kvm-s390.c 86.3 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/stp.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40
#include <asm/cpacf.h>
41
#include <asm/timex.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
68
	{ "exit_pei", VCPU_STAT(exit_pei) },
69 70
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
71
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
72
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
73
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
74
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
75
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
76
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
77
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
78 79
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
80
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
81
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
82 83 84 85 86 87 88
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
89
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
90 91 92 93 94
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
95
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
96 97
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
98
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
99 100
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
101
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
102
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
103
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
104
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
105
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
106
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
107
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
108 109
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
110
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
111 112
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
113
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
114 115 116
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
117 118 119
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
120
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
121
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
122
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
123 124 125
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
126 127 128
	{ NULL }
};

129 130 131 132 133
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

134
/* upper facilities limit for kvm */
135
unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
136

137
unsigned long kvm_s390_fac_list_mask_size(void)
138
{
139 140
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
141 142
}

143 144
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
145 146
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
147

148
static struct gmap_notifier gmap_notifier;
149
static struct gmap_notifier vsie_gmap_notifier;
150
debug_info_t *kvm_s390_dbf;
151

152
/* Section: not file related */
153
int kvm_arch_hardware_enable(void)
154 155
{
	/* every s390 is virtualization enabled ;-) */
156
	return 0;
157 158
}

159 160
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
180 181
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
182 183
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
184 185 186 187 188 189 190 191 192
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

193 194
int kvm_arch_hardware_setup(void)
{
195
	gmap_notifier.notifier_call = kvm_gmap_notifier;
196
	gmap_register_pte_notifier(&gmap_notifier);
197 198
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
199 200
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
201 202 203 204 205
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
206
	gmap_unregister_pte_notifier(&gmap_notifier);
207
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
208 209
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
210 211
}

212 213 214 215 216
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

233 234
static void kvm_s390_cpu_feat_init(void)
{
235 236 237 238 239 240 241 242
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
243 244 245
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
246 247

	if (test_facility(17)) { /* MSA */
248 249 250 251 252 253 254 255 256 257
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
258 259
	}
	if (test_facility(76)) /* MSA3 */
260 261
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
262
	if (test_facility(77)) { /* MSA4 */
263 264 265 266 267 268 269 270
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
271 272
	}
	if (test_facility(57)) /* MSA5 */
273 274
		__cpacf_query(CPACF_PPNO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.ppno);
275

276 277
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
278 279 280 281 282
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
283
	    !test_facility(3) || !nested)
284 285
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
286 287
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
288 289
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
290 291
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
292 293
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
294 295
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
296 297
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
298 299
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
318 319
}

320 321
int kvm_arch_init(void *opaque)
{
322 323 324 325 326 327 328 329 330
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

331 332
	kvm_s390_cpu_feat_init();

333 334
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
335 336
}

337 338 339 340 341
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

342 343 344 345 346 347 348 349 350
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

351
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
352
{
353 354
	int r;

355
	switch (ext) {
356
	case KVM_CAP_S390_PSW:
357
	case KVM_CAP_S390_GMAP:
358
	case KVM_CAP_SYNC_MMU:
359 360 361
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
362
	case KVM_CAP_ASYNC_PF:
363
	case KVM_CAP_SYNC_REGS:
364
	case KVM_CAP_ONE_REG:
365
	case KVM_CAP_ENABLE_CAP:
366
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
367
	case KVM_CAP_IOEVENTFD:
368
	case KVM_CAP_DEVICE_CTRL:
369
	case KVM_CAP_ENABLE_CAP_VM:
370
	case KVM_CAP_S390_IRQCHIP:
371
	case KVM_CAP_VM_ATTRIBUTES:
372
	case KVM_CAP_MP_STATE:
373
	case KVM_CAP_S390_INJECT_IRQ:
374
	case KVM_CAP_S390_USER_SIGP:
375
	case KVM_CAP_S390_USER_STSI:
376
	case KVM_CAP_S390_SKEYS:
377
	case KVM_CAP_S390_IRQ_STATE:
378
	case KVM_CAP_S390_USER_INSTR0:
379 380
		r = 1;
		break;
381 382 383
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
384 385
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
386
		r = KVM_S390_BSCA_CPU_SLOTS;
387 388 389
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
390
			r = KVM_S390_ESCA_CPU_SLOTS;
391
		break;
392 393 394
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
395
	case KVM_CAP_S390_COW:
396
		r = MACHINE_HAS_ESOP;
397
		break;
398 399 400
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
401 402 403
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
404
	default:
405
		r = 0;
406
	}
407
	return r;
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

422
		if (test_and_clear_guest_dirty(gmap->mm, address))
423
			mark_page_dirty(kvm, cur_gfn);
424 425
		if (fatal_signal_pending(current))
			return;
426
		cond_resched();
427 428 429
	}
}

430
/* Section: vm related */
431 432
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

433 434 435 436 437 438
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
439 440
	int r;
	unsigned long n;
441
	struct kvm_memslots *slots;
442 443 444 445 446 447 448 449 450
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

451 452
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
471 472
}

473 474 475 476 477 478 479 480 481 482
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

483 484 485 486 487 488 489 490
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
491
	case KVM_CAP_S390_IRQCHIP:
492
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
493 494 495
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
496
	case KVM_CAP_S390_USER_SIGP:
497
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
498 499 500
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
501
	case KVM_CAP_S390_VECTOR_REGISTERS:
502
		mutex_lock(&kvm->lock);
503
		if (kvm->created_vcpus) {
504 505
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
506 507
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
508 509 510
			r = 0;
		} else
			r = -EINVAL;
511
		mutex_unlock(&kvm->lock);
512 513
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
514
		break;
515 516 517
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
518
		if (kvm->created_vcpus) {
519 520
			r = -EBUSY;
		} else if (test_facility(64)) {
521 522
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
523 524 525 526 527 528
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
529
	case KVM_CAP_S390_USER_STSI:
530
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
531 532 533
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
534 535 536 537 538 539
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
540 541 542 543 544 545 546
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

547 548 549 550 551 552 553
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
554
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
555 556
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
557 558 559 560 561 562 563 564 565 566
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
567 568 569 570 571
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
572
		ret = -ENXIO;
573
		if (!sclp.has_cmma)
574 575
			break;

576
		ret = -EBUSY;
577
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
578
		mutex_lock(&kvm->lock);
579
		if (!kvm->created_vcpus) {
580 581 582 583 584 585
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
586 587 588
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
589 590 591 592
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

593
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
594 595
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
596
		s390_reset_cmma(kvm->arch.gmap->mm);
597 598 599 600
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
601 602 603 604 605 606 607 608 609
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

610 611
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
612 613
			return -E2BIG;

614 615 616
		if (!new_limit)
			return -EINVAL;

617
		/* gmap_create takes last usable address */
618 619 620
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

621 622
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
623
		if (!kvm->created_vcpus) {
624 625
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
626 627 628 629

			if (!new) {
				ret = -ENOMEM;
			} else {
630
				gmap_remove(kvm->arch.gmap);
631 632 633 634 635 636
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
637 638 639
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
640 641
		break;
	}
642 643 644 645 646 647 648
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

649 650 651 652 653 654 655
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

656
	if (!test_kvm_facility(kvm, 76))
657 658 659 660 661 662 663 664 665
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
666
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
667 668 669 670 671 672
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
673
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
674 675 676 677 678
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
679
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
680 681 682 683 684
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
685
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
686 687 688 689 690 691 692 693 694 695 696 697 698 699
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

700 701 702 703 704 705 706 707 708 709
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
710
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
711 712 713 714 715 716

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
717
	u64 gtod;
718 719 720 721

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

722
	kvm_s390_set_tod_clock(kvm, gtod);
723
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
755
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
756 757 758 759 760 761

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
762
	u64 gtod;
763

764
	gtod = kvm_s390_get_tod_clock_fast(kvm);
765 766
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
767
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

793 794 795
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
796
	u16 lowest_ibc, unblocked_ibc;
797 798 799
	int ret = 0;

	mutex_lock(&kvm->lock);
800
	if (kvm->created_vcpus) {
801 802 803 804 805 806 807 808 809 810
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
811
		kvm->arch.model.cpuid = proc->cpuid;
812 813
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
814
		if (lowest_ibc && proc->ibc) {
815 816 817 818 819 820 821
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
822
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
823 824 825 826 827 828 829 830 831
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

855 856 857 858 859 860 861 862 863 864
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

865 866 867 868 869 870 871 872
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
873 874 875
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
876 877 878
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
879 880 881 882 883 884 885 886 887 888 889 890 891 892
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
893
	proc->cpuid = kvm->arch.model.cpuid;
894
	proc->ibc = kvm->arch.model.ibc;
895 896
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
915
	mach->ibc = sclp.ibc;
916
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
917
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
918
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
919
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
920 921 922 923 924 925 926
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
971 972 973 974 975 976 977 978 979 980 981
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
982 983 984 985 986 987
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
988 989 990 991 992 993
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
994 995 996 997
	}
	return ret;
}

998 999 1000 1001 1002
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1003
	case KVM_S390_VM_MEM_CTRL:
1004
		ret = kvm_s390_set_mem_control(kvm, attr);
1005
		break;
1006 1007 1008
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1009 1010 1011
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1012 1013 1014
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1025 1026 1027 1028 1029 1030
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1031 1032 1033
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1034 1035 1036
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1037 1038 1039 1040 1041 1042
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1043 1044 1045 1046 1047 1048 1049
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1050 1051 1052 1053
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1054 1055
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1056
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1057 1058 1059 1060 1061 1062 1063
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1075 1076 1077 1078
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1079 1080
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1081
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1082 1083
			ret = 0;
			break;
1084 1085
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1086 1087 1088 1089 1090
		default:
			ret = -ENXIO;
			break;
		}
		break;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1104 1105 1106 1107 1108 1109 1110 1111
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1136
	down_read(&current->mm->mmap_sem);
1137 1138 1139 1140
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1141
			break;
1142 1143
		}

1144 1145
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1146
			break;
1147
	}
1148 1149 1150 1151 1152 1153 1154
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1189 1190 1191
	r = s390_enable_skey();
	if (r)
		goto out;
1192

1193
	down_read(&current->mm->mmap_sem);
1194 1195 1196 1197
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1198
			break;
1199 1200 1201 1202 1203
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1204
			break;
1205 1206
		}

1207
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1208
		if (r)
1209
			break;
1210
	}
1211
	up_read(&current->mm->mmap_sem);
1212 1213 1214 1215 1216
out:
	kvfree(keys);
	return r;
}

1217 1218 1219 1220 1221
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1222
	struct kvm_device_attr attr;
1223 1224 1225
	int r;

	switch (ioctl) {
1226 1227 1228 1229 1230 1231 1232 1233 1234
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1235 1236 1237 1238 1239 1240 1241 1242
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1243 1244 1245 1246 1247 1248 1249
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1250
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1251 1252 1253
		}
		break;
	}
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1295
	default:
1296
		r = -ENOTTY;
1297 1298 1299 1300 1301
	}

	return r;
}

1302 1303 1304
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1305
	u32 cc = 0;
1306

1307
	memset(config, 0, 128);
1308 1309 1310 1311
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1312
		"0: ipm %0\n"
1313
		"srl %0,28\n"
1314 1315 1316
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1329
	if (test_facility(12)) {
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1351
static u64 kvm_s390_get_initial_cpuid(void)
1352
{
1353 1354 1355 1356 1357
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1358 1359
}

1360
static void kvm_s390_crypto_init(struct kvm *kvm)
1361
{
1362
	if (!test_kvm_facility(kvm, 76))
1363
		return;
1364

1365
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1366
	kvm_s390_set_crycb_format(kvm);
1367

1368 1369 1370 1371 1372 1373 1374
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1375 1376
}

1377 1378 1379
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1380
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1381 1382 1383 1384 1385
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1386
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1387
{
1388
	gfp_t alloc_flags = GFP_KERNEL;
1389
	int i, rc;
1390
	char debug_name[16];
1391
	static unsigned long sca_offset;
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1404 1405
	rc = s390_enable_sie();
	if (rc)
1406
		goto out_err;
1407

1408 1409
	rc = -ENOMEM;

J
Janosch Frank 已提交
1410 1411
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1412
	kvm->arch.use_esca = 0; /* start with basic SCA */
1413 1414
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1415
	rwlock_init(&kvm->arch.sca_lock);
1416
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1417
	if (!kvm->arch.sca)
1418
		goto out_err;
1419
	spin_lock(&kvm_lock);
1420
	sca_offset += 16;
1421
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1422
		sca_offset = 0;
1423 1424
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1425
	spin_unlock(&kvm_lock);
1426 1427 1428

	sprintf(debug_name, "kvm-%u", current->pid);

1429
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1430
	if (!kvm->arch.dbf)
1431
		goto out_err;
1432

1433 1434 1435
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1436
		goto out_err;
1437

1438
	/* Populate the facility mask initially. */
1439
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1440
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1441 1442
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1443
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1444
		else
1445
			kvm->arch.model.fac_mask[i] = 0UL;
1446 1447
	}

1448
	/* Populate the facility list initially. */
1449 1450
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1451 1452
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1453 1454 1455
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1456
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1457
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1458

1459
	kvm_s390_crypto_init(kvm);
1460

1461
	spin_lock_init(&kvm->arch.float_int.lock);
1462 1463
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1464
	init_waitqueue_head(&kvm->arch.ipte_wq);
1465
	mutex_init(&kvm->arch.ipte_mutex);
1466

1467
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1468
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1469

1470 1471
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1472
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1473
	} else {
1474 1475 1476 1477 1478
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1479
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1480
		if (!kvm->arch.gmap)
1481
			goto out_err;
1482
		kvm->arch.gmap->private = kvm;
1483
		kvm->arch.gmap->pfault_enabled = 0;
1484
	}
1485 1486

	kvm->arch.css_support = 0;
1487
	kvm->arch.use_irqchip = 0;
1488
	kvm->arch.epoch = 0;
1489

1490
	spin_lock_init(&kvm->arch.start_stop_lock);
1491
	kvm_s390_vsie_init(kvm);
1492
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1493

1494
	return 0;
1495
out_err:
1496
	free_page((unsigned long)kvm->arch.sie_page2);
1497
	debug_unregister(kvm->arch.dbf);
1498
	sca_dispose(kvm);
1499
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1500
	return rc;
1501 1502
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

1513 1514 1515
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1516
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1517
	kvm_s390_clear_local_irqs(vcpu);
1518
	kvm_clear_async_pf_completion_queue(vcpu);
1519
	if (!kvm_is_ucontrol(vcpu->kvm))
1520
		sca_del_vcpu(vcpu);
1521 1522

	if (kvm_is_ucontrol(vcpu->kvm))
1523
		gmap_remove(vcpu->arch.gmap);
1524

1525
	if (vcpu->kvm->arch.use_cmma)
1526
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1527
	free_page((unsigned long)(vcpu->arch.sie_block));
1528

1529
	kvm_vcpu_uninit(vcpu);
1530
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1531 1532 1533 1534 1535
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1536
	struct kvm_vcpu *vcpu;
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1547 1548
}

1549 1550
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1551
	kvm_free_vcpus(kvm);
1552
	sca_dispose(kvm);
1553
	debug_unregister(kvm->arch.dbf);
1554
	free_page((unsigned long)kvm->arch.sie_page2);
1555
	if (!kvm_is_ucontrol(kvm))
1556
		gmap_remove(kvm->arch.gmap);
1557
	kvm_s390_destroy_adapters(kvm);
1558
	kvm_s390_clear_float_irqs(kvm);
1559
	kvm_s390_vsie_destroy(kvm);
1560
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1561 1562 1563
}

/* Section: vcpu related */
1564 1565
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1566
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1567 1568 1569 1570 1571 1572 1573
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1574 1575
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1576 1577
	if (!kvm_s390_use_sca_entries())
		return;
1578
	read_lock(&vcpu->kvm->arch.sca_lock);
1579 1580
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1581

1582
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1583
		sca->cpu[vcpu->vcpu_id].sda = 0;
1584 1585 1586 1587
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1588
		sca->cpu[vcpu->vcpu_id].sda = 0;
1589
	}
1590
	read_unlock(&vcpu->kvm->arch.sca_lock);
1591 1592
}

1593
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1594
{
1595 1596 1597 1598 1599 1600 1601
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
	}
1602 1603 1604
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1605

1606
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1607 1608
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1609
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1610
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1611
	} else {
1612
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1613

1614
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1615 1616
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1617
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1618
	}
1619
	read_unlock(&vcpu->kvm->arch.sca_lock);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1673 1674
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1675
	return 0;
1676 1677 1678 1679
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1680 1681
	int rc;

1682 1683 1684 1685 1686
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
1687 1688
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1689
	if (!sclp.has_esca || !sclp.has_64bscao)
1690 1691 1692 1693 1694 1695 1696
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1697 1698
}

1699 1700
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1701 1702
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1703 1704
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1705
				    KVM_SYNC_ACRS |
1706 1707 1708
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1709
	kvm_s390_set_prefix(vcpu, 0);
1710 1711
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1712 1713 1714 1715
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1716
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1717 1718
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1719 1720 1721 1722

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1723 1724 1725
	return 0;
}

1726 1727 1728 1729
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1730
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1731
	vcpu->arch.cputm_start = get_tod_clock_fast();
1732
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1733 1734 1735 1736 1737 1738
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1739
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1740 1741
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1742
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1775 1776 1777
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1778
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1779
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1780 1781
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1782
	vcpu->arch.sie_block->cputm = cputm;
1783
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1784
	preempt_enable();
1785 1786
}

1787
/* update and get the cpu timer - can also be called from other VCPU threads */
1788 1789
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1790
	unsigned int seq;
1791 1792 1793 1794 1795
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1810
	return value;
1811 1812
}

1813 1814
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1815

1816
	gmap_enable(vcpu->arch.enabled_gmap);
1817
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1818
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1819
		__start_cpu_timer_accounting(vcpu);
1820
	vcpu->cpu = cpu;
1821 1822 1823 1824
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1825
	vcpu->cpu = -1;
1826
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1827
		__stop_cpu_timer_accounting(vcpu);
1828
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1829 1830
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1831

1832 1833 1834 1835 1836 1837 1838
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1839
	kvm_s390_set_prefix(vcpu, 0);
1840
	kvm_s390_set_cpu_timer(vcpu, 0);
1841 1842 1843 1844 1845
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1846 1847 1848
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1849
	vcpu->arch.sie_block->gbea = 1;
1850
	vcpu->arch.sie_block->pp = 0;
1851 1852
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1853 1854
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1855
	kvm_s390_clear_local_irqs(vcpu);
1856 1857
}

1858
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1859
{
1860
	mutex_lock(&vcpu->kvm->lock);
1861
	preempt_disable();
1862
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1863
	preempt_enable();
1864
	mutex_unlock(&vcpu->kvm->lock);
1865
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1866
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1867
		sca_add_vcpu(vcpu);
1868
	}
1869 1870
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1871 1872
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1873 1874
}

1875 1876
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1877
	if (!test_kvm_facility(vcpu->kvm, 76))
1878 1879
		return;

1880 1881 1882 1883 1884 1885 1886
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1887 1888 1889
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1907 1908 1909 1910 1911
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1912
	if (test_kvm_facility(vcpu->kvm, 7))
1913
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1914 1915
}

1916 1917
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1918
	int rc = 0;
1919

1920 1921
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1922 1923
						    CPUSTAT_STOPPED);

1924
	if (test_kvm_facility(vcpu->kvm, 78))
1925
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1926
	else if (test_kvm_facility(vcpu->kvm, 8))
1927
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1928

1929 1930
	kvm_s390_vcpu_setup_model(vcpu);

1931 1932 1933
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1934 1935
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1936
	if (test_kvm_facility(vcpu->kvm, 73))
1937 1938
		vcpu->arch.sie_block->ecb |= 0x10;

1939
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1940
		vcpu->arch.sie_block->ecb2 |= 0x08;
1941 1942 1943
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1944 1945
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1946
	if (sclp.has_siif)
1947
		vcpu->arch.sie_block->eca |= 1;
1948
	if (sclp.has_sigpif)
1949
		vcpu->arch.sie_block->eca |= 0x10000000U;
1950
	if (test_kvm_facility(vcpu->kvm, 129)) {
1951 1952 1953
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1954
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1955
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1956

1957
	if (vcpu->kvm->arch.use_cmma) {
1958 1959 1960
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1961
	}
1962
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1963
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1964

1965 1966
	kvm_s390_vcpu_crypto_setup(vcpu);

1967
	return rc;
1968 1969 1970 1971 1972
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1973
	struct kvm_vcpu *vcpu;
1974
	struct sie_page *sie_page;
1975 1976
	int rc = -EINVAL;

1977
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1978 1979 1980
		goto out;

	rc = -ENOMEM;
1981

1982
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1983
	if (!vcpu)
1984
		goto out;
1985

1986 1987
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1988 1989
		goto out_free_cpu;

1990 1991 1992
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1993 1994 1995 1996
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1997
	vcpu->arch.sie_block->icpua = id;
1998 1999
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
2000
	vcpu->arch.local_int.wq = &vcpu->wq;
2001
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
2002
	seqcount_init(&vcpu->arch.cputm_seqcount);
2003

2004 2005
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2006
		goto out_free_sie_block;
2007
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2008
		 vcpu->arch.sie_block);
2009
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2010 2011

	return vcpu;
2012 2013
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2014
out_free_cpu:
2015
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2016
out:
2017 2018 2019 2020 2021
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2022
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2023 2024
}

2025
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2026
{
2027
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2028
	exit_sie(vcpu);
2029 2030
}

2031
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2032
{
2033
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2034 2035
}

2036 2037
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2038
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2039
	exit_sie(vcpu);
2040 2041 2042 2043
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2044
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2045 2046
}

2047 2048 2049 2050 2051 2052
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2053
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2054 2055 2056 2057
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2058 2059
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2060
{
2061 2062
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2063 2064
}

2065 2066
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2067 2068 2069
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2070 2071
	unsigned long prefix;
	int i;
2072

2073 2074
	if (gmap_is_shadow(gmap))
		return;
2075 2076 2077
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2078 2079
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2080 2081 2082 2083
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2084
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2085 2086 2087 2088
		}
	}
}

2089 2090 2091 2092 2093 2094 2095
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2096 2097 2098 2099 2100 2101
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2102 2103 2104 2105 2106 2107 2108 2109
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2110
	case KVM_REG_S390_CPU_TIMER:
2111
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2112 2113 2114 2115 2116 2117
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2130 2131 2132 2133
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2134 2135 2136 2137
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2149
	__u64 val;
2150 2151

	switch (reg->id) {
2152 2153 2154 2155 2156 2157 2158 2159
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2160
	case KVM_REG_S390_CPU_TIMER:
2161 2162 2163
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2164 2165 2166 2167 2168
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2169 2170 2171
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2172 2173
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2174 2175 2176 2177 2178 2179 2180 2181 2182
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2183 2184 2185 2186
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2187 2188 2189 2190
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2191 2192 2193 2194 2195 2196
	default:
		break;
	}

	return r;
}
2197

2198 2199 2200 2201 2202 2203 2204 2205
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2206
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2207 2208 2209 2210 2211
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2212
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2213 2214 2215 2216 2217 2218
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2219
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2220 2221 2222 2223 2224 2225 2226
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2227
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2228 2229 2230 2231 2232 2233
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2234 2235
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2236
	vcpu->run->s.regs.fpc = fpu->fpc;
2237
	if (MACHINE_HAS_VX)
2238 2239
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2240
	else
2241
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2242 2243 2244 2245 2246
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2247 2248 2249
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
2250 2251
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
2252
	else
2253
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2254
	fpu->fpc = vcpu->run->s.regs.fpc;
2255 2256 2257 2258 2259 2260 2261
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2262
	if (!is_vcpu_stopped(vcpu))
2263
		rc = -EBUSY;
2264 2265 2266 2267
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2268 2269 2270 2271 2272 2273 2274 2275 2276
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2277 2278 2279 2280
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2281 2282
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2283
{
2284 2285 2286 2287 2288
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2289
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2290
		return -EINVAL;
2291 2292
	if (!sclp.has_gpere)
		return -EINVAL;
2293 2294 2295 2296

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2297
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2298 2299 2300 2301

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2302
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2303 2304 2305 2306 2307 2308
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2309
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2310 2311 2312
	}

	return rc;
2313 2314
}

2315 2316 2317
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2318 2319 2320
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2321 2322 2323 2324 2325
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2346 2347
}

2348 2349 2350 2351 2352
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2353 2354
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2355
retry:
2356
	kvm_s390_vcpu_request_handled(vcpu);
2357 2358
	if (!vcpu->requests)
		return 0;
2359 2360
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2361
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2362 2363 2364 2365
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2366
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2367
		int rc;
2368 2369 2370
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2371 2372
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2373
			return rc;
2374
		}
2375
		goto retry;
2376
	}
2377

2378 2379 2380 2381 2382
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2383 2384 2385
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2386
			atomic_or(CPUSTAT_IBS,
2387 2388 2389
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2390
	}
2391 2392 2393 2394

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2395
			atomic_andnot(CPUSTAT_IBS,
2396 2397 2398 2399 2400
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2401 2402 2403 2404 2405
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2406 2407 2408
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2409 2410 2411
	return 0;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2439
{
2440 2441
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2442 2443
}

2444 2445 2446 2447
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2448
	struct kvm_s390_irq irq;
2449 2450

	if (start_token) {
2451 2452 2453
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2454 2455
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2456
		inti.parm64 = token;
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2503
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2504 2505 2506 2507 2508 2509
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2510 2511 2512
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2513 2514 2515 2516 2517 2518
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2519
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2520
{
2521
	int rc, cpuflags;
2522

2523 2524 2525 2526 2527 2528 2529
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2530 2531
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2532 2533 2534 2535

	if (need_resched())
		schedule();

2536
	if (test_cpu_flag(CIF_MCCK_PENDING))
2537 2538
		s390_handle_mcck();

2539 2540 2541 2542 2543
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2544

2545 2546 2547 2548
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2549 2550 2551 2552 2553
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2554
	vcpu->arch.sie_block->icptcode = 0;
2555 2556 2557
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2558

2559 2560 2561
	return 0;
}

2562 2563
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2564 2565 2566 2567
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2581
	rc = read_guest_instr(vcpu, &opcode, 1);
2582
	ilen = insn_length(opcode);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2593 2594 2595
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2596 2597
}

2598 2599
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2600 2601 2602 2603
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2604 2605 2606
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2607 2608
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2623 2624 2625 2626 2627
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2628
		return -EREMOTE;
2629
	} else if (current->thread.gmap_pfault) {
2630
		trace_kvm_s390_major_guest_pfault(vcpu);
2631
		current->thread.gmap_pfault = 0;
2632 2633 2634
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2635
	}
2636
	return vcpu_post_run_fault_in_sie(vcpu);
2637 2638 2639 2640 2641 2642
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2643 2644 2645 2646 2647 2648
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2649 2650 2651 2652
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2653

2654
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2655 2656 2657 2658
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2659
		local_irq_disable();
2660
		guest_enter_irqoff();
2661
		__disable_cpu_timer_accounting(vcpu);
2662
		local_irq_enable();
2663 2664
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2665
		local_irq_disable();
2666
		__enable_cpu_timer_accounting(vcpu);
2667
		guest_exit_irqoff();
2668
		local_irq_enable();
2669
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2670 2671

		rc = vcpu_post_run(vcpu, exit_reason);
2672
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2673

2674
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2675
	return rc;
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2686 2687
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2688 2689
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2690
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2691 2692 2693 2694 2695 2696 2697 2698 2699
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2700 2701
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2702
	}
F
Fan Zhang 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
	    test_kvm_facility(vcpu->kvm, 64)) {
		struct runtime_instr_cb *riccb =
			(struct runtime_instr_cb *) &kvm_run->s.regs.riccb;

		if (riccb->valid)
			vcpu->arch.sie_block->ecb3 |= 0x01;
	}
2715 2716
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
2729

2730 2731 2732 2733 2734 2735 2736 2737 2738
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2739
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2740 2741 2742 2743 2744 2745 2746
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2747 2748
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
2749 2750 2751 2752 2753 2754 2755
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;

2756 2757
}

2758 2759
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2760
	int rc;
2761 2762
	sigset_t sigsaved;

2763 2764 2765 2766 2767
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2768 2769 2770
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2771 2772 2773
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2774
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2775 2776 2777
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2778

2779
	sync_regs(vcpu, kvm_run);
2780
	enable_cpu_timer_accounting(vcpu);
2781

2782
	might_fault();
2783
	rc = __vcpu_run(vcpu);
2784

2785 2786
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2787
		rc = -EINTR;
2788
	}
2789

2790 2791 2792 2793 2794
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2795
	if (rc == -EREMOTE) {
2796
		/* userspace support is needed, kvm_run has been prepared */
2797 2798
		rc = 0;
	}
2799

2800
	disable_cpu_timer_accounting(vcpu);
2801
	store_regs(vcpu, kvm_run);
2802

2803 2804 2805 2806
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2807
	return rc;
2808 2809 2810 2811 2812 2813 2814 2815
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2816
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2817
{
2818
	unsigned char archmode = 1;
2819
	freg_t fprs[NUM_FPRS];
2820
	unsigned int px;
2821
	u64 clkcomp, cputm;
2822
	int rc;
2823

2824
	px = kvm_s390_get_prefix(vcpu);
2825 2826
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2827
			return -EFAULT;
2828
		gpa = 0;
2829 2830
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2831
			return -EFAULT;
2832 2833 2834
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2835 2836 2837

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2838
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2839 2840 2841 2842
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2843
				     vcpu->run->s.regs.fprs, 128);
2844
	}
2845
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2846
			      vcpu->run->s.regs.gprs, 128);
2847
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2848
			      &vcpu->arch.sie_block->gpsw, 16);
2849
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2850
			      &px, 4);
2851
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2852
			      &vcpu->run->s.regs.fpc, 4);
2853
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2854
			      &vcpu->arch.sie_block->todpr, 4);
2855
	cputm = kvm_s390_get_cpu_timer(vcpu);
2856
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2857
			      &cputm, 8);
2858
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2859
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2860
			      &clkcomp, 8);
2861
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2862
			      &vcpu->run->s.regs.acrs, 64);
2863
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2864 2865
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2866 2867
}

2868 2869 2870 2871
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2872
	 * switch in the run ioctl. Let's update our copies before we save
2873 2874
	 * it into the save area
	 */
2875
	save_fpu_regs();
2876
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2877 2878 2879 2880 2881
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

2882 2883 2884
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2885
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2900 2901
	if (!sclp.has_ibs)
		return;
2902
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2903
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2904 2905
}

2906 2907
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2908 2909 2910 2911 2912
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2913
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2914
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2915
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2935
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2936 2937 2938 2939
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2940
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2941
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2942
	return;
2943 2944 2945 2946
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2947 2948 2949 2950 2951 2952
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2953
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2954
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2955
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2956 2957
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2958
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2959
	kvm_s390_clear_stop_irq(vcpu);
2960

2961
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2979
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2980
	return;
2981 2982
}

2983 2984 2985 2986 2987 2988 2989 2990 2991
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2992 2993 2994
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2995
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2996 2997 2998 2999
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3000 3001 3002 3003 3004 3005 3006
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3033 3034
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3045 3046
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3068 3069 3070 3071 3072
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3073
	int idx;
3074
	long r;
3075

3076
	switch (ioctl) {
3077 3078 3079 3080 3081 3082 3083 3084 3085
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3086
	case KVM_S390_INTERRUPT: {
3087
		struct kvm_s390_interrupt s390int;
3088
		struct kvm_s390_irq s390irq;
3089

3090
		r = -EFAULT;
3091
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3092
			break;
3093 3094 3095
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3096
		break;
3097
	}
3098
	case KVM_S390_STORE_STATUS:
3099
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3100
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3101
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3102
		break;
3103 3104 3105
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3106
		r = -EFAULT;
3107
		if (copy_from_user(&psw, argp, sizeof(psw)))
3108 3109 3110
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3111 3112
	}
	case KVM_S390_INITIAL_RESET:
3113 3114
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3163
	case KVM_S390_VCPU_FAULT: {
3164
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3165 3166
		break;
	}
3167 3168 3169 3170 3171 3172 3173 3174 3175
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3176 3177 3178 3179 3180 3181 3182 3183 3184
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3217
	default:
3218
		r = -ENOTTY;
3219
	}
3220
	return r;
3221 3222
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3236 3237
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3238 3239 3240 3241
{
	return 0;
}

3242
/* Section: memory related */
3243 3244
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3245
				   const struct kvm_userspace_memory_region *mem,
3246
				   enum kvm_mr_change change)
3247
{
3248 3249 3250 3251
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3252

3253
	if (mem->userspace_addr & 0xffffful)
3254 3255
		return -EINVAL;

3256
	if (mem->memory_size & 0xffffful)
3257 3258
		return -EINVAL;

3259 3260 3261
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3262 3263 3264 3265
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3266
				const struct kvm_userspace_memory_region *mem,
3267
				const struct kvm_memory_slot *old,
3268
				const struct kvm_memory_slot *new,
3269
				enum kvm_mr_change change)
3270
{
3271
	int rc;
3272

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3283 3284 3285 3286

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3287
		pr_warn("failed to commit memory region\n");
3288
	return;
3289 3290
}

3291 3292 3293 3294 3295 3296 3297
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3298 3299 3300 3301 3302
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3303 3304
static int __init kvm_s390_init(void)
{
3305 3306
	int i;

3307 3308 3309 3310 3311
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3312 3313 3314 3315
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3316
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3317 3318 3319 3320 3321 3322 3323 3324 3325
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3326 3327 3328 3329 3330 3331 3332 3333 3334

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");