kvm-s390.c 87.7 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/stp.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40
#include <asm/cpacf.h>
41
#include <asm/timex.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
68
	{ "exit_pei", VCPU_STAT(exit_pei) },
69 70
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
71
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
72
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
73
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
74
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
75
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
76
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
77
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
78 79
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
80
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
81
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
82 83 84 85 86 87 88
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
89
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
90 91 92 93 94
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
95
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
96 97
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
98
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
99 100
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
101
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
102
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
103
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
104
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
105
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
106
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
107
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
108 109
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
110
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
111 112
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
113
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
114 115 116
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
117 118 119
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
120
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
121
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
122
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
123 124 125
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
126 127 128
	{ NULL }
};

129 130 131 132 133
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

134
/* upper facilities limit for kvm */
135
unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
136

137
unsigned long kvm_s390_fac_list_mask_size(void)
138
{
139 140
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
141 142
}

143 144
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
145 146
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
147

148
static struct gmap_notifier gmap_notifier;
149
static struct gmap_notifier vsie_gmap_notifier;
150
debug_info_t *kvm_s390_dbf;
151

152
/* Section: not file related */
153
int kvm_arch_hardware_enable(void)
154 155
{
	/* every s390 is virtualization enabled ;-) */
156
	return 0;
157 158
}

159 160
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
180 181
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
182 183
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
184 185 186 187 188 189 190 191 192
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

193 194
int kvm_arch_hardware_setup(void)
{
195
	gmap_notifier.notifier_call = kvm_gmap_notifier;
196
	gmap_register_pte_notifier(&gmap_notifier);
197 198
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
199 200
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
201 202 203 204 205
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
206
	gmap_unregister_pte_notifier(&gmap_notifier);
207
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
208 209
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
210 211
}

212 213 214 215 216
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

217 218 219
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
220
	int cc;
221 222 223 224 225 226 227 228 229 230 231 232

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

233 234
static void kvm_s390_cpu_feat_init(void)
{
235 236 237 238 239 240 241 242
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
243 244 245
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
246 247

	if (test_facility(17)) { /* MSA */
248 249 250 251 252 253 254 255 256 257
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
258 259
	}
	if (test_facility(76)) /* MSA3 */
260 261
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
262
	if (test_facility(77)) { /* MSA4 */
263 264 265 266 267 268 269 270
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
271 272
	}
	if (test_facility(57)) /* MSA5 */
273 274
		__cpacf_query(CPACF_PPNO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.ppno);
275

276 277
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
278 279 280 281 282
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
283
	    !test_facility(3) || !nested)
284 285
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
286 287
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
288 289
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
290 291
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
292 293
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
294 295
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
296 297
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
298 299
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
318 319
}

320 321
int kvm_arch_init(void *opaque)
{
322 323 324 325 326 327 328 329 330
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

331 332
	kvm_s390_cpu_feat_init();

333 334
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
335 336
}

337 338 339 340 341
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

342 343 344 345 346 347 348 349 350
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

351
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
352
{
353 354
	int r;

355
	switch (ext) {
356
	case KVM_CAP_S390_PSW:
357
	case KVM_CAP_S390_GMAP:
358
	case KVM_CAP_SYNC_MMU:
359 360 361
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
362
	case KVM_CAP_ASYNC_PF:
363
	case KVM_CAP_SYNC_REGS:
364
	case KVM_CAP_ONE_REG:
365
	case KVM_CAP_ENABLE_CAP:
366
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
367
	case KVM_CAP_IOEVENTFD:
368
	case KVM_CAP_DEVICE_CTRL:
369
	case KVM_CAP_ENABLE_CAP_VM:
370
	case KVM_CAP_S390_IRQCHIP:
371
	case KVM_CAP_VM_ATTRIBUTES:
372
	case KVM_CAP_MP_STATE:
373
	case KVM_CAP_S390_INJECT_IRQ:
374
	case KVM_CAP_S390_USER_SIGP:
375
	case KVM_CAP_S390_USER_STSI:
376
	case KVM_CAP_S390_SKEYS:
377
	case KVM_CAP_S390_IRQ_STATE:
378
	case KVM_CAP_S390_USER_INSTR0:
379 380
		r = 1;
		break;
381 382 383
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
384 385
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
386
		r = KVM_S390_BSCA_CPU_SLOTS;
387 388 389
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
390
			r = KVM_S390_ESCA_CPU_SLOTS;
391
		break;
392 393 394
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
395
	case KVM_CAP_S390_COW:
396
		r = MACHINE_HAS_ESOP;
397
		break;
398 399 400
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
401 402 403
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
404
	default:
405
		r = 0;
406
	}
407
	return r;
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

422
		if (test_and_clear_guest_dirty(gmap->mm, address))
423
			mark_page_dirty(kvm, cur_gfn);
424 425
		if (fatal_signal_pending(current))
			return;
426
		cond_resched();
427 428 429
	}
}

430
/* Section: vm related */
431 432
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

433 434 435 436 437 438
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
439 440
	int r;
	unsigned long n;
441
	struct kvm_memslots *slots;
442 443 444
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

445 446 447
	if (kvm_is_ucontrol(kvm))
		return -EINVAL;

448 449 450 451 452 453
	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

454 455
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
474 475
}

476 477 478 479 480 481 482 483 484 485
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

486 487 488 489 490 491 492 493
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
494
	case KVM_CAP_S390_IRQCHIP:
495
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
496 497 498
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
499
	case KVM_CAP_S390_USER_SIGP:
500
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
501 502 503
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
504
	case KVM_CAP_S390_VECTOR_REGISTERS:
505
		mutex_lock(&kvm->lock);
506
		if (kvm->created_vcpus) {
507 508
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
509 510
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
511 512 513 514
			if (test_facility(134)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 134);
				set_kvm_facility(kvm->arch.model.fac_list, 134);
			}
515 516 517 518
			if (test_facility(135)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 135);
				set_kvm_facility(kvm->arch.model.fac_list, 135);
			}
519 520 521
			r = 0;
		} else
			r = -EINVAL;
522
		mutex_unlock(&kvm->lock);
523 524
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
525
		break;
526 527 528
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
529
		if (kvm->created_vcpus) {
530 531
			r = -EBUSY;
		} else if (test_facility(64)) {
532 533
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
534 535 536 537 538 539
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
540
	case KVM_CAP_S390_USER_STSI:
541
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
542 543 544
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
545 546 547 548 549 550
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
551 552 553 554 555 556 557
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

558 559 560 561 562 563 564
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
565
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
566 567
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
568 569 570 571 572 573 574 575 576 577
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
578 579 580 581 582
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
583
		ret = -ENXIO;
584
		if (!sclp.has_cmma)
585 586
			break;

587
		ret = -EBUSY;
588
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
589
		mutex_lock(&kvm->lock);
590
		if (!kvm->created_vcpus) {
591 592 593 594 595 596
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
597 598 599
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
600 601 602 603
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

604
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
605 606
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
607
		s390_reset_cmma(kvm->arch.gmap->mm);
608 609 610 611
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
612 613 614 615 616 617 618 619 620
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

621 622
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
623 624
			return -E2BIG;

625 626 627
		if (!new_limit)
			return -EINVAL;

628
		/* gmap_create takes last usable address */
629 630 631
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

632 633
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
634
		if (!kvm->created_vcpus) {
635 636
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
637 638 639 640

			if (!new) {
				ret = -ENOMEM;
			} else {
641
				gmap_remove(kvm->arch.gmap);
642 643 644 645 646 647
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
648 649 650
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
651 652
		break;
	}
653 654 655 656 657 658 659
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

660 661 662 663 664 665 666
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

667
	if (!test_kvm_facility(kvm, 76))
668 669 670 671 672 673 674 675 676
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
677
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
678 679 680 681 682 683
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
684
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
685 686 687 688 689
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
690
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
691 692 693 694 695
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
696
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
697 698 699 700 701 702 703 704 705 706 707 708 709 710
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

711 712 713 714 715 716 717 718 719 720
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
721
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
722 723 724 725 726 727

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
728
	u64 gtod;
729 730 731 732

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

733
	kvm_s390_set_tod_clock(kvm, gtod);
734
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
766
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
767 768 769 770 771 772

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
773
	u64 gtod;
774

775
	gtod = kvm_s390_get_tod_clock_fast(kvm);
776 777
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
778
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

804 805 806
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
807
	u16 lowest_ibc, unblocked_ibc;
808 809 810
	int ret = 0;

	mutex_lock(&kvm->lock);
811
	if (kvm->created_vcpus) {
812 813 814 815 816 817 818 819 820 821
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
822
		kvm->arch.model.cpuid = proc->cpuid;
823 824
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
825
		if (lowest_ibc && proc->ibc) {
826 827 828 829 830 831 832
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
833
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
834
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
835 836 837 838 839 840 841
		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
			 kvm->arch.model.ibc,
			 kvm->arch.model.cpuid);
		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
			 kvm->arch.model.fac_list[0],
			 kvm->arch.model.fac_list[1],
			 kvm->arch.model.fac_list[2]);
842 843 844 845 846 847 848 849
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

873 874 875 876 877 878 879 880 881 882
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

883 884 885 886 887 888 889 890
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
891 892 893
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
894 895 896
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
897 898 899 900 901 902 903 904 905 906 907 908 909 910
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
911
	proc->cpuid = kvm->arch.model.cpuid;
912
	proc->ibc = kvm->arch.model.ibc;
913 914
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
915 916 917 918 919 920 921
	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
		 kvm->arch.model.fac_list[0],
		 kvm->arch.model.fac_list[1],
		 kvm->arch.model.fac_list[2]);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
940
	mach->ibc = sclp.ibc;
941
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
942
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
943
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
944
	       sizeof(S390_lowcore.stfle_fac_list));
945 946 947 948 949 950 951 952 953 954 955
	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_mask[0],
		 mach->fac_mask[1],
		 mach->fac_mask[2]);
	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_list[0],
		 mach->fac_list[1],
		 mach->fac_list[2]);
956 957 958 959 960 961 962
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
1018 1019 1020 1021 1022 1023
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
1024 1025 1026 1027 1028 1029
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
1030 1031 1032 1033
	}
	return ret;
}

1034 1035 1036 1037 1038
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1039
	case KVM_S390_VM_MEM_CTRL:
1040
		ret = kvm_s390_set_mem_control(kvm, attr);
1041
		break;
1042 1043 1044
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1045 1046 1047
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1048 1049 1050
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1061 1062 1063 1064 1065 1066
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1067 1068 1069
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1070 1071 1072
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1073 1074 1075 1076 1077 1078
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1079 1080 1081 1082 1083 1084 1085
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1086 1087 1088 1089
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1090 1091
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1092
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1093 1094 1095 1096 1097 1098 1099
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1111 1112 1113 1114
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1115 1116
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1117
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1118 1119
			ret = 0;
			break;
1120 1121
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1122 1123 1124 1125 1126
		default:
			ret = -ENXIO;
			break;
		}
		break;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1140 1141 1142 1143 1144 1145 1146 1147
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1172
	down_read(&current->mm->mmap_sem);
1173 1174 1175 1176
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1177
			break;
1178 1179
		}

1180 1181
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1182
			break;
1183
	}
1184 1185 1186 1187 1188 1189 1190
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1225 1226 1227
	r = s390_enable_skey();
	if (r)
		goto out;
1228

1229
	down_read(&current->mm->mmap_sem);
1230 1231 1232 1233
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1234
			break;
1235 1236 1237 1238 1239
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1240
			break;
1241 1242
		}

1243
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1244
		if (r)
1245
			break;
1246
	}
1247
	up_read(&current->mm->mmap_sem);
1248 1249 1250 1251 1252
out:
	kvfree(keys);
	return r;
}

1253 1254 1255 1256 1257
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1258
	struct kvm_device_attr attr;
1259 1260 1261
	int r;

	switch (ioctl) {
1262 1263 1264 1265 1266 1267 1268 1269 1270
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1271 1272 1273 1274 1275 1276 1277 1278
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1279 1280 1281 1282 1283 1284 1285
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1286
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1287 1288 1289
		}
		break;
	}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1331
	default:
1332
		r = -ENOTTY;
1333 1334 1335 1336 1337
	}

	return r;
}

1338 1339 1340
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1341
	u32 cc = 0;
1342

1343
	memset(config, 0, 128);
1344 1345 1346 1347
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1348
		"0: ipm %0\n"
1349
		"srl %0,28\n"
1350 1351 1352
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1365
	if (test_facility(12)) {
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1387
static u64 kvm_s390_get_initial_cpuid(void)
1388
{
1389 1390 1391 1392 1393
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1394 1395
}

1396
static void kvm_s390_crypto_init(struct kvm *kvm)
1397
{
1398
	if (!test_kvm_facility(kvm, 76))
1399
		return;
1400

1401
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1402
	kvm_s390_set_crycb_format(kvm);
1403

1404 1405 1406 1407 1408 1409 1410
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1411 1412
}

1413 1414 1415
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1416
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1417 1418 1419 1420 1421
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1422
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1423
{
1424
	gfp_t alloc_flags = GFP_KERNEL;
1425
	int i, rc;
1426
	char debug_name[16];
1427
	static unsigned long sca_offset;
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1440 1441
	rc = s390_enable_sie();
	if (rc)
1442
		goto out_err;
1443

1444 1445
	rc = -ENOMEM;

J
Janosch Frank 已提交
1446 1447
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1448
	kvm->arch.use_esca = 0; /* start with basic SCA */
1449 1450
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1451
	rwlock_init(&kvm->arch.sca_lock);
1452
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1453
	if (!kvm->arch.sca)
1454
		goto out_err;
1455
	spin_lock(&kvm_lock);
1456
	sca_offset += 16;
1457
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1458
		sca_offset = 0;
1459 1460
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1461
	spin_unlock(&kvm_lock);
1462 1463 1464

	sprintf(debug_name, "kvm-%u", current->pid);

1465
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1466
	if (!kvm->arch.dbf)
1467
		goto out_err;
1468

1469 1470 1471
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1472
		goto out_err;
1473

1474
	/* Populate the facility mask initially. */
1475
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1476
	       sizeof(S390_lowcore.stfle_fac_list));
1477 1478
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1479
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1480
		else
1481
			kvm->arch.model.fac_mask[i] = 0UL;
1482 1483
	}

1484
	/* Populate the facility list initially. */
1485 1486
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1487 1488
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1489 1490 1491
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1492
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1493
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1494

1495
	kvm_s390_crypto_init(kvm);
1496

1497
	spin_lock_init(&kvm->arch.float_int.lock);
1498 1499
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1500
	init_waitqueue_head(&kvm->arch.ipte_wq);
1501
	mutex_init(&kvm->arch.ipte_mutex);
1502

1503
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1504
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1505

1506 1507
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1508
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1509
	} else {
1510 1511 1512 1513 1514
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1515
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1516
		if (!kvm->arch.gmap)
1517
			goto out_err;
1518
		kvm->arch.gmap->private = kvm;
1519
		kvm->arch.gmap->pfault_enabled = 0;
1520
	}
1521 1522

	kvm->arch.css_support = 0;
1523
	kvm->arch.use_irqchip = 0;
1524
	kvm->arch.epoch = 0;
1525

1526
	spin_lock_init(&kvm->arch.start_stop_lock);
1527
	kvm_s390_vsie_init(kvm);
1528
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1529

1530
	return 0;
1531
out_err:
1532
	free_page((unsigned long)kvm->arch.sie_page2);
1533
	debug_unregister(kvm->arch.dbf);
1534
	sca_dispose(kvm);
1535
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1536
	return rc;
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

1549 1550 1551
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1552
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1553
	kvm_s390_clear_local_irqs(vcpu);
1554
	kvm_clear_async_pf_completion_queue(vcpu);
1555
	if (!kvm_is_ucontrol(vcpu->kvm))
1556
		sca_del_vcpu(vcpu);
1557 1558

	if (kvm_is_ucontrol(vcpu->kvm))
1559
		gmap_remove(vcpu->arch.gmap);
1560

1561
	if (vcpu->kvm->arch.use_cmma)
1562
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1563
	free_page((unsigned long)(vcpu->arch.sie_block));
1564

1565
	kvm_vcpu_uninit(vcpu);
1566
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1567 1568 1569 1570 1571
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1572
	struct kvm_vcpu *vcpu;
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1583 1584
}

1585 1586
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1587
	kvm_free_vcpus(kvm);
1588
	sca_dispose(kvm);
1589
	debug_unregister(kvm->arch.dbf);
1590
	free_page((unsigned long)kvm->arch.sie_page2);
1591
	if (!kvm_is_ucontrol(kvm))
1592
		gmap_remove(kvm->arch.gmap);
1593
	kvm_s390_destroy_adapters(kvm);
1594
	kvm_s390_clear_float_irqs(kvm);
1595
	kvm_s390_vsie_destroy(kvm);
1596
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1597 1598 1599
}

/* Section: vcpu related */
1600 1601
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1602
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1603 1604 1605 1606 1607 1608 1609
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1610 1611
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1612 1613
	if (!kvm_s390_use_sca_entries())
		return;
1614
	read_lock(&vcpu->kvm->arch.sca_lock);
1615 1616
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1617

1618
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1619
		sca->cpu[vcpu->vcpu_id].sda = 0;
1620 1621 1622 1623
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1624
		sca->cpu[vcpu->vcpu_id].sda = 0;
1625
	}
1626
	read_unlock(&vcpu->kvm->arch.sca_lock);
1627 1628
}

1629
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1630
{
1631 1632 1633 1634 1635 1636 1637
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
	}
1638 1639 1640
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1641

1642
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1643 1644
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1645
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1646
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1647
	} else {
1648
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1649

1650
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1651 1652
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1653
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1654
	}
1655
	read_unlock(&vcpu->kvm->arch.sca_lock);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1709 1710
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1711
	return 0;
1712 1713 1714 1715
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1716 1717
	int rc;

1718 1719 1720 1721 1722
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
1723 1724
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1725
	if (!sclp.has_esca || !sclp.has_64bscao)
1726 1727 1728 1729 1730 1731 1732
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1733 1734
}

1735 1736
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1737 1738
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1739 1740
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1741
				    KVM_SYNC_ACRS |
1742 1743 1744
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1745
	kvm_s390_set_prefix(vcpu, 0);
1746 1747
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1748 1749 1750 1751
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1752
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1753 1754
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1755 1756 1757 1758

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1759 1760 1761
	return 0;
}

1762 1763 1764 1765
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1766
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1767
	vcpu->arch.cputm_start = get_tod_clock_fast();
1768
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1769 1770 1771 1772 1773 1774
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1775
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1776 1777
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1778
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1811 1812 1813
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1814
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1815
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1816 1817
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1818
	vcpu->arch.sie_block->cputm = cputm;
1819
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1820
	preempt_enable();
1821 1822
}

1823
/* update and get the cpu timer - can also be called from other VCPU threads */
1824 1825
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1826
	unsigned int seq;
1827 1828 1829 1830 1831
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1846
	return value;
1847 1848
}

1849 1850
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1851

1852
	gmap_enable(vcpu->arch.enabled_gmap);
1853
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1854
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1855
		__start_cpu_timer_accounting(vcpu);
1856
	vcpu->cpu = cpu;
1857 1858 1859 1860
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1861
	vcpu->cpu = -1;
1862
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1863
		__stop_cpu_timer_accounting(vcpu);
1864
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1865 1866
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1867

1868 1869 1870 1871 1872 1873 1874
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1875
	kvm_s390_set_prefix(vcpu, 0);
1876
	kvm_s390_set_cpu_timer(vcpu, 0);
1877 1878 1879 1880 1881
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1882 1883 1884
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1885
	vcpu->arch.sie_block->gbea = 1;
1886
	vcpu->arch.sie_block->pp = 0;
1887 1888
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1889 1890
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1891
	kvm_s390_clear_local_irqs(vcpu);
1892 1893
}

1894
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1895
{
1896
	mutex_lock(&vcpu->kvm->lock);
1897
	preempt_disable();
1898
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1899
	preempt_enable();
1900
	mutex_unlock(&vcpu->kvm->lock);
1901
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1902
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1903
		sca_add_vcpu(vcpu);
1904
	}
1905 1906
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1907 1908
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1909 1910
}

1911 1912
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1913
	if (!test_kvm_facility(vcpu->kvm, 76))
1914 1915
		return;

1916 1917 1918 1919 1920 1921 1922
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1923 1924 1925
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1943 1944 1945 1946 1947
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1948
	if (test_kvm_facility(vcpu->kvm, 7))
1949
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1950 1951
}

1952 1953
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1954
	int rc = 0;
1955

1956 1957
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1958 1959
						    CPUSTAT_STOPPED);

1960
	if (test_kvm_facility(vcpu->kvm, 78))
1961
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1962
	else if (test_kvm_facility(vcpu->kvm, 8))
1963
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1964

1965 1966
	kvm_s390_vcpu_setup_model(vcpu);

1967 1968 1969
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1970 1971
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1972
	if (test_kvm_facility(vcpu->kvm, 73))
1973 1974
		vcpu->arch.sie_block->ecb |= 0x10;

1975
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1976
		vcpu->arch.sie_block->ecb2 |= 0x08;
1977 1978
	if (test_kvm_facility(vcpu->kvm, 130))
		vcpu->arch.sie_block->ecb2 |= 0x20;
1979 1980 1981
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1982 1983
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1984
	if (sclp.has_siif)
1985
		vcpu->arch.sie_block->eca |= 1;
1986
	if (sclp.has_sigpif)
1987
		vcpu->arch.sie_block->eca |= 0x10000000U;
1988
	if (test_kvm_facility(vcpu->kvm, 129)) {
1989 1990 1991
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1992
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1993
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1994

1995
	if (vcpu->kvm->arch.use_cmma) {
1996 1997 1998
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1999
	}
2000
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2001
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2002

2003 2004
	kvm_s390_vcpu_crypto_setup(vcpu);

2005
	return rc;
2006 2007 2008 2009 2010
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
2011
	struct kvm_vcpu *vcpu;
2012
	struct sie_page *sie_page;
2013 2014
	int rc = -EINVAL;

2015
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2016 2017 2018
		goto out;

	rc = -ENOMEM;
2019

2020
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2021
	if (!vcpu)
2022
		goto out;
2023

2024 2025
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
2026 2027
		goto out_free_cpu;

2028 2029 2030
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

2031 2032 2033 2034
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

2035
	vcpu->arch.sie_block->icpua = id;
2036 2037
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
2038
	vcpu->arch.local_int.wq = &vcpu->wq;
2039
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
2040
	seqcount_init(&vcpu->arch.cputm_seqcount);
2041

2042 2043
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2044
		goto out_free_sie_block;
2045
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2046
		 vcpu->arch.sie_block);
2047
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2048 2049

	return vcpu;
2050 2051
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2052
out_free_cpu:
2053
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2054
out:
2055 2056 2057 2058 2059
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2060
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2061 2062
}

2063
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2064
{
2065
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2066
	exit_sie(vcpu);
2067 2068
}

2069
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2070
{
2071
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2072 2073
}

2074 2075
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2076
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2077
	exit_sie(vcpu);
2078 2079 2080 2081
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2082
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2083 2084
}

2085 2086 2087 2088 2089 2090
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2091
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2092 2093 2094 2095
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2096 2097
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2098
{
2099 2100
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2101 2102
}

2103 2104
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2105 2106 2107
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2108 2109
	unsigned long prefix;
	int i;
2110

2111 2112
	if (gmap_is_shadow(gmap))
		return;
2113 2114 2115
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2116 2117
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2118 2119 2120 2121
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2122
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2123 2124 2125 2126
		}
	}
}

2127 2128 2129 2130 2131 2132 2133
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2134 2135 2136 2137 2138 2139
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2140 2141 2142 2143 2144 2145 2146 2147
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2148
	case KVM_REG_S390_CPU_TIMER:
2149
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2150 2151 2152 2153 2154 2155
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2168 2169 2170 2171
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2172 2173 2174 2175
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2187
	__u64 val;
2188 2189

	switch (reg->id) {
2190 2191 2192 2193 2194 2195 2196 2197
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2198
	case KVM_REG_S390_CPU_TIMER:
2199 2200 2201
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2202 2203 2204 2205 2206
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2207 2208 2209
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2210 2211
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2212 2213 2214 2215 2216 2217 2218 2219 2220
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2221 2222 2223 2224
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2225 2226 2227 2228
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2229 2230 2231 2232 2233 2234
	default:
		break;
	}

	return r;
}
2235

2236 2237 2238 2239 2240 2241 2242 2243
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2244
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2245 2246 2247 2248 2249
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2250
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2251 2252 2253 2254 2255 2256
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2257
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2258 2259 2260 2261 2262 2263 2264
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2265
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2266 2267 2268 2269 2270 2271
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2272 2273
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2274
	vcpu->run->s.regs.fpc = fpu->fpc;
2275
	if (MACHINE_HAS_VX)
2276 2277
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2278
	else
2279
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2280 2281 2282 2283 2284
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2285 2286 2287
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
2288 2289
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
2290
	else
2291
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2292
	fpu->fpc = vcpu->run->s.regs.fpc;
2293 2294 2295 2296 2297 2298 2299
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2300
	if (!is_vcpu_stopped(vcpu))
2301
		rc = -EBUSY;
2302 2303 2304 2305
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2306 2307 2308 2309 2310 2311 2312 2313 2314
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2315 2316 2317 2318
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2319 2320
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2321
{
2322 2323 2324 2325 2326
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2327
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2328
		return -EINVAL;
2329 2330
	if (!sclp.has_gpere)
		return -EINVAL;
2331 2332 2333 2334

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2335
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2336 2337 2338 2339

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2340
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2341 2342 2343 2344 2345 2346
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2347
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2348 2349 2350
	}

	return rc;
2351 2352
}

2353 2354 2355
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2356 2357 2358
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2359 2360 2361 2362 2363
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2384 2385
}

2386 2387 2388 2389 2390
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2391 2392
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2393
retry:
2394
	kvm_s390_vcpu_request_handled(vcpu);
2395 2396
	if (!vcpu->requests)
		return 0;
2397 2398
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2399
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2400 2401 2402 2403
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2404
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2405
		int rc;
2406 2407 2408
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2409 2410
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2411
			return rc;
2412
		}
2413
		goto retry;
2414
	}
2415

2416 2417 2418 2419 2420
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2421 2422 2423
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2424
			atomic_or(CPUSTAT_IBS,
2425 2426 2427
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2428
	}
2429 2430 2431 2432

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2433
			atomic_andnot(CPUSTAT_IBS,
2434 2435 2436 2437 2438
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2439 2440 2441 2442 2443
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2444 2445 2446
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2447 2448 2449
	return 0;
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2477
{
2478 2479
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2480 2481
}

2482 2483 2484 2485
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2486
	struct kvm_s390_irq irq;
2487 2488

	if (start_token) {
2489 2490 2491
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2492 2493
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2494
		inti.parm64 = token;
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2541
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2542 2543 2544 2545 2546 2547
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2548 2549 2550
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2551 2552 2553 2554 2555 2556
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2557
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2558
{
2559
	int rc, cpuflags;
2560

2561 2562 2563 2564 2565 2566 2567
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2568 2569
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2570 2571 2572 2573

	if (need_resched())
		schedule();

2574
	if (test_cpu_flag(CIF_MCCK_PENDING))
2575 2576
		s390_handle_mcck();

2577 2578 2579 2580 2581
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2582

2583 2584 2585 2586
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2587 2588 2589 2590 2591
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2592
	vcpu->arch.sie_block->icptcode = 0;
2593 2594 2595
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2596

2597 2598 2599
	return 0;
}

2600 2601
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2602 2603 2604 2605
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2619
	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
2620
	ilen = insn_length(opcode);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2631 2632 2633
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2634 2635
}

2636 2637
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2638 2639 2640 2641
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2642 2643 2644
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2645 2646
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2661 2662 2663 2664 2665
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2666
		return -EREMOTE;
2667
	} else if (current->thread.gmap_pfault) {
2668
		trace_kvm_s390_major_guest_pfault(vcpu);
2669
		current->thread.gmap_pfault = 0;
2670 2671 2672
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2673
	}
2674
	return vcpu_post_run_fault_in_sie(vcpu);
2675 2676 2677 2678 2679 2680
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2681 2682 2683 2684 2685 2686
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2687 2688 2689 2690
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2691

2692
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2693 2694 2695 2696
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2697
		local_irq_disable();
2698
		guest_enter_irqoff();
2699
		__disable_cpu_timer_accounting(vcpu);
2700
		local_irq_enable();
2701 2702
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2703
		local_irq_disable();
2704
		__enable_cpu_timer_accounting(vcpu);
2705
		guest_exit_irqoff();
2706
		local_irq_enable();
2707
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2708 2709

		rc = vcpu_post_run(vcpu, exit_reason);
2710
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2711

2712
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2713
	return rc;
2714 2715
}

2716 2717 2718 2719 2720 2721 2722 2723
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2724 2725
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2726 2727
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2728
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2729 2730 2731 2732 2733 2734 2735 2736 2737
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2738 2739
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2740
	}
F
Fan Zhang 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
	    test_kvm_facility(vcpu->kvm, 64)) {
		struct runtime_instr_cb *riccb =
			(struct runtime_instr_cb *) &kvm_run->s.regs.riccb;

		if (riccb->valid)
			vcpu->arch.sie_block->ecb3 |= 0x01;
	}
2753 2754
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2777
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2778 2779 2780 2781 2782 2783 2784
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2785 2786
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
2787 2788 2789 2790 2791 2792 2793
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;

2794 2795
}

2796 2797
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2798
	int rc;
2799 2800
	sigset_t sigsaved;

2801 2802 2803 2804 2805
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2806 2807 2808
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2809 2810 2811
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2812
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2813 2814 2815
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2816

2817
	sync_regs(vcpu, kvm_run);
2818
	enable_cpu_timer_accounting(vcpu);
2819

2820
	might_fault();
2821
	rc = __vcpu_run(vcpu);
2822

2823 2824
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2825
		rc = -EINTR;
2826
	}
2827

2828 2829 2830 2831 2832
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2833
	if (rc == -EREMOTE) {
2834
		/* userspace support is needed, kvm_run has been prepared */
2835 2836
		rc = 0;
	}
2837

2838
	disable_cpu_timer_accounting(vcpu);
2839
	store_regs(vcpu, kvm_run);
2840

2841 2842 2843 2844
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2845
	return rc;
2846 2847 2848 2849 2850 2851 2852 2853
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2854
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2855
{
2856
	unsigned char archmode = 1;
2857
	freg_t fprs[NUM_FPRS];
2858
	unsigned int px;
2859
	u64 clkcomp, cputm;
2860
	int rc;
2861

2862
	px = kvm_s390_get_prefix(vcpu);
2863 2864
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2865
			return -EFAULT;
2866
		gpa = 0;
2867 2868
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2869
			return -EFAULT;
2870 2871 2872
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2873 2874 2875

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2876
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2877 2878 2879 2880
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2881
				     vcpu->run->s.regs.fprs, 128);
2882
	}
2883
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2884
			      vcpu->run->s.regs.gprs, 128);
2885
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2886
			      &vcpu->arch.sie_block->gpsw, 16);
2887
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2888
			      &px, 4);
2889
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2890
			      &vcpu->run->s.regs.fpc, 4);
2891
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2892
			      &vcpu->arch.sie_block->todpr, 4);
2893
	cputm = kvm_s390_get_cpu_timer(vcpu);
2894
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2895
			      &cputm, 8);
2896
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2897
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2898
			      &clkcomp, 8);
2899
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2900
			      &vcpu->run->s.regs.acrs, 64);
2901
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2902 2903
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2904 2905
}

2906 2907 2908 2909
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2910
	 * switch in the run ioctl. Let's update our copies before we save
2911 2912
	 * it into the save area
	 */
2913
	save_fpu_regs();
2914
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2915 2916 2917 2918 2919
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

2920 2921 2922
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2923
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2938 2939
	if (!sclp.has_ibs)
		return;
2940
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2941
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2942 2943
}

2944 2945
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2946 2947 2948 2949 2950
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2951
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2952
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2953
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2973
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2974 2975 2976 2977
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2978
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2979
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2980
	return;
2981 2982 2983 2984
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2985 2986 2987 2988 2989 2990
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2991
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2992
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2993
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2994 2995
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2996
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2997
	kvm_s390_clear_stop_irq(vcpu);
2998

2999
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

3017
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3018
	return;
3019 3020
}

3021 3022 3023 3024 3025 3026 3027 3028 3029
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
3030 3031 3032
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
3033
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3034 3035 3036 3037
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3038 3039 3040 3041 3042 3043 3044
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3071 3072
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3083 3084
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3106 3107 3108 3109 3110
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3111
	int idx;
3112
	long r;
3113

3114
	switch (ioctl) {
3115 3116 3117 3118 3119 3120 3121 3122 3123
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3124
	case KVM_S390_INTERRUPT: {
3125
		struct kvm_s390_interrupt s390int;
3126
		struct kvm_s390_irq s390irq;
3127

3128
		r = -EFAULT;
3129
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3130
			break;
3131 3132 3133
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3134
		break;
3135
	}
3136
	case KVM_S390_STORE_STATUS:
3137
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3138
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3139
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3140
		break;
3141 3142 3143
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3144
		r = -EFAULT;
3145
		if (copy_from_user(&psw, argp, sizeof(psw)))
3146 3147 3148
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3149 3150
	}
	case KVM_S390_INITIAL_RESET:
3151 3152
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3201
	case KVM_S390_VCPU_FAULT: {
3202
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3203 3204
		break;
	}
3205 3206 3207 3208 3209 3210 3211 3212 3213
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3214 3215 3216 3217 3218 3219 3220 3221 3222
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3255
	default:
3256
		r = -ENOTTY;
3257
	}
3258
	return r;
3259 3260
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3274 3275
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3276 3277 3278 3279
{
	return 0;
}

3280
/* Section: memory related */
3281 3282
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3283
				   const struct kvm_userspace_memory_region *mem,
3284
				   enum kvm_mr_change change)
3285
{
3286 3287 3288 3289
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3290

3291
	if (mem->userspace_addr & 0xffffful)
3292 3293
		return -EINVAL;

3294
	if (mem->memory_size & 0xffffful)
3295 3296
		return -EINVAL;

3297 3298 3299
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3300 3301 3302 3303
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3304
				const struct kvm_userspace_memory_region *mem,
3305
				const struct kvm_memory_slot *old,
3306
				const struct kvm_memory_slot *new,
3307
				enum kvm_mr_change change)
3308
{
3309
	int rc;
3310

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3321 3322 3323 3324

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3325
		pr_warn("failed to commit memory region\n");
3326
	return;
3327 3328
}

3329 3330 3331 3332 3333 3334 3335
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3336 3337 3338 3339 3340
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3341 3342
static int __init kvm_s390_init(void)
{
3343 3344
	int i;

3345 3346 3347 3348 3349
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3350 3351 3352 3353
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3354
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3355 3356 3357 3358 3359 3360 3361 3362 3363
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3364 3365 3366 3367 3368 3369 3370 3371 3372

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");