kvm-s390.c 88.0 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/moduleparam.h>
27
#include <linux/random.h>
28
#include <linux/slab.h>
29
#include <linux/timer.h>
30
#include <linux/vmalloc.h>
31
#include <linux/bitmap.h>
32 33
#include <linux/sched/signal.h>

34
#include <asm/asm-offsets.h>
35
#include <asm/lowcore.h>
36
#include <asm/stp.h>
37
#include <asm/pgtable.h>
38
#include <asm/gmap.h>
39
#include <asm/nmi.h>
40
#include <asm/switch_to.h>
41
#include <asm/isc.h>
42
#include <asm/sclp.h>
43
#include <asm/cpacf.h>
44
#include <asm/timex.h>
45
#include "kvm-s390.h"
46 47
#include "gaccess.h"

48 49 50 51
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

52 53
#define CREATE_TRACE_POINTS
#include "trace.h"
54
#include "trace-s390.h"
55

56
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
57 58 59
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
60

61 62 63 64
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
65
	{ "exit_null", VCPU_STAT(exit_null) },
66 67 68 69
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
70
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
71
	{ "exit_pei", VCPU_STAT(exit_pei) },
72 73
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
74
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
75
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
76
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
77
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
78
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
79
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
80
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
81 82
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
83
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
84
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
85 86 87 88 89 90 91
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
92
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
93 94 95 96 97
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
98
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
99 100
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
101
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
102 103
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
104
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
105
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
106
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
107
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
108
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
109
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
110
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
111 112
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
113
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
114 115
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
116
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
117 118 119
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
120 121 122
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
123
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
124
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
125
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
126 127 128
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
129 130 131
	{ NULL }
};

132 133 134 135 136
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

137
/* upper facilities limit for kvm */
138
unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
139

140
unsigned long kvm_s390_fac_list_mask_size(void)
141
{
142 143
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
144 145
}

146 147
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
148 149
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
150

151
static struct gmap_notifier gmap_notifier;
152
static struct gmap_notifier vsie_gmap_notifier;
153
debug_info_t *kvm_s390_dbf;
154

155
/* Section: not file related */
156
int kvm_arch_hardware_enable(void)
157 158
{
	/* every s390 is virtualization enabled ;-) */
159
	return 0;
160 161
}

162 163
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
183 184
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
185 186
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
187 188 189 190 191 192 193 194 195
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

196 197
int kvm_arch_hardware_setup(void)
{
198
	gmap_notifier.notifier_call = kvm_gmap_notifier;
199
	gmap_register_pte_notifier(&gmap_notifier);
200 201
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
202 203
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
204 205 206 207 208
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
209
	gmap_unregister_pte_notifier(&gmap_notifier);
210
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
211 212
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
213 214
}

215 216 217 218 219
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

220 221 222
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
223
	int cc;
224 225 226 227 228 229 230 231 232 233 234 235

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

236 237
static void kvm_s390_cpu_feat_init(void)
{
238 239 240 241 242 243 244 245
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
246 247 248
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
249 250

	if (test_facility(17)) { /* MSA */
251 252 253 254 255 256 257 258 259 260
		__cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.klmd);
261 262
	}
	if (test_facility(76)) /* MSA3 */
263 264
		__cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pckmo);
265
	if (test_facility(77)) { /* MSA4 */
266 267 268 269 270 271 272 273
		__cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.pcc);
274 275
	}
	if (test_facility(57)) /* MSA5 */
276 277
		__cpacf_query(CPACF_PPNO, (cpacf_mask_t *)
			      kvm_s390_available_subfunc.ppno);
278

279 280
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
281 282 283 284 285
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
286
	    !test_facility(3) || !nested)
287 288
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
289 290
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
291 292
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
293 294
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
295 296
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
297 298
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
299 300
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
301 302
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
321 322
}

323 324
int kvm_arch_init(void *opaque)
{
325 326 327 328 329 330 331 332 333
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

334 335
	kvm_s390_cpu_feat_init();

336 337
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
338 339
}

340 341 342 343 344
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

345 346 347 348 349 350 351 352 353
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

354
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
355
{
356 357
	int r;

358
	switch (ext) {
359
	case KVM_CAP_S390_PSW:
360
	case KVM_CAP_S390_GMAP:
361
	case KVM_CAP_SYNC_MMU:
362 363 364
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
365
	case KVM_CAP_ASYNC_PF:
366
	case KVM_CAP_SYNC_REGS:
367
	case KVM_CAP_ONE_REG:
368
	case KVM_CAP_ENABLE_CAP:
369
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
370
	case KVM_CAP_IOEVENTFD:
371
	case KVM_CAP_DEVICE_CTRL:
372
	case KVM_CAP_ENABLE_CAP_VM:
373
	case KVM_CAP_S390_IRQCHIP:
374
	case KVM_CAP_VM_ATTRIBUTES:
375
	case KVM_CAP_MP_STATE:
376
	case KVM_CAP_IMMEDIATE_EXIT:
377
	case KVM_CAP_S390_INJECT_IRQ:
378
	case KVM_CAP_S390_USER_SIGP:
379
	case KVM_CAP_S390_USER_STSI:
380
	case KVM_CAP_S390_SKEYS:
381
	case KVM_CAP_S390_IRQ_STATE:
382
	case KVM_CAP_S390_USER_INSTR0:
383 384
		r = 1;
		break;
385 386 387
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
388 389
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
390
		r = KVM_S390_BSCA_CPU_SLOTS;
391 392 393
		if (!kvm_s390_use_sca_entries())
			r = KVM_MAX_VCPUS;
		else if (sclp.has_esca && sclp.has_64bscao)
394
			r = KVM_S390_ESCA_CPU_SLOTS;
395
		break;
396 397 398
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
399
	case KVM_CAP_S390_COW:
400
		r = MACHINE_HAS_ESOP;
401
		break;
402 403 404
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
405 406 407
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
408
	default:
409
		r = 0;
410
	}
411
	return r;
412 413
}

414 415 416 417 418 419 420 421 422 423 424 425
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

426
		if (test_and_clear_guest_dirty(gmap->mm, address))
427
			mark_page_dirty(kvm, cur_gfn);
428 429
		if (fatal_signal_pending(current))
			return;
430
		cond_resched();
431 432 433
	}
}

434
/* Section: vm related */
435 436
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

437 438 439 440 441 442
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
443 444
	int r;
	unsigned long n;
445
	struct kvm_memslots *slots;
446 447 448
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

449 450 451
	if (kvm_is_ucontrol(kvm))
		return -EINVAL;

452 453 454 455 456 457
	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

458 459
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
478 479
}

480 481 482 483 484 485 486 487 488 489
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

490 491 492 493 494 495 496 497
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
498
	case KVM_CAP_S390_IRQCHIP:
499
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
500 501 502
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
503
	case KVM_CAP_S390_USER_SIGP:
504
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
505 506 507
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
508
	case KVM_CAP_S390_VECTOR_REGISTERS:
509
		mutex_lock(&kvm->lock);
510
		if (kvm->created_vcpus) {
511 512
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
513 514
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
515 516 517 518
			if (test_facility(134)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 134);
				set_kvm_facility(kvm->arch.model.fac_list, 134);
			}
519 520 521 522
			if (test_facility(135)) {
				set_kvm_facility(kvm->arch.model.fac_mask, 135);
				set_kvm_facility(kvm->arch.model.fac_list, 135);
			}
523 524 525
			r = 0;
		} else
			r = -EINVAL;
526
		mutex_unlock(&kvm->lock);
527 528
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
529
		break;
530 531 532
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
533
		if (kvm->created_vcpus) {
534 535
			r = -EBUSY;
		} else if (test_facility(64)) {
536 537
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
538 539 540 541 542 543
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
544
	case KVM_CAP_S390_USER_STSI:
545
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
546 547 548
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
549 550 551 552 553 554
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
555 556 557 558 559 560 561
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

562 563 564 565 566 567 568
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
569
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
570 571
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
572 573 574 575 576 577 578 579 580 581
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
582 583 584 585 586
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
587
		ret = -ENXIO;
588
		if (!sclp.has_cmma)
589 590
			break;

591
		ret = -EBUSY;
592
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
593
		mutex_lock(&kvm->lock);
594
		if (!kvm->created_vcpus) {
595 596 597 598 599 600
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
601 602 603
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
604 605 606 607
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

608
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
609 610
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
611
		s390_reset_cmma(kvm->arch.gmap->mm);
612 613 614 615
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
616 617 618 619 620 621 622 623 624
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

625 626
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
627 628
			return -E2BIG;

629 630 631
		if (!new_limit)
			return -EINVAL;

632
		/* gmap_create takes last usable address */
633 634 635
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

636 637
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
638
		if (!kvm->created_vcpus) {
639 640
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
641 642 643 644

			if (!new) {
				ret = -ENOMEM;
			} else {
645
				gmap_remove(kvm->arch.gmap);
646 647 648 649 650 651
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
652 653 654
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
655 656
		break;
	}
657 658 659 660 661 662 663
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

664 665 666 667 668 669 670
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

671
	if (!test_kvm_facility(kvm, 76))
672 673 674 675 676 677 678 679 680
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
681
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
682 683 684 685 686 687
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
688
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
689 690 691 692 693
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
694
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
695 696 697 698 699
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
700
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
701 702 703 704 705 706 707 708 709 710 711 712 713 714
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

715 716 717 718 719 720 721 722 723 724
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
725
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
726 727 728 729 730 731

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
732
	u64 gtod;
733 734 735 736

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

737
	kvm_s390_set_tod_clock(kvm, gtod);
738
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
770
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
771 772 773 774 775 776

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
777
	u64 gtod;
778

779
	gtod = kvm_s390_get_tod_clock_fast(kvm);
780 781
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
782
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

808 809 810
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
811
	u16 lowest_ibc, unblocked_ibc;
812 813 814
	int ret = 0;

	mutex_lock(&kvm->lock);
815
	if (kvm->created_vcpus) {
816 817 818 819 820 821 822 823 824 825
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
826
		kvm->arch.model.cpuid = proc->cpuid;
827 828
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
829
		if (lowest_ibc && proc->ibc) {
830 831 832 833 834 835 836
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
837
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
838
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
839 840 841 842 843 844 845
		VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
			 kvm->arch.model.ibc,
			 kvm->arch.model.cpuid);
		VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
			 kvm->arch.model.fac_list[0],
			 kvm->arch.model.fac_list[1],
			 kvm->arch.model.fac_list[2]);
846 847 848 849 850 851 852 853
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

877 878 879 880 881 882 883 884 885 886
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

887 888 889 890 891 892 893 894
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
895 896 897
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
898 899 900
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
901 902 903 904 905 906 907 908 909 910 911 912 913 914
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
915
	proc->cpuid = kvm->arch.model.cpuid;
916
	proc->ibc = kvm->arch.model.ibc;
917 918
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
919 920 921 922 923 924 925
	VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
		 kvm->arch.model.fac_list[0],
		 kvm->arch.model.fac_list[1],
		 kvm->arch.model.fac_list[2]);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
944
	mach->ibc = sclp.ibc;
945
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
946
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
947
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
948
	       sizeof(S390_lowcore.stfle_fac_list));
949 950 951 952 953 954 955 956 957 958 959
	VM_EVENT(kvm, 3, "GET: host ibc:  0x%4.4x, host cpuid:  0x%16.16llx",
		 kvm->arch.model.ibc,
		 kvm->arch.model.cpuid);
	VM_EVENT(kvm, 3, "GET: host facmask:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_mask[0],
		 mach->fac_mask[1],
		 mach->fac_mask[2]);
	VM_EVENT(kvm, 3, "GET: host faclist:  0x%16.16llx.%16.16llx.%16.16llx",
		 mach->fac_list[0],
		 mach->fac_list[1],
		 mach->fac_list[2]);
960 961 962 963 964 965 966
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
1022 1023 1024 1025 1026 1027
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
1028 1029 1030 1031 1032 1033
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
1034 1035 1036 1037
	}
	return ret;
}

1038 1039 1040 1041 1042
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1043
	case KVM_S390_VM_MEM_CTRL:
1044
		ret = kvm_s390_set_mem_control(kvm, attr);
1045
		break;
1046 1047 1048
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
1049 1050 1051
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1052 1053 1054
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1065 1066 1067 1068 1069 1070
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1071 1072 1073
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1074 1075 1076
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1077 1078 1079 1080 1081 1082
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1083 1084 1085 1086 1087 1088 1089
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1090 1091 1092 1093
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1094 1095
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1096
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1097 1098 1099 1100 1101 1102 1103
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1115 1116 1117 1118
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1119 1120
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1121
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1122 1123
			ret = 0;
			break;
1124 1125
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1126 1127 1128 1129 1130
		default:
			ret = -ENXIO;
			break;
		}
		break;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1144 1145 1146 1147 1148 1149 1150 1151
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1176
	down_read(&current->mm->mmap_sem);
1177 1178 1179 1180
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1181
			break;
1182 1183
		}

1184 1185
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1186
			break;
1187
	}
1188 1189 1190 1191 1192 1193 1194
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1229 1230 1231
	r = s390_enable_skey();
	if (r)
		goto out;
1232

1233
	down_read(&current->mm->mmap_sem);
1234 1235 1236 1237
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1238
			break;
1239 1240 1241 1242 1243
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1244
			break;
1245 1246
		}

1247
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1248
		if (r)
1249
			break;
1250
	}
1251
	up_read(&current->mm->mmap_sem);
1252 1253 1254 1255 1256
out:
	kvfree(keys);
	return r;
}

1257 1258 1259 1260 1261
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1262
	struct kvm_device_attr attr;
1263 1264 1265
	int r;

	switch (ioctl) {
1266 1267 1268 1269 1270 1271 1272 1273 1274
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1275 1276 1277 1278 1279 1280 1281 1282
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1283 1284 1285 1286 1287 1288 1289
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1290
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1291 1292 1293
		}
		break;
	}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1335
	default:
1336
		r = -ENOTTY;
1337 1338 1339 1340 1341
	}

	return r;
}

1342 1343 1344
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1345
	u32 cc = 0;
1346

1347
	memset(config, 0, 128);
1348 1349 1350 1351
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1352
		"0: ipm %0\n"
1353
		"srl %0,28\n"
1354 1355 1356
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1369
	if (test_facility(12)) {
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1391
static u64 kvm_s390_get_initial_cpuid(void)
1392
{
1393 1394 1395 1396 1397
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1398 1399
}

1400
static void kvm_s390_crypto_init(struct kvm *kvm)
1401
{
1402
	if (!test_kvm_facility(kvm, 76))
1403
		return;
1404

1405
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1406
	kvm_s390_set_crycb_format(kvm);
1407

1408 1409 1410 1411 1412 1413 1414
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1415 1416
}

1417 1418 1419
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1420
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1421 1422 1423 1424 1425
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1426
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1427
{
1428
	gfp_t alloc_flags = GFP_KERNEL;
1429
	int i, rc;
1430
	char debug_name[16];
1431
	static unsigned long sca_offset;
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1444 1445
	rc = s390_enable_sie();
	if (rc)
1446
		goto out_err;
1447

1448 1449
	rc = -ENOMEM;

J
Janosch Frank 已提交
1450 1451
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1452
	kvm->arch.use_esca = 0; /* start with basic SCA */
1453 1454
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1455
	rwlock_init(&kvm->arch.sca_lock);
1456
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1457
	if (!kvm->arch.sca)
1458
		goto out_err;
1459
	spin_lock(&kvm_lock);
1460
	sca_offset += 16;
1461
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1462
		sca_offset = 0;
1463 1464
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1465
	spin_unlock(&kvm_lock);
1466 1467 1468

	sprintf(debug_name, "kvm-%u", current->pid);

1469
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1470
	if (!kvm->arch.dbf)
1471
		goto out_err;
1472

1473 1474 1475
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1476
		goto out_err;
1477

1478
	/* Populate the facility mask initially. */
1479
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1480
	       sizeof(S390_lowcore.stfle_fac_list));
1481 1482
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1483
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1484
		else
1485
			kvm->arch.model.fac_mask[i] = 0UL;
1486 1487
	}

1488
	/* Populate the facility list initially. */
1489 1490
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1491 1492
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1493 1494 1495
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1496
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1497
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1498

1499
	kvm_s390_crypto_init(kvm);
1500

1501
	spin_lock_init(&kvm->arch.float_int.lock);
1502 1503
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1504
	init_waitqueue_head(&kvm->arch.ipte_wq);
1505
	mutex_init(&kvm->arch.ipte_mutex);
1506

1507
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1508
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1509

1510 1511
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1512
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1513
	} else {
1514 1515 1516 1517 1518
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1519
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1520
		if (!kvm->arch.gmap)
1521
			goto out_err;
1522
		kvm->arch.gmap->private = kvm;
1523
		kvm->arch.gmap->pfault_enabled = 0;
1524
	}
1525 1526

	kvm->arch.css_support = 0;
1527
	kvm->arch.use_irqchip = 0;
1528
	kvm->arch.epoch = 0;
1529

1530
	spin_lock_init(&kvm->arch.start_stop_lock);
1531
	kvm_s390_vsie_init(kvm);
1532
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1533

1534
	return 0;
1535
out_err:
1536
	free_page((unsigned long)kvm->arch.sie_page2);
1537
	debug_unregister(kvm->arch.dbf);
1538
	sca_dispose(kvm);
1539
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1540
	return rc;
1541 1542
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

1553 1554 1555
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1556
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1557
	kvm_s390_clear_local_irqs(vcpu);
1558
	kvm_clear_async_pf_completion_queue(vcpu);
1559
	if (!kvm_is_ucontrol(vcpu->kvm))
1560
		sca_del_vcpu(vcpu);
1561 1562

	if (kvm_is_ucontrol(vcpu->kvm))
1563
		gmap_remove(vcpu->arch.gmap);
1564

1565
	if (vcpu->kvm->arch.use_cmma)
1566
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1567
	free_page((unsigned long)(vcpu->arch.sie_block));
1568

1569
	kvm_vcpu_uninit(vcpu);
1570
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1571 1572 1573 1574 1575
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1576
	struct kvm_vcpu *vcpu;
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1587 1588
}

1589 1590
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1591
	kvm_free_vcpus(kvm);
1592
	sca_dispose(kvm);
1593
	debug_unregister(kvm->arch.dbf);
1594
	free_page((unsigned long)kvm->arch.sie_page2);
1595
	if (!kvm_is_ucontrol(kvm))
1596
		gmap_remove(kvm->arch.gmap);
1597
	kvm_s390_destroy_adapters(kvm);
1598
	kvm_s390_clear_float_irqs(kvm);
1599
	kvm_s390_vsie_destroy(kvm);
1600
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1601 1602 1603
}

/* Section: vcpu related */
1604 1605
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1606
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1607 1608 1609 1610 1611 1612 1613
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1614 1615
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1616 1617
	if (!kvm_s390_use_sca_entries())
		return;
1618
	read_lock(&vcpu->kvm->arch.sca_lock);
1619 1620
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1621

1622
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1623
		sca->cpu[vcpu->vcpu_id].sda = 0;
1624 1625 1626 1627
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1628
		sca->cpu[vcpu->vcpu_id].sda = 0;
1629
	}
1630
	read_unlock(&vcpu->kvm->arch.sca_lock);
1631 1632
}

1633
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1634
{
1635 1636 1637 1638 1639 1640 1641
	if (!kvm_s390_use_sca_entries()) {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		/* we still need the basic sca for the ipte control */
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
	}
1642 1643 1644
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1645

1646
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1647 1648
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1649
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
1650
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1651
	} else {
1652
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1653

1654
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1655 1656
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1657
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1658
	}
1659
	read_unlock(&vcpu->kvm->arch.sca_lock);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
1703
		vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
1704 1705 1706 1707 1708 1709 1710 1711 1712
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1713 1714
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1715
	return 0;
1716 1717 1718 1719
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1720 1721
	int rc;

1722 1723 1724 1725 1726
	if (!kvm_s390_use_sca_entries()) {
		if (id < KVM_MAX_VCPUS)
			return true;
		return false;
	}
1727 1728
	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1729
	if (!sclp.has_esca || !sclp.has_64bscao)
1730 1731 1732 1733 1734 1735 1736
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1737 1738
}

1739 1740
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1741 1742
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1743 1744
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1745
				    KVM_SYNC_ACRS |
1746 1747 1748
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1749
	kvm_s390_set_prefix(vcpu, 0);
1750 1751
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1752 1753 1754 1755
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1756
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1757 1758
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1759 1760 1761 1762

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1763 1764 1765
	return 0;
}

1766 1767 1768 1769
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1770
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1771
	vcpu->arch.cputm_start = get_tod_clock_fast();
1772
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1773 1774 1775 1776 1777 1778
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1779
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1780 1781
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1782
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1815 1816 1817
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1818
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1819
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1820 1821
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1822
	vcpu->arch.sie_block->cputm = cputm;
1823
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1824
	preempt_enable();
1825 1826
}

1827
/* update and get the cpu timer - can also be called from other VCPU threads */
1828 1829
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1830
	unsigned int seq;
1831 1832 1833 1834 1835
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1850
	return value;
1851 1852
}

1853 1854
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1855

1856
	gmap_enable(vcpu->arch.enabled_gmap);
1857
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1858
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1859
		__start_cpu_timer_accounting(vcpu);
1860
	vcpu->cpu = cpu;
1861 1862 1863 1864
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1865
	vcpu->cpu = -1;
1866
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1867
		__stop_cpu_timer_accounting(vcpu);
1868
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1869 1870
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1871

1872 1873 1874 1875 1876 1877 1878
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1879
	kvm_s390_set_prefix(vcpu, 0);
1880
	kvm_s390_set_cpu_timer(vcpu, 0);
1881 1882 1883 1884 1885
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1886 1887 1888
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1889
	vcpu->arch.sie_block->gbea = 1;
1890
	vcpu->arch.sie_block->pp = 0;
1891 1892
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1893 1894
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1895
	kvm_s390_clear_local_irqs(vcpu);
1896 1897
}

1898
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1899
{
1900
	mutex_lock(&vcpu->kvm->lock);
1901
	preempt_disable();
1902
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1903
	preempt_enable();
1904
	mutex_unlock(&vcpu->kvm->lock);
1905
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1906
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1907
		sca_add_vcpu(vcpu);
1908
	}
1909 1910
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1911 1912
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1913 1914
}

1915 1916
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1917
	if (!test_kvm_facility(vcpu->kvm, 76))
1918 1919
		return;

1920 1921 1922 1923 1924 1925 1926
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1927 1928 1929
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

1942 1943
	vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
	vcpu->arch.sie_block->ecb2 &= ~ECB2_PFMFI;
1944 1945 1946
	return 0;
}

1947 1948 1949 1950 1951
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1952
	if (test_kvm_facility(vcpu->kvm, 7))
1953
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1954 1955
}

1956 1957
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1958
	int rc = 0;
1959

1960 1961
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1962 1963
						    CPUSTAT_STOPPED);

1964
	if (test_kvm_facility(vcpu->kvm, 78))
1965
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1966
	else if (test_kvm_facility(vcpu->kvm, 8))
1967
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1968

1969 1970
	kvm_s390_vcpu_setup_model(vcpu);

1971 1972
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
1973
		vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
1974
	if (test_kvm_facility(vcpu->kvm, 9))
1975
		vcpu->arch.sie_block->ecb |= ECB_SRSI;
1976
	if (test_kvm_facility(vcpu->kvm, 73))
1977
		vcpu->arch.sie_block->ecb |= ECB_TE;
1978

1979
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1980
		vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
1981
	if (test_kvm_facility(vcpu->kvm, 130))
1982 1983
		vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
	vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
1984
	if (sclp.has_cei)
1985
		vcpu->arch.sie_block->eca |= ECA_CEI;
1986
	if (sclp.has_ib)
1987
		vcpu->arch.sie_block->eca |= ECA_IB;
1988
	if (sclp.has_siif)
1989
		vcpu->arch.sie_block->eca |= ECA_SII;
1990
	if (sclp.has_sigpif)
1991
		vcpu->arch.sie_block->eca |= ECA_SIGPI;
1992
	if (test_kvm_facility(vcpu->kvm, 129)) {
1993 1994
		vcpu->arch.sie_block->eca |= ECA_VX;
		vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
1995
	}
1996
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1997
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1998

1999
	if (vcpu->kvm->arch.use_cmma) {
2000 2001 2002
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
2003
	}
2004
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2005
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2006

2007 2008
	kvm_s390_vcpu_crypto_setup(vcpu);

2009
	return rc;
2010 2011 2012 2013 2014
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
2015
	struct kvm_vcpu *vcpu;
2016
	struct sie_page *sie_page;
2017 2018
	int rc = -EINVAL;

2019
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2020 2021 2022
		goto out;

	rc = -ENOMEM;
2023

2024
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2025
	if (!vcpu)
2026
		goto out;
2027

2028 2029
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
2030 2031
		goto out_free_cpu;

2032 2033 2034
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

2035 2036 2037 2038
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

2039
	vcpu->arch.sie_block->icpua = id;
2040 2041
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
2042
	vcpu->arch.local_int.wq = &vcpu->wq;
2043
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
2044
	seqcount_init(&vcpu->arch.cputm_seqcount);
2045

2046 2047
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
2048
		goto out_free_sie_block;
2049
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2050
		 vcpu->arch.sie_block);
2051
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2052 2053

	return vcpu;
2054 2055
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2056
out_free_cpu:
2057
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2058
out:
2059 2060 2061 2062 2063
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2064
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2065 2066
}

2067
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2068
{
2069
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2070
	exit_sie(vcpu);
2071 2072
}

2073
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2074
{
2075
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2076 2077
}

2078 2079
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2080
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2081
	exit_sie(vcpu);
2082 2083 2084 2085
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2086
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2087 2088
}

2089 2090 2091 2092 2093 2094
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2095
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2096 2097 2098 2099
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2100 2101
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2102
{
2103 2104
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2105 2106
}

2107 2108
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2109 2110 2111
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2112 2113
	unsigned long prefix;
	int i;
2114

2115 2116
	if (gmap_is_shadow(gmap))
		return;
2117 2118 2119
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2120 2121
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2122 2123 2124 2125
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2126
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2127 2128 2129 2130
		}
	}
}

2131 2132 2133 2134 2135 2136 2137
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2138 2139 2140 2141 2142 2143
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2144 2145 2146 2147 2148 2149 2150 2151
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2152
	case KVM_REG_S390_CPU_TIMER:
2153
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2154 2155 2156 2157 2158 2159
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2172 2173 2174 2175
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2176 2177 2178 2179
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2191
	__u64 val;
2192 2193

	switch (reg->id) {
2194 2195 2196 2197 2198 2199 2200 2201
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2202
	case KVM_REG_S390_CPU_TIMER:
2203 2204 2205
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2206 2207 2208 2209 2210
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2211 2212 2213
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2214 2215
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2216 2217 2218 2219 2220 2221 2222 2223 2224
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2225 2226 2227 2228
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2229 2230 2231 2232
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2233 2234 2235 2236 2237 2238
	default:
		break;
	}

	return r;
}
2239

2240 2241 2242 2243 2244 2245 2246 2247
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2248
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2249 2250 2251 2252 2253
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2254
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2255 2256 2257 2258 2259 2260
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2261
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2262 2263 2264 2265 2266 2267 2268
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2269
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2270 2271 2272 2273 2274 2275
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2276 2277
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2278
	vcpu->run->s.regs.fpc = fpu->fpc;
2279
	if (MACHINE_HAS_VX)
2280 2281
		convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
				 (freg_t *) fpu->fprs);
2282
	else
2283
		memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2284 2285 2286 2287 2288
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2289 2290 2291
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
2292 2293
		convert_vx_to_fp((freg_t *) fpu->fprs,
				 (__vector128 *) vcpu->run->s.regs.vrs);
2294
	else
2295
		memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2296
	fpu->fpc = vcpu->run->s.regs.fpc;
2297 2298 2299 2300 2301 2302 2303
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2304
	if (!is_vcpu_stopped(vcpu))
2305
		rc = -EBUSY;
2306 2307 2308 2309
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2310 2311 2312 2313 2314 2315 2316 2317 2318
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2319 2320 2321 2322
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2323 2324
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2325
{
2326 2327 2328 2329 2330
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2331
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2332
		return -EINVAL;
2333 2334
	if (!sclp.has_gpere)
		return -EINVAL;
2335 2336 2337 2338

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2339
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2340 2341 2342 2343

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2344
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2345 2346 2347 2348 2349 2350
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2351
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2352 2353 2354
	}

	return rc;
2355 2356
}

2357 2358 2359
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2360 2361 2362
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2363 2364 2365 2366 2367
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2388 2389
}

2390 2391 2392 2393 2394
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2395 2396
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2397
retry:
2398
	kvm_s390_vcpu_request_handled(vcpu);
2399 2400
	if (!vcpu->requests)
		return 0;
2401 2402
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2403
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2404 2405 2406 2407
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2408
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2409
		int rc;
2410 2411 2412
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2413 2414
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2415
			return rc;
2416
		}
2417
		goto retry;
2418
	}
2419

2420 2421 2422 2423 2424
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2425 2426 2427
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2428
			atomic_or(CPUSTAT_IBS,
2429 2430 2431
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2432
	}
2433 2434 2435 2436

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2437
			atomic_andnot(CPUSTAT_IBS,
2438 2439 2440 2441 2442
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2443 2444 2445 2446 2447
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2448 2449 2450
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2451 2452 2453
	return 0;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2481
{
2482 2483
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2484 2485
}

2486 2487 2488 2489
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2490
	struct kvm_s390_irq irq;
2491 2492

	if (start_token) {
2493 2494 2495
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2496 2497
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2498
		inti.parm64 = token;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2545
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2546 2547 2548 2549 2550 2551
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2552 2553 2554
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2555 2556 2557 2558 2559 2560
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2561
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2562
{
2563
	int rc, cpuflags;
2564

2565 2566 2567 2568 2569 2570 2571
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2572 2573
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2574 2575 2576 2577

	if (need_resched())
		schedule();

2578
	if (test_cpu_flag(CIF_MCCK_PENDING))
2579 2580
		s390_handle_mcck();

2581 2582 2583 2584 2585
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2586

2587 2588 2589 2590
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2591 2592 2593 2594 2595
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2596
	vcpu->arch.sie_block->icptcode = 0;
2597 2598 2599
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2600

2601 2602 2603
	return 0;
}

2604 2605
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2606 2607 2608 2609
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2623
	rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
2624
	ilen = insn_length(opcode);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2635 2636 2637
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2638 2639
}

2640 2641
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2642 2643 2644 2645
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2646 2647 2648
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2649 2650
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2665 2666 2667 2668 2669
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2670
		return -EREMOTE;
2671
	} else if (current->thread.gmap_pfault) {
2672
		trace_kvm_s390_major_guest_pfault(vcpu);
2673
		current->thread.gmap_pfault = 0;
2674 2675 2676
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2677
	}
2678
	return vcpu_post_run_fault_in_sie(vcpu);
2679 2680 2681 2682 2683 2684
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2685 2686 2687 2688 2689 2690
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2691 2692 2693 2694
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2695

2696
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2697 2698 2699 2700
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2701
		local_irq_disable();
2702
		guest_enter_irqoff();
2703
		__disable_cpu_timer_accounting(vcpu);
2704
		local_irq_enable();
2705 2706
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2707
		local_irq_disable();
2708
		__enable_cpu_timer_accounting(vcpu);
2709
		guest_exit_irqoff();
2710
		local_irq_enable();
2711
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2712 2713

		rc = vcpu_post_run(vcpu, exit_reason);
2714
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2715

2716
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2717
	return rc;
2718 2719
}

2720 2721
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2722 2723 2724
	struct runtime_instr_cb *riccb;

	riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
2725 2726 2727 2728 2729 2730
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2731 2732
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2733 2734
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2735
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2736 2737 2738 2739 2740 2741 2742 2743 2744
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2745 2746
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2747
	}
F
Fan Zhang 已提交
2748 2749 2750 2751 2752
	/*
	 * If userspace sets the riccb (e.g. after migration) to a valid state,
	 * we should enable RI here instead of doing the lazy enablement.
	 */
	if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
2753 2754
	    test_kvm_facility(vcpu->kvm, 64) &&
	    riccb->valid &&
2755
	    !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
2756
		VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
2757
		vcpu->arch.sie_block->ecb3 |= ECB3_RI;
F
Fan Zhang 已提交
2758
	}
2759 2760
	save_access_regs(vcpu->arch.host_acrs);
	restore_access_regs(vcpu->run->s.regs.acrs);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	/* save host (userspace) fprs/vrs */
	save_fpu_regs();
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
	if (test_fp_ctl(current->thread.fpu.fpc))
		/* User space provided an invalid FPC, let's clear it */
		current->thread.fpu.fpc = 0;
F
Fan Zhang 已提交
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2783
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2784 2785 2786 2787 2788 2789 2790
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2791 2792
	save_access_regs(vcpu->run->s.regs.acrs);
	restore_access_regs(vcpu->arch.host_acrs);
2793 2794 2795 2796 2797 2798 2799
	/* Save guest register state */
	save_fpu_regs();
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
	/* Restore will be done lazily at return */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;

2800 2801
}

2802 2803
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2804
	int rc;
2805 2806
	sigset_t sigsaved;

2807 2808 2809
	if (kvm_run->immediate_exit)
		return -EINTR;

2810 2811 2812 2813 2814
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2815 2816 2817
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2818 2819 2820
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2821
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2822 2823 2824
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2825

2826
	sync_regs(vcpu, kvm_run);
2827
	enable_cpu_timer_accounting(vcpu);
2828

2829
	might_fault();
2830
	rc = __vcpu_run(vcpu);
2831

2832 2833
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2834
		rc = -EINTR;
2835
	}
2836

2837 2838 2839 2840 2841
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2842
	if (rc == -EREMOTE) {
2843
		/* userspace support is needed, kvm_run has been prepared */
2844 2845
		rc = 0;
	}
2846

2847
	disable_cpu_timer_accounting(vcpu);
2848
	store_regs(vcpu, kvm_run);
2849

2850 2851 2852 2853
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2854
	return rc;
2855 2856 2857 2858 2859 2860 2861 2862
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2863
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2864
{
2865
	unsigned char archmode = 1;
2866
	freg_t fprs[NUM_FPRS];
2867
	unsigned int px;
2868
	u64 clkcomp, cputm;
2869
	int rc;
2870

2871
	px = kvm_s390_get_prefix(vcpu);
2872 2873
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2874
			return -EFAULT;
2875
		gpa = 0;
2876 2877
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2878
			return -EFAULT;
2879 2880 2881
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2882 2883 2884

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2885
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2886 2887 2888 2889
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2890
				     vcpu->run->s.regs.fprs, 128);
2891
	}
2892
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2893
			      vcpu->run->s.regs.gprs, 128);
2894
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2895
			      &vcpu->arch.sie_block->gpsw, 16);
2896
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2897
			      &px, 4);
2898
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2899
			      &vcpu->run->s.regs.fpc, 4);
2900
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2901
			      &vcpu->arch.sie_block->todpr, 4);
2902
	cputm = kvm_s390_get_cpu_timer(vcpu);
2903
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2904
			      &cputm, 8);
2905
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2906
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2907
			      &clkcomp, 8);
2908
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2909
			      &vcpu->run->s.regs.acrs, 64);
2910
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2911 2912
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2913 2914
}

2915 2916 2917 2918
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2919
	 * switch in the run ioctl. Let's update our copies before we save
2920 2921
	 * it into the save area
	 */
2922
	save_fpu_regs();
2923
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2924 2925 2926 2927 2928
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

2929 2930 2931
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2932
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2947 2948
	if (!sclp.has_ibs)
		return;
2949
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2950
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2951 2952
}

2953 2954
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2955 2956 2957 2958 2959
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2960
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2961
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2962
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2982
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2983 2984 2985 2986
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2987
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2988
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2989
	return;
2990 2991 2992 2993
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2994 2995 2996 2997 2998 2999
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

3000
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
3001
	/* Only one cpu at a time may enter/leave the STOPPED state. */
3002
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
3003 3004
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

3005
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
3006
	kvm_s390_clear_stop_irq(vcpu);
3007

3008
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

3026
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3027
	return;
3028 3029
}

3030 3031 3032 3033 3034 3035 3036 3037 3038
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
3039 3040 3041
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
3042
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3043 3044 3045 3046
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
3047 3048 3049 3050 3051 3052 3053
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3080 3081
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3092 3093
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3115 3116 3117 3118 3119
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3120
	int idx;
3121
	long r;
3122

3123
	switch (ioctl) {
3124 3125 3126 3127 3128 3129 3130 3131 3132
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3133
	case KVM_S390_INTERRUPT: {
3134
		struct kvm_s390_interrupt s390int;
3135
		struct kvm_s390_irq s390irq;
3136

3137
		r = -EFAULT;
3138
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3139
			break;
3140 3141 3142
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3143
		break;
3144
	}
3145
	case KVM_S390_STORE_STATUS:
3146
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3147
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3148
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3149
		break;
3150 3151 3152
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3153
		r = -EFAULT;
3154
		if (copy_from_user(&psw, argp, sizeof(psw)))
3155 3156 3157
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3158 3159
	}
	case KVM_S390_INITIAL_RESET:
3160 3161
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3210
	case KVM_S390_VCPU_FAULT: {
3211
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3212 3213
		break;
	}
3214 3215 3216 3217 3218 3219 3220 3221 3222
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3223 3224 3225 3226 3227 3228 3229 3230 3231
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3264
	default:
3265
		r = -ENOTTY;
3266
	}
3267
	return r;
3268 3269
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3283 3284
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3285 3286 3287 3288
{
	return 0;
}

3289
/* Section: memory related */
3290 3291
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3292
				   const struct kvm_userspace_memory_region *mem,
3293
				   enum kvm_mr_change change)
3294
{
3295 3296 3297 3298
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3299

3300
	if (mem->userspace_addr & 0xffffful)
3301 3302
		return -EINVAL;

3303
	if (mem->memory_size & 0xffffful)
3304 3305
		return -EINVAL;

3306 3307 3308
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3309 3310 3311 3312
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3313
				const struct kvm_userspace_memory_region *mem,
3314
				const struct kvm_memory_slot *old,
3315
				const struct kvm_memory_slot *new,
3316
				enum kvm_mr_change change)
3317
{
3318
	int rc;
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3330 3331 3332 3333

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3334
		pr_warn("failed to commit memory region\n");
3335
	return;
3336 3337
}

3338 3339 3340 3341 3342 3343 3344
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3345 3346 3347 3348 3349
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3350 3351
static int __init kvm_s390_init(void)
{
3352 3353
	int i;

3354 3355 3356 3357 3358
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3359 3360 3361 3362
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3363
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3364 3365 3366 3367 3368 3369 3370 3371 3372
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3373 3374 3375 3376 3377 3378 3379 3380 3381

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");