kvm-s390.c 73.4 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/nmi.h>
34
#include <asm/switch_to.h>
35
#include <asm/isc.h>
36
#include <asm/sclp.h>
37
#include "kvm-s390.h"
38 39
#include "gaccess.h"

40 41 42 43
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

44 45
#define CREATE_TRACE_POINTS
#include "trace.h"
46
#include "trace-s390.h"
47

48
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
49 50 51
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
52

53 54 55 56
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
57
	{ "exit_null", VCPU_STAT(exit_null) },
58 59 60 61
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 63 64
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
68
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 71
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
72
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 75 76 77 78 79 80
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
81
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 83 84 85 86
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 89
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
90
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
91 92
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
93
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
94
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 99
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 102
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 105 106
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 108 109
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
111
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
112
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 114 115
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
116 117 118
	{ NULL }
};

119 120
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
121
	0xffe6fffbfcfdfc40UL,
122
	0x005e800000000000UL,
123
};
124

125
unsigned long kvm_s390_fac_list_mask_size(void)
126
{
127 128
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 130
}

131
static struct gmap_notifier gmap_notifier;
132
debug_info_t *kvm_s390_dbf;
133

134
/* Section: not file related */
135
int kvm_arch_hardware_enable(void)
136 137
{
	/* every s390 is virtualization enabled ;-) */
138
	return 0;
139 140
}

141 142
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

170 171
int kvm_arch_hardware_setup(void)
{
172 173
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
174 175
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
176 177 178 179 180
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
181
	gmap_unregister_ipte_notifier(&gmap_notifier);
182 183
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
184 185 186 187
}

int kvm_arch_init(void *opaque)
{
188 189 190 191 192 193 194 195 196
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

197 198
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 200
}

201 202 203 204 205
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

206 207 208 209 210 211 212 213 214
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

215
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216
{
217 218
	int r;

219
	switch (ext) {
220
	case KVM_CAP_S390_PSW:
221
	case KVM_CAP_S390_GMAP:
222
	case KVM_CAP_SYNC_MMU:
223 224 225
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
226
	case KVM_CAP_ASYNC_PF:
227
	case KVM_CAP_SYNC_REGS:
228
	case KVM_CAP_ONE_REG:
229
	case KVM_CAP_ENABLE_CAP:
230
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
231
	case KVM_CAP_IOEVENTFD:
232
	case KVM_CAP_DEVICE_CTRL:
233
	case KVM_CAP_ENABLE_CAP_VM:
234
	case KVM_CAP_S390_IRQCHIP:
235
	case KVM_CAP_VM_ATTRIBUTES:
236
	case KVM_CAP_MP_STATE:
237
	case KVM_CAP_S390_INJECT_IRQ:
238
	case KVM_CAP_S390_USER_SIGP:
239
	case KVM_CAP_S390_USER_STSI:
240
	case KVM_CAP_S390_SKEYS:
241
	case KVM_CAP_S390_IRQ_STATE:
242 243
		r = 1;
		break;
244 245 246
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
247 248
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
249 250
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
251
		break;
252 253 254
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
255
	case KVM_CAP_S390_COW:
256
		r = MACHINE_HAS_ESOP;
257
		break;
258 259 260
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
261 262 263
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
264
	default:
265
		r = 0;
266
	}
267
	return r;
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
284 285
		if (fatal_signal_pending(current))
			return;
286
		cond_resched();
287 288 289
	}
}

290
/* Section: vm related */
291 292
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

293 294 295 296 297 298
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
299 300
	int r;
	unsigned long n;
301
	struct kvm_memslots *slots;
302 303 304 305 306 307 308 309 310
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

311 312
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
331 332
}

333 334 335 336 337 338 339 340
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
341
	case KVM_CAP_S390_IRQCHIP:
342
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
343 344 345
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
346
	case KVM_CAP_S390_USER_SIGP:
347
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
348 349 350
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
351
	case KVM_CAP_S390_VECTOR_REGISTERS:
352 353 354 355
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
356 357 358 359 360
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
361
		mutex_unlock(&kvm->lock);
362 363
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
364
		break;
365 366 367 368 369 370 371 372 373 374 375 376 377 378
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
			set_kvm_facility(kvm->arch.model.fac->mask, 64);
			set_kvm_facility(kvm->arch.model.fac->list, 64);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
379
	case KVM_CAP_S390_USER_STSI:
380
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
381 382 383
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
384 385 386 387 388 389 390
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

391 392 393 394 395 396 397
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
398
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
399 400
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
401 402 403 404 405 406 407 408 409 410
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
411 412 413 414 415
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
416 417 418 419 420
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

421
		ret = -EBUSY;
422
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
423 424 425 426 427 428 429 430
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
431 432 433 434
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

435
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
436 437
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
438
		s390_reset_cmma(kvm->arch.gmap->mm);
439 440 441 442
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
443 444 445 446 447 448 449 450 451
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

452 453
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
454 455
			return -E2BIG;

456 457 458 459 460 461 462
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
479 480 481
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
482 483
		break;
	}
484 485 486 487 488 489 490
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

491 492 493 494 495 496 497
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

498
	if (!test_kvm_facility(kvm, 76))
499 500 501 502 503 504 505 506 507
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
508
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
509 510 511 512 513 514
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
515
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
516 517 518 519 520
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
521
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
522 523 524 525 526
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
527
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
528 529 530 531 532 533 534 535 536 537 538 539 540 541
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

542 543 544 545 546 547 548 549 550 551
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
552
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
553 554 555 556 557 558

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
559
	u64 gtod;
560 561 562 563

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

564
	kvm_s390_set_tod_clock(kvm, gtod);
565
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
597
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
598 599 600 601 602 603

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
604
	u64 gtod;
605

606
	gtod = kvm_s390_get_tod_clock_fast(kvm);
607 608
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
609
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
655
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
689
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
708
	mach->ibc = sclp.ibc;
709 710
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
711
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
712
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

735 736 737 738 739
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
740
	case KVM_S390_VM_MEM_CTRL:
741
		ret = kvm_s390_set_mem_control(kvm, attr);
742
		break;
743 744 745
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
746 747 748
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
749 750 751
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
752 753 754 755 756 757 758 759 760 761
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
762 763 764 765 766 767
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
768 769 770
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
771 772 773
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
774 775 776 777 778 779
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
780 781 782 783 784 785 786
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
787 788 789 790
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
791
		case KVM_S390_VM_MEM_LIMIT_SIZE:
792 793 794 795 796 797 798
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
799 800 801 802 803 804 805 806 807 808 809
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
810 811 812 813 814 815 816 817 818 819 820
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
821 822 823 824 825 826 827 828 829 830 831 832 833
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
834 835 836 837 838 839 840 841
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
919 920 921
	r = s390_enable_skey();
	if (r)
		goto out;
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

946 947 948 949 950
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
951
	struct kvm_device_attr attr;
952 953 954
	int r;

	switch (ioctl) {
955 956 957 958 959 960 961 962 963
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
964 965 966 967 968 969 970 971
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
972 973 974 975 976 977 978
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
979
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
980 981 982
		}
		break;
	}
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1024
	default:
1025
		r = -ENOTTY;
1026 1027 1028 1029 1030
	}

	return r;
}

1031 1032 1033
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1034
	u32 cc = 0;
1035

1036
	memset(config, 0, 128);
1037 1038 1039 1040
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1041
		"0: ipm %0\n"
1042
		"srl %0,28\n"
1043 1044 1045
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1058
	if (test_facility(12)) {
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1080 1081 1082 1083 1084 1085
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1086 1087
static int kvm_s390_crypto_init(struct kvm *kvm)
{
1088
	if (!test_kvm_facility(kvm, 76))
1089 1090 1091 1092 1093 1094 1095
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1096
	kvm_s390_set_crycb_format(kvm);
1097

1098 1099 1100 1101 1102 1103 1104
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1105

1106 1107 1108
	return 0;
}

1109 1110 1111
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1112
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1113 1114 1115 1116 1117
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1118
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1119
{
1120
	int i, rc;
1121
	char debug_name[16];
1122
	static unsigned long sca_offset;
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1135 1136
	rc = s390_enable_sie();
	if (rc)
1137
		goto out_err;
1138

1139 1140
	rc = -ENOMEM;

1141
	kvm->arch.use_esca = 0; /* start with basic SCA */
1142
	rwlock_init(&kvm->arch.sca_lock);
1143
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1144
	if (!kvm->arch.sca)
1145
		goto out_err;
1146
	spin_lock(&kvm_lock);
1147
	sca_offset += 16;
1148
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1149
		sca_offset = 0;
1150 1151
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1152
	spin_unlock(&kvm_lock);
1153 1154 1155

	sprintf(debug_name, "kvm-%u", current->pid);

1156
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1157
	if (!kvm->arch.dbf)
1158
		goto out_err;
1159

1160 1161 1162
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1163 1164
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1165 1166 1167
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1168
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1169
	if (!kvm->arch.model.fac)
1170
		goto out_err;
1171

1172
	/* Populate the facility mask initially. */
1173
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1174
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1175 1176
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1177
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1178
		else
1179
			kvm->arch.model.fac->mask[i] = 0UL;
1180 1181
	}

1182 1183 1184 1185
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1186
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1187
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1188

1189
	if (kvm_s390_crypto_init(kvm) < 0)
1190
		goto out_err;
1191

1192
	spin_lock_init(&kvm->arch.float_int.lock);
1193 1194
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1195
	init_waitqueue_head(&kvm->arch.ipte_wq);
1196
	mutex_init(&kvm->arch.ipte_mutex);
1197

1198
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1199
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1200

1201 1202
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1203
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1204
	} else {
1205 1206 1207 1208 1209
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1210
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1211
		if (!kvm->arch.gmap)
1212
			goto out_err;
1213
		kvm->arch.gmap->private = kvm;
1214
		kvm->arch.gmap->pfault_enabled = 0;
1215
	}
1216 1217

	kvm->arch.css_support = 0;
1218
	kvm->arch.use_irqchip = 0;
1219
	kvm->arch.epoch = 0;
1220

1221
	spin_lock_init(&kvm->arch.start_stop_lock);
1222
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1223

1224
	return 0;
1225
out_err:
1226
	kfree(kvm->arch.crypto.crycb);
1227
	free_page((unsigned long)kvm->arch.model.fac);
1228
	debug_unregister(kvm->arch.dbf);
1229
	sca_dispose(kvm);
1230
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1231
	return rc;
1232 1233
}

1234 1235 1236
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1237
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1238
	kvm_s390_clear_local_irqs(vcpu);
1239
	kvm_clear_async_pf_completion_queue(vcpu);
1240
	if (!kvm_is_ucontrol(vcpu->kvm))
1241
		sca_del_vcpu(vcpu);
1242 1243 1244 1245

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1246
	if (vcpu->kvm->arch.use_cmma)
1247
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1248
	free_page((unsigned long)(vcpu->arch.sie_block));
1249

1250
	kvm_vcpu_uninit(vcpu);
1251
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1252 1253 1254 1255 1256
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1257
	struct kvm_vcpu *vcpu;
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1268 1269
}

1270 1271
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1272
	kvm_free_vcpus(kvm);
1273
	free_page((unsigned long)kvm->arch.model.fac);
1274
	sca_dispose(kvm);
1275
	debug_unregister(kvm->arch.dbf);
1276
	kfree(kvm->arch.crypto.crycb);
1277 1278
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1279
	kvm_s390_destroy_adapters(kvm);
1280
	kvm_s390_clear_float_irqs(kvm);
1281
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1282 1283 1284
}

/* Section: vcpu related */
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1295 1296
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1297
	read_lock(&vcpu->kvm->arch.sca_lock);
1298 1299
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1300

1301
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1302
		sca->cpu[vcpu->vcpu_id].sda = 0;
1303 1304 1305 1306
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1307
		sca->cpu[vcpu->vcpu_id].sda = 0;
1308
	}
1309
	read_unlock(&vcpu->kvm->arch.sca_lock);
1310 1311
}

1312
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1313
{
1314 1315 1316
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1317

1318
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1319 1320
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1321
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1322
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1323
	} else {
1324
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1325

1326
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1327 1328
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1329
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1330
	}
1331
	read_unlock(&vcpu->kvm->arch.sca_lock);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1385 1386
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1387
	return 0;
1388 1389 1390 1391
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1404 1405
}

1406 1407
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1408 1409
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1410 1411
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1412
				    KVM_SYNC_ACRS |
1413 1414 1415
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1416 1417
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1418 1419 1420 1421
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1422
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1423 1424
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1425 1426 1427 1428

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1429 1430 1431 1432 1433
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1434
	/* Save host register state */
1435
	save_fpu_regs();
1436 1437
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1438

1439 1440 1441 1442
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1443
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1444
	if (test_fp_ctl(current->thread.fpu.fpc))
1445
		/* User space provided an invalid FPC, let's clear it */
1446 1447 1448
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1449
	restore_access_regs(vcpu->run->s.regs.acrs);
1450
	gmap_enable(vcpu->arch.gmap);
1451
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1452
	vcpu->cpu = cpu;
1453 1454 1455 1456
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1457
	vcpu->cpu = -1;
1458
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1459
	gmap_disable(vcpu->arch.gmap);
1460

1461
	/* Save guest register state */
1462
	save_fpu_regs();
1463
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1464

1465 1466 1467
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1468 1469

	save_access_regs(vcpu->run->s.regs.acrs);
1470 1471 1472 1473 1474 1475 1476 1477
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1478
	kvm_s390_set_prefix(vcpu, 0);
1479 1480 1481 1482 1483 1484
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1485 1486 1487
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1488
	vcpu->arch.sie_block->gbea = 1;
1489
	vcpu->arch.sie_block->pp = 0;
1490 1491
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1492 1493
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1494
	kvm_s390_clear_local_irqs(vcpu);
1495 1496
}

1497
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1498
{
1499
	mutex_lock(&vcpu->kvm->lock);
1500
	preempt_disable();
1501
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1502
	preempt_enable();
1503
	mutex_unlock(&vcpu->kvm->lock);
1504
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1505
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1506
		sca_add_vcpu(vcpu);
1507 1508
	}

1509 1510
}

1511 1512
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1513
	if (!test_kvm_facility(vcpu->kvm, 76))
1514 1515
		return;

1516 1517 1518 1519 1520 1521 1522
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1523 1524 1525
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1543 1544 1545 1546 1547 1548 1549 1550 1551
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1552 1553
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1554
	int rc = 0;
1555

1556 1557
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1558 1559
						    CPUSTAT_STOPPED);

1560
	if (test_kvm_facility(vcpu->kvm, 78))
1561
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1562
	else if (test_kvm_facility(vcpu->kvm, 8))
1563
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1564

1565 1566
	kvm_s390_vcpu_setup_model(vcpu);

1567
	vcpu->arch.sie_block->ecb   = 6;
1568
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1569 1570
		vcpu->arch.sie_block->ecb |= 0x10;

1571
	vcpu->arch.sie_block->ecb2  = 8;
1572
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1573
	if (sclp.has_siif)
1574
		vcpu->arch.sie_block->eca |= 1;
1575
	if (sclp.has_sigpif)
1576
		vcpu->arch.sie_block->eca |= 0x10000000U;
1577 1578
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1579
	if (test_kvm_facility(vcpu->kvm, 129)) {
1580 1581 1582
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1583
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1584
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1585

1586
	if (vcpu->kvm->arch.use_cmma) {
1587 1588 1589
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1590
	}
1591
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1592
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1593

1594 1595
	kvm_s390_vcpu_crypto_setup(vcpu);

1596
	return rc;
1597 1598 1599 1600 1601
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1602
	struct kvm_vcpu *vcpu;
1603
	struct sie_page *sie_page;
1604 1605
	int rc = -EINVAL;

1606
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1607 1608 1609
		goto out;

	rc = -ENOMEM;
1610

1611
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1612
	if (!vcpu)
1613
		goto out;
1614

1615 1616
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1617 1618
		goto out_free_cpu;

1619 1620 1621
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1622
	vcpu->arch.sie_block->icpua = id;
1623 1624
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1625
	vcpu->arch.local_int.wq = &vcpu->wq;
1626
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1627

1628 1629
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1630
		goto out_free_sie_block;
1631
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1632
		 vcpu->arch.sie_block);
1633
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1634 1635

	return vcpu;
1636 1637
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1638
out_free_cpu:
1639
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1640
out:
1641 1642 1643 1644 1645
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1646
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1647 1648
}

1649
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1650
{
1651
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1652
	exit_sie(vcpu);
1653 1654
}

1655
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1656
{
1657
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1658 1659
}

1660 1661
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1662
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1663
	exit_sie(vcpu);
1664 1665 1666 1667
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1668
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1669 1670
}

1671 1672 1673 1674 1675 1676
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1677
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1678 1679 1680 1681
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1682 1683
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1684
{
1685 1686
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1687 1688
}

1689 1690 1691 1692 1693 1694 1695 1696
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1697
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1698
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1699
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1700 1701 1702 1703
		}
	}
}

1704 1705 1706 1707 1708 1709 1710
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1711 1712 1713 1714 1715 1716
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1717 1718 1719 1720 1721 1722 1723 1724
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1725 1726 1727 1728 1729 1730 1731 1732
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1745 1746 1747 1748
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1749 1750 1751 1752
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1766 1767 1768 1769 1770 1771 1772 1773
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1774 1775 1776 1777 1778 1779 1780 1781
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1782 1783 1784
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1785 1786
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1787 1788 1789 1790 1791 1792 1793 1794 1795
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1796 1797 1798 1799
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1800 1801 1802 1803
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1804 1805 1806 1807 1808 1809
	default:
		break;
	}

	return r;
}
1810

1811 1812 1813 1814 1815 1816 1817 1818
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1819
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1820 1821 1822 1823 1824
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1825
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1826 1827 1828 1829 1830 1831
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1832
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1833
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1834
	restore_access_regs(vcpu->run->s.regs.acrs);
1835 1836 1837 1838 1839 1840
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1841
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1842 1843 1844 1845 1846 1847
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1848 1849
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
1850 1851
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1852 1853 1854 1855 1856
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
1857 1858 1859 1860 1861
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1862 1863 1864 1865 1866 1867 1868
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
1869 1870 1871 1872 1873 1874 1875
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1876
	if (!is_vcpu_stopped(vcpu))
1877
		rc = -EBUSY;
1878 1879 1880 1881
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1882 1883 1884 1885 1886 1887 1888 1889 1890
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1891 1892 1893 1894
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1895 1896
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1897
{
1898 1899 1900 1901 1902
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1903
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1904 1905 1906 1907 1908
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
1909
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1910 1911 1912 1913

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
1914
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1915 1916 1917 1918 1919 1920
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
1921
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1922 1923 1924
	}

	return rc;
1925 1926
}

1927 1928 1929
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1930 1931 1932
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1933 1934 1935 1936 1937
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1958 1959
}

1960 1961 1962 1963 1964
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1965 1966
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1967
retry:
1968
	kvm_s390_vcpu_request_handled(vcpu);
1969 1970
	if (!vcpu->requests)
		return 0;
1971 1972 1973 1974 1975 1976 1977
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1978
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1979 1980
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1981
				      kvm_s390_get_prefix(vcpu),
1982 1983 1984
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1985
		goto retry;
1986
	}
1987

1988 1989 1990 1991 1992
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1993 1994 1995
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
1996
			atomic_or(CPUSTAT_IBS,
1997 1998 1999
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2000
	}
2001 2002 2003 2004

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2005
			atomic_andnot(CPUSTAT_IBS,
2006 2007 2008 2009 2010
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2011 2012 2013
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2014 2015 2016
	return 0;
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2044
{
2045 2046
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2047 2048
}

2049 2050 2051 2052
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2053
	struct kvm_s390_irq irq;
2054 2055

	if (start_token) {
2056 2057 2058
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2059 2060
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2061
		inti.parm64 = token;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2108
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2109 2110 2111 2112 2113 2114
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2115 2116 2117
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2118 2119 2120 2121 2122 2123
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2124
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2125
{
2126
	int rc, cpuflags;
2127

2128 2129 2130 2131 2132 2133 2134
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2135 2136
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2137 2138 2139 2140

	if (need_resched())
		schedule();

2141
	if (test_cpu_flag(CIF_MCCK_PENDING))
2142 2143
		s390_handle_mcck();

2144 2145 2146 2147 2148
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2149

2150 2151 2152 2153
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2154 2155 2156 2157 2158
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2159
	vcpu->arch.sie_block->icptcode = 0;
2160 2161 2162
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2163

2164 2165 2166
	return 0;
}

2167 2168
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2169 2170 2171 2172
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2186
	rc = read_guest_instr(vcpu, &opcode, 1);
2187
	ilen = insn_length(opcode);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2198 2199 2200
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2201 2202
}

2203 2204
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2205 2206 2207 2208
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2209 2210 2211
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2212 2213
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2228 2229 2230 2231 2232
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2233
		return -EREMOTE;
2234
	} else if (current->thread.gmap_pfault) {
2235
		trace_kvm_s390_major_guest_pfault(vcpu);
2236
		current->thread.gmap_pfault = 0;
2237 2238 2239
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2240
	}
2241
	return vcpu_post_run_fault_in_sie(vcpu);
2242 2243 2244 2245 2246 2247
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2248 2249 2250 2251 2252 2253
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2254 2255 2256 2257
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2258

2259
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2260 2261 2262 2263
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2264 2265 2266
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2267 2268
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2269 2270 2271
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2272
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2273 2274

		rc = vcpu_post_run(vcpu, exit_reason);
2275
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2276

2277
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2278
	return rc;
2279 2280
}

2281 2282 2283 2284 2285 2286 2287 2288
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2289 2290
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2303 2304
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2325 2326
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2327
	int rc;
2328 2329
	sigset_t sigsaved;

2330 2331 2332 2333 2334
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2335 2336 2337
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2338 2339 2340
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2341
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2342 2343 2344
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2345

2346
	sync_regs(vcpu, kvm_run);
2347

2348
	might_fault();
2349
	rc = __vcpu_run(vcpu);
2350

2351 2352
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2353
		rc = -EINTR;
2354
	}
2355

2356 2357 2358 2359 2360
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2361
	if (rc == -EREMOTE) {
2362
		/* userspace support is needed, kvm_run has been prepared */
2363 2364
		rc = 0;
	}
2365

2366
	store_regs(vcpu, kvm_run);
2367

2368 2369 2370 2371
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2372
	return rc;
2373 2374 2375 2376 2377 2378 2379 2380
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2381
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2382
{
2383
	unsigned char archmode = 1;
2384
	freg_t fprs[NUM_FPRS];
2385
	unsigned int px;
2386
	u64 clkcomp;
2387
	int rc;
2388

2389
	px = kvm_s390_get_prefix(vcpu);
2390 2391
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2392
			return -EFAULT;
2393
		gpa = 0;
2394 2395
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2396
			return -EFAULT;
2397 2398 2399
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2400 2401 2402 2403 2404 2405 2406 2407

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, current->thread.fpu.vxrs);
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2408
				     vcpu->run->s.regs.fprs, 128);
2409
	}
2410
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2411
			      vcpu->run->s.regs.gprs, 128);
2412
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2413
			      &vcpu->arch.sie_block->gpsw, 16);
2414
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2415
			      &px, 4);
2416
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2417
			      &vcpu->run->s.regs.fpc, 4);
2418
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2419
			      &vcpu->arch.sie_block->todpr, 4);
2420
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2421
			      &vcpu->arch.sie_block->cputm, 8);
2422
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2423
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2424
			      &clkcomp, 8);
2425
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2426
			      &vcpu->run->s.regs.acrs, 64);
2427
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2428 2429
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2430 2431
}

2432 2433 2434 2435 2436 2437 2438
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2439
	save_fpu_regs();
2440
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2441 2442 2443 2444 2445
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2467 2468 2469 2470 2471
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2472
	 */
2473
	save_fpu_regs();
E
Eric Farman 已提交
2474 2475 2476 2477

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2478 2479 2480
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2481
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2497
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2498 2499
}

2500 2501
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2502 2503 2504 2505 2506
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2507
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2508
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2509
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2529
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2530 2531 2532 2533
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2534
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2535
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2536
	return;
2537 2538 2539 2540
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2541 2542 2543 2544 2545 2546
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2547
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2548
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2549
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2550 2551
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2552
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2553
	kvm_s390_clear_stop_irq(vcpu);
2554

2555
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2573
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2574
	return;
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2586 2587 2588
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2589
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2590 2591 2592 2593
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2594 2595 2596 2597 2598 2599 2600
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2627 2628
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2639 2640
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2662 2663 2664 2665 2666
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2667
	int idx;
2668
	long r;
2669

2670
	switch (ioctl) {
2671 2672 2673 2674 2675 2676 2677 2678 2679
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2680
	case KVM_S390_INTERRUPT: {
2681
		struct kvm_s390_interrupt s390int;
2682
		struct kvm_s390_irq s390irq;
2683

2684
		r = -EFAULT;
2685
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2686
			break;
2687 2688 2689
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2690
		break;
2691
	}
2692
	case KVM_S390_STORE_STATUS:
2693
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2694
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2695
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2696
		break;
2697 2698 2699
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2700
		r = -EFAULT;
2701
		if (copy_from_user(&psw, argp, sizeof(psw)))
2702 2703 2704
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2705 2706
	}
	case KVM_S390_INITIAL_RESET:
2707 2708
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2757
	case KVM_S390_VCPU_FAULT: {
2758
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2759 2760
		break;
	}
2761 2762 2763 2764 2765 2766 2767 2768 2769
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2770 2771 2772 2773 2774 2775 2776 2777 2778
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2811
	default:
2812
		r = -ENOTTY;
2813
	}
2814
	return r;
2815 2816
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2830 2831
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2832 2833 2834 2835
{
	return 0;
}

2836
/* Section: memory related */
2837 2838
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2839
				   const struct kvm_userspace_memory_region *mem,
2840
				   enum kvm_mr_change change)
2841
{
2842 2843 2844 2845
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2846

2847
	if (mem->userspace_addr & 0xffffful)
2848 2849
		return -EINVAL;

2850
	if (mem->memory_size & 0xffffful)
2851 2852
		return -EINVAL;

2853 2854 2855
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

2856 2857 2858 2859
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2860
				const struct kvm_userspace_memory_region *mem,
2861
				const struct kvm_memory_slot *old,
2862
				const struct kvm_memory_slot *new,
2863
				enum kvm_mr_change change)
2864
{
2865
	int rc;
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2877 2878 2879 2880

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2881
		pr_warn("failed to commit memory region\n");
2882
	return;
2883 2884 2885 2886
}

static int __init kvm_s390_init(void)
{
2887 2888 2889 2890 2891
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

2892
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2893 2894 2895 2896 2897 2898 2899 2900 2901
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2902 2903 2904 2905 2906 2907 2908 2909 2910

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");