffer will indicate 0 as length.
 */
static int kvm_s390_get_cmma_bits(struct kvm *kvm,
				  struct kvm_s390_cmma_log *args)
{
	struct kvm_s390_migration_state *s = kvm->arch.migration_state;
	unsigned long bufsize, hva, pgstev, i, next, cur;
	int srcu_idx, peek, r = 0, rr;
	u8 *res;

	cur = args->start_gfn;
	i = next = pgstev = 0;

	if (unlikely(!kvm->arch.use_cmma))
		return -ENXIO;
	/* Invalid/unsupported flags were specified */
	if (args->flags & ~KVM_S390_CMMA_PEEK)
		return -EINVAL;
	/* Migration mode query, and we are not doing a migration */
	peek = !!(args->flags & KVM_S390_CMMA_PEEK);
	if (!peek && !s)
		return -EINVAL;
	/* CMMA is disabled or was not used, or the buffer has length zero */
	bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
1652
	if (!bufsize || !kvm->mm->context.uses_cmm) {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		memset(args, 0, sizeof(*args));
		return 0;
	}

	if (!peek) {
		/* We are not peeking, and there are no dirty pages */
		if (!atomic64_read(&s->dirty_pages)) {
			memset(args, 0, sizeof(*args));
			return 0;
		}
		cur = find_next_bit(s->pgste_bitmap, s->bitmap_size,
				    args->start_gfn);
		if (cur >= s->bitmap_size)	/* nothing found, loop back */
			cur = find_next_bit(s->pgste_bitmap, s->bitmap_size, 0);
		if (cur >= s->bitmap_size) {	/* again! (very unlikely) */
			memset(args, 0, sizeof(*args));
			return 0;
		}
		next = find_next_bit(s->pgste_bitmap, s->bitmap_size, cur + 1);
	}

	res = vmalloc(bufsize);
	if (!res)
		return -ENOMEM;

	args->start_gfn = cur;

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
	while (i < bufsize) {
		hva = gfn_to_hva(kvm, cur);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			break;
		}
		/* decrement only if we actually flipped the bit to 0 */
		if (!peek && test_and_clear_bit(cur, s->pgste_bitmap))
			atomic64_dec(&s->dirty_pages);
		r = get_pgste(kvm->mm, hva, &pgstev);
		if (r < 0)
			pgstev = 0;
		/* save the value */
1695
		res[i++] = (pgstev >> 24) & 0x43;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		/*
		 * if the next bit is too far away, stop.
		 * if we reached the previous "next", find the next one
		 */
		if (!peek) {
			if (next > cur + KVM_S390_MAX_BIT_DISTANCE)
				break;
			if (cur == next)
				next = find_next_bit(s->pgste_bitmap,
						     s->bitmap_size, cur + 1);
		/* reached the end of the bitmap or of the buffer, stop */
			if ((next >= s->bitmap_size) ||
			    (next >= args->start_gfn + bufsize))
				break;
		}
		cur++;
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);
	args->count = i;
	args->remaining = s ? atomic64_read(&s->dirty_pages) : 0;

	rr = copy_to_user((void __user *)args->values, res, args->count);
	if (rr)
		r = -EFAULT;

	vfree(res);
	return r;
}

/*
 * This function sets the CMMA attributes for the given pages. If the input
 * buffer has zero length, no action is taken, otherwise the attributes are
1729
 * set and the mm->context.uses_cmm flag is set.
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
 */
static int kvm_s390_set_cmma_bits(struct kvm *kvm,
				  const struct kvm_s390_cmma_log *args)
{
	unsigned long hva, mask, pgstev, i;
	uint8_t *bits;
	int srcu_idx, r = 0;

	mask = args->mask;

	if (!kvm->arch.use_cmma)
		return -ENXIO;
	/* invalid/unsupported flags */
	if (args->flags != 0)
		return -EINVAL;
	/* Enforce sane limit on memory allocation */
	if (args->count > KVM_S390_CMMA_SIZE_MAX)
		return -EINVAL;
	/* Nothing to do */
	if (args->count == 0)
		return 0;

1752
	bits = vmalloc(array_size(sizeof(*bits), args->count));
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (!bits)
		return -ENOMEM;

	r = copy_from_user(bits, (void __user *)args->values, args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	down_read(&kvm->mm->mmap_sem);
	srcu_idx = srcu_read_lock(&kvm->srcu);
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			break;
		}

		pgstev = bits[i];
		pgstev = pgstev << 24;
1773
		mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
1774 1775 1776 1777 1778
		set_pgste_bits(kvm->mm, hva, mask, pgstev);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	up_read(&kvm->mm->mmap_sem);

1779
	if (!kvm->mm->context.uses_cmm) {
1780
		down_write(&kvm->mm->mmap_sem);
1781
		kvm->mm->context.uses_cmm = 1;
1782 1783 1784 1785 1786 1787 1788
		up_write(&kvm->mm->mmap_sem);
	}
out:
	vfree(bits);
	return r;
}

1789 1790 1791 1792 1793
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1794
	struct kvm_device_attr attr;
1795 1796 1797
	int r;

	switch (ioctl) {
1798 1799 1800 1801 1802 1803 1804 1805 1806
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1807 1808 1809 1810 1811 1812 1813 1814
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1815 1816 1817 1818 1819 1820 1821
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1822
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1823 1824 1825
		}
		break;
	}
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1867 1868 1869 1870 1871 1872
	case KVM_S390_GET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
1873
		mutex_lock(&kvm->slots_lock);
1874
		r = kvm_s390_get_cmma_bits(kvm, &args);
1875
		mutex_unlock(&kvm->slots_lock);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		if (!r) {
			r = copy_to_user(argp, &args, sizeof(args));
			if (r)
				r = -EFAULT;
		}
		break;
	}
	case KVM_S390_SET_CMMA_BITS: {
		struct kvm_s390_cmma_log args;

		r = -EFAULT;
		if (copy_from_user(&args, argp, sizeof(args)))
			break;
1889
		mutex_lock(&kvm->slots_lock);
1890
		r = kvm_s390_set_cmma_bits(kvm, &args);
1891
		mutex_unlock(&kvm->slots_lock);
1892 1893
		break;
	}
1894
	default:
1895
		r = -ENOTTY;
1896 1897 1898 1899 1900
	}

	return r;
}

1901 1902 1903
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1904
	u32 cc = 0;
1905

1906
	memset(config, 0, 128);
1907 1908 1909 1910
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1911
		"0: ipm %0\n"
1912
		"srl %0,28\n"
1913 1914 1915
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1928
	if (test_facility(12)) {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1950
static u64 kvm_s390_get_initial_cpuid(void)
1951
{
1952 1953 1954 1955 1956
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1957 1958
}

1959
static void kvm_s390_crypto_init(struct kvm *kvm)
1960
{
1961
	if (!test_kvm_facility(kvm, 76))
1962
		return;
1963

1964
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1965
	kvm_s390_set_crycb_format(kvm);
1966

1967 1968 1969 1970 1971 1972 1973
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1974 1975
}

1976 1977 1978
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1979
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1980 1981 1982 1983 1984
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1985
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1986
{
1987
	gfp_t alloc_flags = GFP_KERNEL;
1988
	int i, rc;
1989
	char debug_name[16];
1990
	static unsigned long sca_offset;
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

2003 2004
	rc = s390_enable_sie();
	if (rc)
2005
		goto out_err;
2006

2007 2008
	rc = -ENOMEM;

2009 2010
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
2011
	rwlock_init(&kvm->arch.sca_lock);
2012
	/* start with basic SCA */
2013
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
2014
	if (!kvm->arch.sca)
2015
		goto out_err;
2016
	spin_lock(&kvm_lock);
2017
	sca_offset += 16;
2018
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
2019
		sca_offset = 0;
2020 2021
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
2022
	spin_unlock(&kvm_lock);
2023 2024 2025

	sprintf(debug_name, "kvm-%u", current->pid);

2026
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
2027
	if (!kvm->arch.dbf)
2028
		goto out_err;
2029

2030
	BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
2031 2032 2033
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
2034
		goto out_err;
2035

2036
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
2037 2038 2039 2040 2041 2042 2043 2044

	for (i = 0; i < kvm_s390_fac_size(); i++) {
		kvm->arch.model.fac_mask[i] = S390_lowcore.stfle_fac_list[i] &
					      (kvm_s390_fac_base[i] |
					       kvm_s390_fac_ext[i]);
		kvm->arch.model.fac_list[i] = S390_lowcore.stfle_fac_list[i] &
					      kvm_s390_fac_base[i];
	}
2045

2046 2047 2048 2049
	/* we are always in czam mode - even on pre z14 machines */
	set_kvm_facility(kvm->arch.model.fac_mask, 138);
	set_kvm_facility(kvm->arch.model.fac_list, 138);
	/* we emulate STHYI in kvm */
J
Janosch Frank 已提交
2050 2051
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);
2052 2053 2054 2055
	if (MACHINE_HAS_TLB_GUEST) {
		set_kvm_facility(kvm->arch.model.fac_mask, 147);
		set_kvm_facility(kvm->arch.model.fac_list, 147);
	}
J
Janosch Frank 已提交
2056

2057
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
2058
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
2059

2060
	kvm_s390_crypto_init(kvm);
2061

2062
	mutex_init(&kvm->arch.float_int.ais_lock);
2063
	spin_lock_init(&kvm->arch.float_int.lock);
2064 2065
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
2066
	init_waitqueue_head(&kvm->arch.ipte_wq);
2067
	mutex_init(&kvm->arch.ipte_mutex);
2068

2069
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
2070
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
2071

2072 2073
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
2074
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
2075
	} else {
2076
		if (sclp.hamax == U64_MAX)
2077
			kvm->arch.mem_limit = TASK_SIZE_MAX;
2078
		else
2079
			kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
2080
						    sclp.hamax + 1);
2081
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
2082
		if (!kvm->arch.gmap)
2083
			goto out_err;
2084
		kvm->arch.gmap->private = kvm;
2085
		kvm->arch.gmap->pfault_enabled = 0;
2086
	}
2087

2088
	kvm->arch.use_pfmfi = sclp.has_pfmfi;
2089
	kvm->arch.use_skf = sclp.has_skey;
2090
	spin_lock_init(&kvm->arch.start_stop_lock);
2091
	kvm_s390_vsie_init(kvm);
2092
	kvm_s390_gisa_init(kvm);
2093
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
2094

2095
	return 0;
2096
out_err:
2097
	free_page((unsigned long)kvm->arch.sie_page2);
2098
	debug_unregister(kvm->arch.dbf);
2099
	sca_dispose(kvm);
2100
	KVM_EVENT(3, "creation of vm failed: %d", rc);
2101
	return rc;
2102 2103
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

2114 2115 2116
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
2117
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
2118
	kvm_s390_clear_local_irqs(vcpu);
2119
	kvm_clear_async_pf_completion_queue(vcpu);
2120
	if (!kvm_is_ucontrol(vcpu->kvm))
2121
		sca_del_vcpu(vcpu);
2122 2123

	if (kvm_is_ucontrol(vcpu->kvm))
2124
		gmap_remove(vcpu->arch.gmap);
2125

2126
	if (vcpu->kvm->arch.use_cmma)
2127
		kvm_s390_vcpu_unsetup_cmma(vcpu);
2128
	free_page((unsigned long)(vcpu->arch.sie_block));
2129

2130
	kvm_vcpu_uninit(vcpu);
2131
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2132 2133 2134 2135 2136
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
2137
	struct kvm_vcpu *vcpu;
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
2148 2149
}

2150 2151
void kvm_arch_destroy_vm(struct kvm *kvm)
{
2152
	kvm_free_vcpus(kvm);
2153
	sca_dispose(kvm);
2154
	debug_unregister(kvm->arch.dbf);
2155
	kvm_s390_gisa_destroy(kvm);
2156
	free_page((unsigned long)kvm->arch.sie_page2);
2157
	if (!kvm_is_ucontrol(kvm))
2158
		gmap_remove(kvm->arch.gmap);
2159
	kvm_s390_destroy_adapters(kvm);
2160
	kvm_s390_clear_float_irqs(kvm);
2161
	kvm_s390_vsie_destroy(kvm);
2162 2163 2164 2165
	if (kvm->arch.migration_state) {
		vfree(kvm->arch.migration_state->pgste_bitmap);
		kfree(kvm->arch.migration_state);
	}
2166
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
2167 2168 2169
}

/* Section: vcpu related */
2170 2171
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
2172
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
2173 2174 2175 2176 2177 2178 2179
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

2180 2181
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
2182 2183
	if (!kvm_s390_use_sca_entries())
		return;
2184
	read_lock(&vcpu->kvm->arch.sca_lock);
2185 2186
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2187

2188
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2189
		sca->cpu[vcpu->vcpu_id].sda = 0;
2190 2191 2192 2193
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2194
		sca->cpu[vcpu->vcpu_id].sda = 0;
2195
	}
2196
	read_unlock(&vcpu->kvm->arch.sca_lock);
2197 2198
}

2199
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
2200
{
2201 2202 2203 2204 2205 2206
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2207
		return;
2208
	}
2209 2210 2211
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
2212

2213
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2214 2215
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
2216
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2217
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2218
	} else {
2219
		struct bsca_block *sca = vcpu->kvm->arch.sca;
2220

2221
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2222 2223
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2224
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2225
	}
2226
	read_unlock(&vcpu->kvm->arch.sca_lock);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
2270
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2271 2272 2273 2274 2275 2276 2277 2278 2279
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

2280 2281
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
2282
	return 0;
2283 2284 2285 2286
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
2287 2288
	int rc;

2289 2290 2291 2292 2293
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
2294 2295
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
2296
	if (!sclp.has_esca || !sclp.has_64bscao)
2297 2298 2299 2300 2301 2302 2303
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
2304 2305
}

2306 2307
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
2308 2309
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2310 2311
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
2312
				    KVM_SYNC_ACRS |
2313 2314 2315
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
2316
	kvm_s390_set_prefix(vcpu, 0);
2317 2318
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
2319 2320
	if (test_kvm_facility(vcpu->kvm, 82))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
F
Fan Zhang 已提交
2321 2322
	if (test_kvm_facility(vcpu->kvm, 133))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
2323 2324 2325 2326
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
2327
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
2328 2329
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
2330 2331 2332 2333

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

2334 2335 2336
	return 0;
}

2337 2338 2339 2340
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
2341
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2342
	vcpu->arch.cputm_start = get_tod_clock_fast();
2343
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2344 2345 2346 2347 2348 2349
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
2350
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2351 2352
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
2353
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

2386 2387 2388
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
2389
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2390
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2391 2392
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
2393
	vcpu->arch.sie_block->cputm = cputm;
2394
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2395
	preempt_enable();
2396 2397
}

2398
/* update and get the cpu timer - can also be called from other VCPU threads */
2399 2400
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
2401
	unsigned int seq;
2402 2403 2404 2405 2406
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
2421
	return value;
2422 2423
}

2424 2425
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
2426

2427
	gmap_enable(vcpu->arch.enabled_gmap);
2428
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
2429
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2430
		__start_cpu_timer_accounting(vcpu);
2431
	vcpu->cpu = cpu;
2432 2433 2434 2435
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
2436
	vcpu->cpu = -1;
2437
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2438
		__stop_cpu_timer_accounting(vcpu);
2439
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
2440 2441
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
2442

2443 2444 2445 2446 2447 2448 2449
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
2450
	kvm_s390_set_prefix(vcpu, 0);
2451
	kvm_s390_set_cpu_timer(vcpu, 0);
2452 2453 2454
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
2455 2456 2457 2458 2459 2460
	vcpu->arch.sie_block->gcr[0]  = CR0_UNUSED_56 |
					CR0_INTERRUPT_KEY_SUBMASK |
					CR0_MEASUREMENT_ALERT_SUBMASK;
	vcpu->arch.sie_block->gcr[14] = CR14_UNUSED_32 |
					CR14_UNUSED_33 |
					CR14_EXTERNAL_DAMAGE_SUBMASK;
2461 2462 2463
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
2464
	vcpu->arch.sie_block->gbea = 1;
2465
	vcpu->arch.sie_block->pp = 0;
2466
	vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
2467 2468
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
2469 2470
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
2471
	kvm_s390_clear_local_irqs(vcpu);
2472 2473
}

2474
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
2475
{
2476
	mutex_lock(&vcpu->kvm->lock);
2477
	preempt_disable();
2478
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
2479
	vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
2480
	preempt_enable();
2481
	mutex_unlock(&vcpu->kvm->lock);
2482
	if (!kvm_is_ucontrol(vcpu->kvm)) {
2483
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
2484
		sca_add_vcpu(vcpu);
2485
	}
2486 2487
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2488 2489
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
2490 2491
}

2492 2493
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
2494
	if (!test_kvm_facility(vcpu->kvm, 76))
2495 2496
		return;

2497 2498 2499 2500 2501 2502 2503
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

2504 2505 2506
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;
	return 0;
}

2521 2522 2523 2524 2525
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
2526
	if (test_kvm_facility(vcpu->kvm, 7))
2527
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
2528 2529
}

2530 2531
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
2532
	int rc = 0;
2533

2534 2535
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
2536 2537
						    CPUSTAT_STOPPED);

2538
	if (test_kvm_facility(vcpu->kvm, 78))
2539
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
2540
	else if (test_kvm_facility(vcpu->kvm, 8))
2541
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
2542

2543 2544
	kvm_s390_vcpu_setup_model(vcpu);

2545 2546
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
2547
		vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
2548
	if (test_kvm_facility(vcpu->kvm, 9))
2549
		vcpu->arch.sie_block->ecb |= ECB_SRSI;
2550
	if (test_kvm_facility(vcpu->kvm, 73))
2551
		vcpu->arch.sie_block->ecb |= ECB_TE;
2552

2553
	if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
2554
		vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
2555
	if (test_kvm_facility(vcpu->kvm, 130))
2556 2557
		vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
	vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
2558
	if (sclp.has_cei)
2559
		vcpu->arch.sie_block->eca |= ECA_CEI;
2560
	if (sclp.has_ib)
2561
		vcpu->arch.sie_block->eca |= ECA_IB;
2562
	if (sclp.has_siif)
2563
		vcpu->arch.sie_block->eca |= ECA_SII;
2564
	if (sclp.has_sigpif)
2565
		vcpu->arch.sie_block->eca |= ECA_SIGPI;
2566
	if (test_kvm_facility(vcpu->kvm, 129)) {
2567 2568
		vcpu->arch.sie_block->eca |= ECA_VX;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
2569
	}
2570 2571 2572
	if (test_kvm_facility(vcpu->kvm, 139))
		vcpu->arch.sie_block->ecd |= ECD_MEF;

2573 2574 2575 2576 2577
	if (vcpu->arch.sie_block->gd) {
		vcpu->arch.sie_block->eca |= ECA_AIV;
		VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
			   vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
	}
F
Fan Zhang 已提交
2578 2579
	vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx)
					| SDNXC;
2580
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
2581 2582

	if (sclp.has_kss)
2583
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
2584 2585
	else
		vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
2586

2587
	if (vcpu->kvm->arch.use_cmma) {
2588 2589 2590
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
2591
	}
2592
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2593
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2594

2595 2596
	kvm_s390_vcpu_crypto_setup(vcpu);

2597
	return rc;
2598 2599 2600 2601 2602
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
2603
	struct kvm_vcpu *vcpu;
2604
	struct sie_page *sie_page;
2605 2606
	int rc = -EINVAL;

2607
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2608 2609 2610
		goto out;

	rc = -ENOMEM;
2611

2612
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2613
	if (!vcpu)
2614
		goto out;
2615

2616
	BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
2617 2618
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
2619 2620
		goto out_free_cpu;

2621 2622 2623
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

2624 2625 2626 2627
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

2628
	vcpu->arch.sie_block->icpua = id;
2629
	spin_lock_init(&vcpu->arch.local_int.lock);
2630
	vcpu->arch.sie_block->gd = (u32)(u64)kvm->arch.gisa;
2631 2632
	if (vcpu->arch.sie_block->gd && sclp.has_gisaf)
		vcpu->arch.sie_block->gd |= GISA_FORMAT1;
2633
	seqcount_init(&vcpu->arch.cputm_seqcount);
2634

2635 2636
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2637
		goto out_free_sie_block;
2638
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2639
		 vcpu->arch.sie_block);
2640
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2641 2642

	return vcpu;
2643 2644
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2645
out_free_cpu:
2646
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2647
out:
2648 2649 2650 2651 2652
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2653
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2654 2655
}

2656 2657
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
2658
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
2659 2660
}

2661
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2662
{
2663
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2664
	exit_sie(vcpu);
2665 2666
}

2667
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2668
{
2669
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2670 2671
}

2672 2673
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2674
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2675
	exit_sie(vcpu);
2676 2677 2678 2679
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2680
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2681 2682
}

2683 2684 2685 2686 2687 2688
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2689
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
2690 2691 2692 2693
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2694 2695
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2696
{
2697 2698
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2699 2700
}

2701 2702
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2703 2704 2705
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2706 2707
	unsigned long prefix;
	int i;
2708

2709 2710
	if (gmap_is_shadow(gmap))
		return;
2711 2712 2713
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2714 2715
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2716 2717 2718 2719
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2720
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2721 2722 2723 2724
		}
	}
}

2725 2726 2727 2728 2729 2730 2731
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2732 2733 2734 2735 2736 2737
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2738 2739 2740 2741 2742 2743 2744 2745
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2746
	case KVM_REG_S390_CPU_TIMER:
2747
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2748 2749 2750 2751 2752 2753
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2766 2767 2768 2769
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2770 2771 2772 2773
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2785
	__u64 val;
2786 2787

	switch (reg->id) {
2788 2789 2790 2791 2792 2793 2794 2795
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2796
	case KVM_REG_S390_CPU_TIMER:
2797 2798 2799
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2800 2801 2802 2803 2804
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2805 2806 2807
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2808 2809
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2810 2811 2812 2813 2814 2815 2816 2817 2818
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2819 2820 2821 2822
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2823 2824 2825 2826
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2827 2828 2829 2830 2831 2832
	default:
		break;
	}

	return r;
}
2833

2834 2835 2836 2837 2838 2839 2840 2841
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2842
	vcpu_load(vcpu);
2843
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2844
	vcpu_put(vcpu);
2845 2846 2847 2848 2849
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2850
	vcpu_load(vcpu);
2851
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2852
	vcpu_put(vcpu);
2853 2854 2855 2856 2857 2858
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2859 2860
	vcpu_load(vcpu);

2861
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2862
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2863 2864

	vcpu_put(vcpu);
2865 2866 2867 2868 2869 2870
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2871 2872
	vcpu_load(vcpu);

2873
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2874
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
2875 2876

	vcpu_put(vcpu);
2877 2878 2879 2880 2881
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2882 2883 2884 2885 2886 2887 2888 2889
	int ret = 0;

	vcpu_load(vcpu);

	if (test_fp_ctl(fpu->fpc)) {
		ret = -EINVAL;
		goto out;
	}
2890
	vcpu->run->s.regs.fpc = fpu->fpc;
2891
	if (MACHINE_HAS_VX)
2892 2893
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2894
	else
2895
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2896 2897 2898 2899

out:
	vcpu_put(vcpu);
	return ret;
2900 2901 2902 2903
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2904 2905
	vcpu_load(vcpu);

2906 2907 2908
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
2909 2910
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
2911
	else
2912
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2913
	fpu->fpc = vcpu->run->s.regs.fpc;
2914 2915

	vcpu_put(vcpu);
2916 2917 2918 2919 2920 2921 2922
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2923
	if (!is_vcpu_stopped(vcpu))
2924
		rc = -EBUSY;
2925 2926 2927 2928
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2929 2930 2931 2932 2933 2934 2935 2936 2937
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2938 2939 2940 2941
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2942 2943
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2944
{
2945 2946
	int rc = 0;

2947 2948
	vcpu_load(vcpu);

2949 2950 2951
	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2952 2953 2954 2955 2956 2957 2958 2959
	if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
		rc = -EINVAL;
		goto out;
	}
	if (!sclp.has_gpere) {
		rc = -EINVAL;
		goto out;
	}
2960 2961 2962 2963

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2964
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
2965 2966 2967 2968

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2969
		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
2970 2971 2972 2973 2974 2975
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2976
		kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
2977 2978
	}

2979 2980
out:
	vcpu_put(vcpu);
2981
	return rc;
2982 2983
}

2984 2985 2986
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2987 2988 2989 2990
	int ret;

	vcpu_load(vcpu);

2991
	/* CHECK_STOP and LOAD are not supported yet */
2992 2993 2994 2995 2996
	ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				      KVM_MP_STATE_OPERATING;

	vcpu_put(vcpu);
	return ret;
2997 2998 2999 3000 3001
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
3002 3003
	int rc = 0;

3004 3005
	vcpu_load(vcpu);

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

3023
	vcpu_put(vcpu);
3024
	return rc;
3025 3026
}

3027 3028
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
3029
	return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
3030 3031
}

3032 3033
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
3034
retry:
3035
	kvm_s390_vcpu_request_handled(vcpu);
R
Radim Krčmář 已提交
3036
	if (!kvm_request_pending(vcpu))
3037
		return 0;
3038 3039
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
3040
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
3041 3042 3043 3044
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
3045
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
3046
		int rc;
3047 3048 3049
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
3050 3051
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
3052
			return rc;
3053
		}
3054
		goto retry;
3055
	}
3056

3057 3058 3059 3060 3061
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

3062 3063 3064
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
3065
			kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
3066 3067
		}
		goto retry;
3068
	}
3069 3070 3071 3072

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
3073
			kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
3074 3075 3076 3077
		}
		goto retry;
	}

3078 3079 3080 3081 3082
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

3083 3084
	if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
		/*
3085
		 * Disable CMM virtualization; we will emulate the ESSA
3086 3087 3088 3089 3090 3091 3092 3093 3094
		 * instruction manually, in order to provide additional
		 * functionalities needed for live migration.
		 */
		vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
		goto retry;
	}

	if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
		/*
3095 3096
		 * Re-enable CMM virtualization if CMMA is available and
		 * CMM has been used.
3097 3098
		 */
		if ((vcpu->kvm->arch.use_cmma) &&
3099
		    (vcpu->kvm->mm->context.uses_cmm))
3100 3101 3102 3103
			vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
		goto retry;
	}

3104
	/* nothing to do, just clear the request */
3105
	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
3106

3107 3108 3109
	return 0;
}

3110 3111
void kvm_s390_set_tod_clock(struct kvm *kvm,
			    const struct kvm_s390_vm_tod_clock *gtod)
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
{
	struct kvm_vcpu *vcpu;
	struct kvm_s390_tod_clock_ext htod;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();

	get_tod_clock_ext((char *)&htod);

	kvm->arch.epoch = gtod->tod - htod.tod;
3123 3124 3125 3126 3127 3128
	kvm->arch.epdx = 0;
	if (test_kvm_facility(kvm, 139)) {
		kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx;
		if (kvm->arch.epoch > gtod->tod)
			kvm->arch.epdx -= 1;
	}
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140

	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
		vcpu->arch.sie_block->epdx  = kvm->arch.epdx;
	}

	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
3152
{
3153 3154
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
3155 3156
}

3157 3158 3159 3160
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
3161
	struct kvm_s390_irq irq;
3162 3163

	if (start_token) {
3164 3165 3166
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
3167 3168
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
3169
		inti.parm64 = token;
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
3216
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
3217
		return 0;
3218
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
3219 3220 3221 3222
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
3223 3224 3225
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
3226 3227 3228 3229 3230 3231
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

3232
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
3233
{
3234
	int rc, cpuflags;
3235

3236 3237 3238 3239 3240 3241 3242
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

3243 3244
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
3245 3246 3247 3248

	if (need_resched())
		schedule();

3249
	if (test_cpu_flag(CIF_MCCK_PENDING))
3250 3251
		s390_handle_mcck();

3252 3253 3254 3255 3256
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
3257

3258 3259 3260 3261
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

3262 3263 3264 3265 3266
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

3267
	vcpu->arch.sie_block->icptcode = 0;
3268 3269 3270
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
3271

3272 3273 3274
	return 0;
}

3275 3276
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
3277 3278 3279 3280
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
3294
	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
3295
	ilen = insn_length(opcode);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
3306 3307 3308
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
3309 3310
}

3311 3312
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
3313 3314 3315
	struct mcck_volatile_info *mcck_info;
	struct sie_page *sie_page;

3316 3317 3318 3319
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

3320 3321 3322
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

3323 3324
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
3325

3326 3327 3328 3329 3330 3331 3332 3333 3334
	if (exit_reason == -EINTR) {
		VCPU_EVENT(vcpu, 3, "%s", "machine check");
		sie_page = container_of(vcpu->arch.sie_block,
					struct sie_page, sie_block);
		mcck_info = &sie_page->mcck_info;
		kvm_s390_reinject_machine_check(vcpu, mcck_info);
		return 0;
	}

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
3348 3349 3350 3351 3352
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
3353
		return -EREMOTE;
3354
	} else if (current->thread.gmap_pfault) {
3355
		trace_kvm_s390_major_guest_pfault(vcpu);
3356
		current->thread.gmap_pfault = 0;
3357 3358 3359
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
3360
	}
3361
	return vcpu_post_run_fault_in_sie(vcpu);
3362 3363 3364 3365 3366 3367
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

3368 3369 3370 3371 3372 3373
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

3374 3375 3376 3377
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
3378

3379
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3380 3381 3382 3383
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
3384
		local_irq_disable();
3385
		guest_enter_irqoff();
3386
		__disable_cpu_timer_accounting(vcpu);
3387
		local_irq_enable();
3388 3389
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
3390
		local_irq_disable();
3391
		__enable_cpu_timer_accounting(vcpu);
3392
		guest_exit_irqoff();
3393
		local_irq_enable();
3394
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3395 3396

		rc = vcpu_post_run(vcpu, exit_reason);
3397
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
3398

3399
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3400
	return rc;
3401 3402
}

3403 3404
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3405
	struct runtime_instr_cb *riccb;
F
Fan Zhang 已提交
3406
	struct gs_cb *gscb;
3407 3408

	riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
F
Fan Zhang 已提交
3409
	gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
3410 3411 3412 3413 3414 3415
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
3416 3417
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3418 3419
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
3420
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
3421 3422 3423 3424 3425 3426 3427 3428 3429
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
3430 3431
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
3432
	}
F
Fan Zhang 已提交
3433 3434 3435 3436 3437
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
3438
	    test_kvm_facility(vcpu->kvm, 64) &&
3439
	    riccb->v &&
3440
	    !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
3441
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
3442
		vcpu->arch.sie_block->ecb3 |= ECB3_RI;
F
Fan Zhang 已提交
3443
	}
F
Fan Zhang 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	/*
	 * If userspace sets the gscb (e.g. after migration) to non-zero,
	 * we should enable GS here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
	    test_kvm_facility(vcpu->kvm, 133) &&
	    gscb->gssm &&
	    !vcpu->arch.gs_enabled) {
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
		vcpu->arch.sie_block->ecb |= ECB_GS;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
		vcpu->arch.gs_enabled = 1;
F
Fan Zhang 已提交
3456
	}
3457 3458 3459 3460 3461
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
	    test_kvm_facility(vcpu->kvm, 82)) {
		vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
		vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
	}
3462 3463
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	if (MACHINE_HAS_GS) {
		preempt_disable();
		__ctl_set_bit(2, 4);
		if (current->thread.gs_cb) {
			vcpu->arch.host_gscb = current->thread.gs_cb;
			save_gs_cb(vcpu->arch.host_gscb);
		}
		if (vcpu->arch.gs_enabled) {
			current->thread.gs_cb = (struct gs_cb *)
						&vcpu->run->s.regs.gscb;
			restore_gs_cb(current->thread.gs_cb);
		}
		preempt_enable();
	}
F
Fan Zhang 已提交
3490

3491 3492 3493 3494 3495 3496 3497 3498 3499
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
3500
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
3501 3502 3503 3504 3505 3506 3507
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
3508
	kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
3509 3510
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
3511 3512 3513 3514 3515 3516
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
F
Fan Zhang 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	if (MACHINE_HAS_GS) {
		__ctl_set_bit(2, 4);
		if (vcpu->arch.gs_enabled)
			save_gs_cb(current->thread.gs_cb);
		preempt_disable();
		current->thread.gs_cb = vcpu->arch.host_gscb;
		restore_gs_cb(vcpu->arch.host_gscb);
		preempt_enable();
		if (!vcpu->arch.host_gscb)
			__ctl_clear_bit(2, 4);
		vcpu->arch.host_gscb = NULL;
	}
3529

3530 3531
}

3532 3533
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
3534
	int rc;
3535

3536 3537 3538
	if (kvm_run->immediate_exit)
		return -EINTR;

3539 3540
	vcpu_load(vcpu);

3541 3542
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
3543 3544
		rc = 0;
		goto out;
3545 3546
	}

3547
	kvm_sigset_activate(vcpu);
3548

3549 3550 3551
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
3552
		pr_err_ratelimited("can't run stopped vcpu %d\n",
3553
				   vcpu->vcpu_id);
3554 3555
		rc = -EINVAL;
		goto out;
3556
	}
3557

3558
	sync_regs(vcpu, kvm_run);
3559
	enable_cpu_timer_accounting(vcpu);
3560

3561
	might_fault();
3562
	rc = __vcpu_run(vcpu);
3563

3564 3565
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
3566
		rc = -EINTR;
3567
	}
3568

3569 3570 3571 3572 3573
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

3574
	if (rc == -EREMOTE) {
3575
		/* userspace support is needed, kvm_run has been prepared */
3576 3577
		rc = 0;
	}
3578

3579
	disable_cpu_timer_accounting(vcpu);
3580
	store_regs(vcpu, kvm_run);
3581

3582
	kvm_sigset_deactivate(vcpu);
3583 3584

	vcpu->stat.exit_userspace++;
3585 3586
out:
	vcpu_put(vcpu);
3587
	return rc;
3588 3589 3590 3591 3592 3593 3594 3595
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
3596
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
3597
{
3598
	unsigned char archmode = 1;
3599
	freg_t fprs[NUM_FPRS];
3600
	unsigned int px;
3601
	u64 clkcomp, cputm;
3602
	int rc;
3603

3604
	px = kvm_s390_get_prefix(vcpu);
3605 3606
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
3607
			return -EFAULT;
3608
		gpa = 0;
3609 3610
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
3611
			return -EFAULT;
3612 3613 3614
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
3615 3616 3617

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
3618
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
3619 3620 3621 3622
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
3623
				     vcpu->run->s.regs.fprs, 128);
3624
	}
3625
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
3626
			      vcpu->run->s.regs.gprs, 128);
3627
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
3628
			      &vcpu->arch.sie_block->gpsw, 16);
3629
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
3630
			      &px, 4);
3631
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
3632
			      &vcpu->run->s.regs.fpc, 4);
3633
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
3634
			      &vcpu->arch.sie_block->todpr, 4);
3635
	cputm = kvm_s390_get_cpu_timer(vcpu);
3636
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
3637
			      &cputm, 8);
3638
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
3639
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
3640
			      &clkcomp, 8);
3641
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
3642
			      &vcpu->run->s.regs.acrs, 64);
3643
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
3644 3645
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
3646 3647
}

3648 3649 3650 3651
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
3652
	 * switch in the run ioctl. Let's update our copies before we save
3653 3654
	 * it into the save area
	 */
3655
	save_fpu_regs();
3656
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
3657 3658 3659 3660 3661
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

3662 3663 3664
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
3665
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
3680 3681
	if (!sclp.has_ibs)
		return;
3682
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
3683
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
3684 3685
}

3686 3687
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
3688 3689 3690 3691 3692
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

3693
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
3694
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3695
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

3715
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
3716 3717 3718 3719
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
3720
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3721
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3722
	return;
3723 3724 3725 3726
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
3727 3728 3729 3730 3731 3732
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

3733
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
3734
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3735
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3736 3737
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

3738
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
3739
	kvm_s390_clear_stop_irq(vcpu);
3740

3741
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

3759
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3760
	return;
3761 3762
}

3763 3764 3765 3766 3767 3768 3769 3770 3771
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
3772 3773 3774
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
3775
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3776 3777 3778 3779
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3780 3781 3782 3783 3784 3785 3786
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3813 3814
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3825 3826
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3848 3849
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
3850 3851 3852 3853
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

3854
	switch (ioctl) {
3855 3856 3857 3858
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
3859 3860
			return -EFAULT;
		return kvm_s390_inject_vcpu(vcpu, &s390irq);
3861
	}
3862
	case KVM_S390_INTERRUPT: {
3863
		struct kvm_s390_interrupt s390int;
3864
		struct kvm_s390_irq s390irq;
3865 3866

		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3867
			return -EFAULT;
3868 3869
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
3870
		return kvm_s390_inject_vcpu(vcpu, &s390irq);
3871
	}
3872
	}
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int idx;
	long r;
3883 3884 3885 3886

	vcpu_load(vcpu);

	switch (ioctl) {
3887
	case KVM_S390_STORE_STATUS:
3888
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3889
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3890
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3891
		break;
3892 3893 3894
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3895
		r = -EFAULT;
3896
		if (copy_from_user(&psw, argp, sizeof(psw)))
3897 3898 3899
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3900 3901
	}
	case KVM_S390_INITIAL_RESET:
3902 3903
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3952
	case KVM_S390_VCPU_FAULT: {
3953
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3954 3955
		break;
	}
3956 3957 3958 3959 3960 3961 3962 3963 3964
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3965 3966 3967 3968 3969 3970 3971 3972 3973
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
3986
		/* do not use irq_state.flags, it will break old QEMUs */
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
4002
		/* do not use irq_state.flags, it will break old QEMUs */
4003 4004 4005 4006 4007
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
4008
	default:
4009
		r = -ENOTTY;
4010
	}
4011 4012

	vcpu_put(vcpu);
4013
	return r;
4014 4015
}

4016
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

4029 4030
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
4031 4032 4033 4034
{
	return 0;
}

4035
/* Section: memory related */
4036 4037
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
4038
				   const struct kvm_userspace_memory_region *mem,
4039
				   enum kvm_mr_change change)
4040
{
4041 4042 4043 4044
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
4045

4046
	if (mem->userspace_addr & 0xffffful)
4047 4048
		return -EINVAL;

4049
	if (mem->memory_size & 0xffffful)
4050 4051
		return -EINVAL;

4052 4053 4054
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

4055 4056 4057 4058
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
4059
				const struct kvm_userspace_memory_region *mem,
4060
				const struct kvm_memory_slot *old,
4061
				const struct kvm_memory_slot *new,
4062
				enum kvm_mr_change change)
4063
{
4064
	int rc;
4065

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
4076 4077 4078 4079

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
4080
		pr_warn("failed to commit memory region\n");
4081
	return;
4082 4083
}

4084 4085 4086 4087 4088 4089 4090
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

4091 4092 4093 4094 4095
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

4096 4097
static int __init kvm_s390_init(void)
{
4098 4099
	int i;

4100 4101 4102 4103 4104
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

4105
	for (i = 0; i < 16; i++)
4106
		kvm_s390_fac_base[i] |=
4107 4108
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

4109
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
4110 4111 4112 4113 4114 4115 4116 4117 4118
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
4119 4120 4121 4122 4123 4124 4125 4126 4127

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");