kvm-s390.c 82.7 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <linux/bitmap.h>
30
#include <asm/asm-offsets.h>
31
#include <asm/lowcore.h>
32
#include <asm/etr.h>
33
#include <asm/pgtable.h>
34
#include <asm/gmap.h>
35
#include <asm/nmi.h>
36
#include <asm/switch_to.h>
37
#include <asm/isc.h>
38
#include <asm/sclp.h>
39 40
#include <asm/cpacf.h>
#include <asm/etr.h>
41
#include "kvm-s390.h"
42 43
#include "gaccess.h"

44 45 46 47
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

48 49
#define CREATE_TRACE_POINTS
#include "trace.h"
50
#include "trace-s390.h"
51

52
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
53 54 55
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
56

57 58 59 60
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
61
	{ "exit_null", VCPU_STAT(exit_null) },
62 63 64 65
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
66 67 68
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
69
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
70
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
71
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
72
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
73
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
74
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
75
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
76 77
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
78
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
79
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
80 81 82 83 84 85 86
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
87
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
88 89 90 91 92
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
93
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
94 95
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
96
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
97 98
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
99
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
100
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
101
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
102
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
103
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
104
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
105 106
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
107
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
108 109
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
110
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
111 112 113
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
114 115 116
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
117
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
118
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
119
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
120 121 122
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
123 124 125
	{ NULL }
};

126
/* upper facilities limit for kvm */
127 128 129
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
130
};
131

132
unsigned long kvm_s390_fac_list_mask_size(void)
133
{
134 135
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
136 137
}

138 139
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
140 141
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
142

143
static struct gmap_notifier gmap_notifier;
144
debug_info_t *kvm_s390_dbf;
145

146
/* Section: not file related */
147
int kvm_arch_hardware_enable(void)
148 149
{
	/* every s390 is virtualization enabled ;-) */
150
	return 0;
151 152
}

153 154
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
173 174
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
175 176 177 178 179 180 181 182 183
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

184 185
int kvm_arch_hardware_setup(void)
{
186 187
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
188 189
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
190 191 192 193 194
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
195
	gmap_unregister_ipte_notifier(&gmap_notifier);
196 197
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
198 199
}

200 201 202 203 204
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

221 222
static void kvm_s390_cpu_feat_init(void)
{
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

251 252 253 254
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
}

255 256
int kvm_arch_init(void *opaque)
{
257 258 259 260 261 262 263 264 265
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

266 267
	kvm_s390_cpu_feat_init();

268 269
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
270 271
}

272 273 274 275 276
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

277 278 279 280 281 282 283 284 285
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

286
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
287
{
288 289
	int r;

290
	switch (ext) {
291
	case KVM_CAP_S390_PSW:
292
	case KVM_CAP_S390_GMAP:
293
	case KVM_CAP_SYNC_MMU:
294 295 296
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
297
	case KVM_CAP_ASYNC_PF:
298
	case KVM_CAP_SYNC_REGS:
299
	case KVM_CAP_ONE_REG:
300
	case KVM_CAP_ENABLE_CAP:
301
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
302
	case KVM_CAP_IOEVENTFD:
303
	case KVM_CAP_DEVICE_CTRL:
304
	case KVM_CAP_ENABLE_CAP_VM:
305
	case KVM_CAP_S390_IRQCHIP:
306
	case KVM_CAP_VM_ATTRIBUTES:
307
	case KVM_CAP_MP_STATE:
308
	case KVM_CAP_S390_INJECT_IRQ:
309
	case KVM_CAP_S390_USER_SIGP:
310
	case KVM_CAP_S390_USER_STSI:
311
	case KVM_CAP_S390_SKEYS:
312
	case KVM_CAP_S390_IRQ_STATE:
313 314
		r = 1;
		break;
315 316 317
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
318 319
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
320 321 322
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
323
		break;
324 325 326
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
327
	case KVM_CAP_S390_COW:
328
		r = MACHINE_HAS_ESOP;
329
		break;
330 331 332
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
333 334 335
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
336
	default:
337
		r = 0;
338
	}
339
	return r;
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

354
		if (test_and_clear_guest_dirty(gmap->mm, address))
355
			mark_page_dirty(kvm, cur_gfn);
356 357
		if (fatal_signal_pending(current))
			return;
358
		cond_resched();
359 360 361
	}
}

362
/* Section: vm related */
363 364
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

365 366 367 368 369 370
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
371 372
	int r;
	unsigned long n;
373
	struct kvm_memslots *slots;
374 375 376 377 378 379 380 381 382
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

383 384
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
403 404
}

405 406 407 408 409 410 411 412
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
413
	case KVM_CAP_S390_IRQCHIP:
414
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
415 416 417
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
418
	case KVM_CAP_S390_USER_SIGP:
419
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
420 421 422
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
423
	case KVM_CAP_S390_VECTOR_REGISTERS:
424 425 426 427
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
428 429
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
430 431 432
			r = 0;
		} else
			r = -EINVAL;
433
		mutex_unlock(&kvm->lock);
434 435
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
436
		break;
437 438 439 440 441 442
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
443 444
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
445 446 447 448 449 450
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
451
	case KVM_CAP_S390_USER_STSI:
452
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
453 454 455
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
456 457 458 459 460 461 462
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

463 464 465 466 467 468 469
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
470
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
471 472
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
473 474 475 476 477 478 479 480 481 482
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
483 484 485 486 487
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
488
		ret = -ENXIO;
489
		if (!sclp.has_cmma)
490 491
			break;

492
		ret = -EBUSY;
493
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
494 495 496 497 498 499 500 501
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
502 503 504
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
505 506 507 508
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

509
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
510 511
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
512
		s390_reset_cmma(kvm->arch.gmap->mm);
513 514 515 516
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
517 518 519 520 521 522 523 524 525
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

526 527
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
528 529
			return -E2BIG;

530 531 532 533 534 535 536
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
553 554 555
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
556 557
		break;
	}
558 559 560 561 562 563 564
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

565 566 567 568 569 570 571
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

572
	if (!test_kvm_facility(kvm, 76))
573 574 575 576 577 578 579 580 581
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
582
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
583 584 585 586 587 588
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
589
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
590 591 592 593 594
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
595
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
596 597 598 599 600
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
601
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
602 603 604 605 606 607 608 609 610 611 612 613 614 615
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

616 617 618 619 620 621 622 623 624 625
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
626
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
627 628 629 630 631 632

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
633
	u64 gtod;
634 635 636 637

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

638
	kvm_s390_set_tod_clock(kvm, gtod);
639
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
671
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
672 673 674 675 676 677

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
678
	u64 gtod;
679

680
	gtod = kvm_s390_get_tod_clock_fast(kvm);
681 682
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
683
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

709 710 711
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
712
	u16 lowest_ibc, unblocked_ibc;
713 714 715 716 717 718 719 720 721 722 723 724 725 726
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
727
		kvm->arch.model.cpuid = proc->cpuid;
728 729 730 731 732 733 734 735 736 737
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
738
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
739 740 741 742 743 744 745 746 747
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

771 772 773 774 775 776 777 778 779 780
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

781 782 783 784 785 786 787 788
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
789 790 791
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
792 793 794
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
795 796 797 798 799 800 801 802 803 804 805 806 807 808
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
809
	proc->cpuid = kvm->arch.model.cpuid;
810
	proc->ibc = kvm->arch.model.ibc;
811 812
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
831
	mach->ibc = sclp.ibc;
832
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
833
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
834
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
835
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
836 837 838 839 840 841 842
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
887 888 889 890 891 892 893 894 895 896 897
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
898 899 900 901 902 903
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
904 905 906 907 908 909
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
910 911 912 913
	}
	return ret;
}

914 915 916 917 918
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
919
	case KVM_S390_VM_MEM_CTRL:
920
		ret = kvm_s390_set_mem_control(kvm, attr);
921
		break;
922 923 924
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
925 926 927
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
928 929 930
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
931 932 933 934 935 936 937 938 939 940
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
941 942 943 944 945 946
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
947 948 949
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
950 951 952
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
953 954 955 956 957 958
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
959 960 961 962 963 964 965
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
966 967 968 969
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
970 971
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
972
		case KVM_S390_VM_MEM_LIMIT_SIZE:
973 974 975 976 977 978 979
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
980 981 982 983 984 985 986 987 988 989 990
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
991 992 993 994
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
995 996
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
997
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
998 999
			ret = 0;
			break;
1000 1001
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1002 1003 1004 1005 1006
		default:
			ret = -ENXIO;
			break;
		}
		break;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1020 1021 1022 1023 1024 1025 1026 1027
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1105 1106 1107
	r = s390_enable_skey();
	if (r)
		goto out;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

1132 1133 1134 1135 1136
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1137
	struct kvm_device_attr attr;
1138 1139 1140
	int r;

	switch (ioctl) {
1141 1142 1143 1144 1145 1146 1147 1148 1149
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1150 1151 1152 1153 1154 1155 1156 1157
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1158 1159 1160 1161 1162 1163 1164
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1165
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1166 1167 1168
		}
		break;
	}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1210
	default:
1211
		r = -ENOTTY;
1212 1213 1214 1215 1216
	}

	return r;
}

1217 1218 1219
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1220
	u32 cc = 0;
1221

1222
	memset(config, 0, 128);
1223 1224 1225 1226
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1227
		"0: ipm %0\n"
1228
		"srl %0,28\n"
1229 1230 1231
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1244
	if (test_facility(12)) {
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1266
static u64 kvm_s390_get_initial_cpuid(void)
1267
{
1268 1269 1270 1271 1272
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1273 1274
}

1275
static void kvm_s390_crypto_init(struct kvm *kvm)
1276
{
1277
	if (!test_kvm_facility(kvm, 76))
1278
		return;
1279

1280
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1281
	kvm_s390_set_crycb_format(kvm);
1282

1283 1284 1285 1286 1287 1288 1289
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1290 1291
}

1292 1293 1294
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1295
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1296 1297 1298 1299 1300
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1301
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1302
{
1303
	gfp_t alloc_flags = GFP_KERNEL;
1304
	int i, rc;
1305
	char debug_name[16];
1306
	static unsigned long sca_offset;
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1319 1320
	rc = s390_enable_sie();
	if (rc)
1321
		goto out_err;
1322

1323 1324
	rc = -ENOMEM;

J
Janosch Frank 已提交
1325 1326
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1327
	kvm->arch.use_esca = 0; /* start with basic SCA */
1328 1329
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1330
	rwlock_init(&kvm->arch.sca_lock);
1331
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1332
	if (!kvm->arch.sca)
1333
		goto out_err;
1334
	spin_lock(&kvm_lock);
1335
	sca_offset += 16;
1336
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1337
		sca_offset = 0;
1338 1339
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1340
	spin_unlock(&kvm_lock);
1341 1342 1343

	sprintf(debug_name, "kvm-%u", current->pid);

1344
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1345
	if (!kvm->arch.dbf)
1346
		goto out_err;
1347

1348 1349 1350
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1351
		goto out_err;
1352

1353
	/* Populate the facility mask initially. */
1354
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1355
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1356 1357
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1358
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1359
		else
1360
			kvm->arch.model.fac_mask[i] = 0UL;
1361 1362
	}

1363
	/* Populate the facility list initially. */
1364 1365
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1366 1367
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1368 1369 1370
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1371
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1372
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1373

1374
	kvm_s390_crypto_init(kvm);
1375

1376
	spin_lock_init(&kvm->arch.float_int.lock);
1377 1378
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1379
	init_waitqueue_head(&kvm->arch.ipte_wq);
1380
	mutex_init(&kvm->arch.ipte_mutex);
1381

1382
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1383
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1384

1385 1386
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1387
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1388
	} else {
1389 1390 1391 1392 1393
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1394
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1395
		if (!kvm->arch.gmap)
1396
			goto out_err;
1397
		kvm->arch.gmap->private = kvm;
1398
		kvm->arch.gmap->pfault_enabled = 0;
1399
	}
1400 1401

	kvm->arch.css_support = 0;
1402
	kvm->arch.use_irqchip = 0;
1403
	kvm->arch.epoch = 0;
1404

1405
	spin_lock_init(&kvm->arch.start_stop_lock);
1406
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1407

1408
	return 0;
1409
out_err:
1410
	free_page((unsigned long)kvm->arch.sie_page2);
1411
	debug_unregister(kvm->arch.dbf);
1412
	sca_dispose(kvm);
1413
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1414
	return rc;
1415 1416
}

1417 1418 1419
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1420
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1421
	kvm_s390_clear_local_irqs(vcpu);
1422
	kvm_clear_async_pf_completion_queue(vcpu);
1423
	if (!kvm_is_ucontrol(vcpu->kvm))
1424
		sca_del_vcpu(vcpu);
1425 1426 1427 1428

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1429
	if (vcpu->kvm->arch.use_cmma)
1430
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1431
	free_page((unsigned long)(vcpu->arch.sie_block));
1432

1433
	kvm_vcpu_uninit(vcpu);
1434
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1435 1436 1437 1438 1439
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1440
	struct kvm_vcpu *vcpu;
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1451 1452
}

1453 1454
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1455
	kvm_free_vcpus(kvm);
1456
	sca_dispose(kvm);
1457
	debug_unregister(kvm->arch.dbf);
1458
	free_page((unsigned long)kvm->arch.sie_page2);
1459 1460
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1461
	kvm_s390_destroy_adapters(kvm);
1462
	kvm_s390_clear_float_irqs(kvm);
1463
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1464 1465 1466
}

/* Section: vcpu related */
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1477 1478
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1479
	read_lock(&vcpu->kvm->arch.sca_lock);
1480 1481
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1482

1483
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1484
		sca->cpu[vcpu->vcpu_id].sda = 0;
1485 1486 1487 1488
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1489
		sca->cpu[vcpu->vcpu_id].sda = 0;
1490
	}
1491
	read_unlock(&vcpu->kvm->arch.sca_lock);
1492 1493
}

1494
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1495
{
1496 1497 1498
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1499

1500
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1501 1502
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1503
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1504
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1505
	} else {
1506
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1507

1508
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1509 1510
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1511
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1512
	}
1513
	read_unlock(&vcpu->kvm->arch.sca_lock);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1567 1568
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1569
	return 0;
1570 1571 1572 1573
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1574 1575 1576 1577
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1578
	if (!sclp.has_esca || !sclp.has_64bscao)
1579 1580 1581 1582 1583 1584 1585
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1586 1587
}

1588 1589
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1590 1591
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1592 1593
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1594
				    KVM_SYNC_ACRS |
1595 1596 1597
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1598 1599
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1600 1601 1602 1603
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1604
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1605 1606
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1607 1608 1609 1610

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1611 1612 1613
	return 0;
}

1614 1615 1616 1617
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1618
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1619
	vcpu->arch.cputm_start = get_tod_clock_fast();
1620
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1621 1622 1623 1624 1625 1626
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1627
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1628 1629
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1630
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1663 1664 1665
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1666
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1667
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1668 1669
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1670
	vcpu->arch.sie_block->cputm = cputm;
1671
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1672
	preempt_enable();
1673 1674
}

1675
/* update and get the cpu timer - can also be called from other VCPU threads */
1676 1677
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1678
	unsigned int seq;
1679 1680 1681 1682 1683
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1698
	return value;
1699 1700
}

1701 1702
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1703
	/* Save host register state */
1704
	save_fpu_regs();
1705 1706
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1707

1708 1709 1710 1711
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1712
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1713
	if (test_fp_ctl(current->thread.fpu.fpc))
1714
		/* User space provided an invalid FPC, let's clear it */
1715 1716 1717
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1718
	restore_access_regs(vcpu->run->s.regs.acrs);
1719
	gmap_enable(vcpu->arch.gmap);
1720
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1721
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1722
		__start_cpu_timer_accounting(vcpu);
1723
	vcpu->cpu = cpu;
1724 1725 1726 1727
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1728
	vcpu->cpu = -1;
1729
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1730
		__stop_cpu_timer_accounting(vcpu);
1731
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1732
	gmap_disable(vcpu->arch.gmap);
1733

1734
	/* Save guest register state */
1735
	save_fpu_regs();
1736
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1737

1738 1739 1740
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1741 1742

	save_access_regs(vcpu->run->s.regs.acrs);
1743 1744 1745 1746 1747 1748 1749 1750
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1751
	kvm_s390_set_prefix(vcpu, 0);
1752
	kvm_s390_set_cpu_timer(vcpu, 0);
1753 1754 1755 1756 1757
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1758 1759 1760
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1761
	vcpu->arch.sie_block->gbea = 1;
1762
	vcpu->arch.sie_block->pp = 0;
1763 1764
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1765 1766
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1767
	kvm_s390_clear_local_irqs(vcpu);
1768 1769
}

1770
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1771
{
1772
	mutex_lock(&vcpu->kvm->lock);
1773
	preempt_disable();
1774
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1775
	preempt_enable();
1776
	mutex_unlock(&vcpu->kvm->lock);
1777
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1778
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1779
		sca_add_vcpu(vcpu);
1780 1781
	}

1782 1783
}

1784 1785
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1786
	if (!test_kvm_facility(vcpu->kvm, 76))
1787 1788
		return;

1789 1790 1791 1792 1793 1794 1795
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1796 1797 1798
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1816 1817 1818 1819 1820
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1821
	if (test_kvm_facility(vcpu->kvm, 7))
1822
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1823 1824
}

1825 1826
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1827
	int rc = 0;
1828

1829 1830
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1831 1832
						    CPUSTAT_STOPPED);

1833
	if (test_kvm_facility(vcpu->kvm, 78))
1834
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1835
	else if (test_kvm_facility(vcpu->kvm, 8))
1836
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1837

1838 1839
	kvm_s390_vcpu_setup_model(vcpu);

1840 1841 1842
	vcpu->arch.sie_block->ecb = 0x02;
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1843
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1844 1845
		vcpu->arch.sie_block->ecb |= 0x10;

1846
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1847
		vcpu->arch.sie_block->ecb2 |= 0x08;
1848 1849 1850
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1851 1852
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1853
	if (sclp.has_siif)
1854
		vcpu->arch.sie_block->eca |= 1;
1855
	if (sclp.has_sigpif)
1856
		vcpu->arch.sie_block->eca |= 0x10000000U;
1857 1858
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1859
	if (test_kvm_facility(vcpu->kvm, 129)) {
1860 1861 1862
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1863
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1864
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1865 1866
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1867

1868
	if (vcpu->kvm->arch.use_cmma) {
1869 1870 1871
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1872
	}
1873
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1874
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1875

1876 1877
	kvm_s390_vcpu_crypto_setup(vcpu);

1878
	return rc;
1879 1880 1881 1882 1883
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1884
	struct kvm_vcpu *vcpu;
1885
	struct sie_page *sie_page;
1886 1887
	int rc = -EINVAL;

1888
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1889 1890 1891
		goto out;

	rc = -ENOMEM;
1892

1893
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1894
	if (!vcpu)
1895
		goto out;
1896

1897 1898
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1899 1900
		goto out_free_cpu;

1901 1902 1903
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1904 1905 1906 1907
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1908
	vcpu->arch.sie_block->icpua = id;
1909 1910
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1911
	vcpu->arch.local_int.wq = &vcpu->wq;
1912
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1913
	seqcount_init(&vcpu->arch.cputm_seqcount);
1914

1915 1916
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1917
		goto out_free_sie_block;
1918
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1919
		 vcpu->arch.sie_block);
1920
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1921 1922

	return vcpu;
1923 1924
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1925
out_free_cpu:
1926
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1927
out:
1928 1929 1930 1931 1932
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1933
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1934 1935
}

1936
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1937
{
1938
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1939
	exit_sie(vcpu);
1940 1941
}

1942
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1943
{
1944
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1945 1946
}

1947 1948
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1949
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1950
	exit_sie(vcpu);
1951 1952 1953 1954
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1955
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1956 1957
}

1958 1959 1960 1961 1962 1963
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1964
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1965 1966 1967 1968
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1969 1970
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1971
{
1972 1973
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1974 1975
}

1976 1977 1978 1979 1980 1981 1982 1983
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1984
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1985
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1986
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1987 1988 1989 1990
		}
	}
}

1991 1992 1993 1994 1995 1996 1997
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1998 1999 2000 2001 2002 2003
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2004 2005 2006 2007 2008 2009 2010 2011
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2012
	case KVM_REG_S390_CPU_TIMER:
2013
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2014 2015 2016 2017 2018 2019
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2032 2033 2034 2035
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2036 2037 2038 2039
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2051
	__u64 val;
2052 2053

	switch (reg->id) {
2054 2055 2056 2057 2058 2059 2060 2061
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2062
	case KVM_REG_S390_CPU_TIMER:
2063 2064 2065
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2066 2067 2068 2069 2070
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2071 2072 2073
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2074 2075
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2076 2077 2078 2079 2080 2081 2082 2083 2084
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2085 2086 2087 2088
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2089 2090 2091 2092
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2093 2094 2095 2096 2097 2098
	default:
		break;
	}

	return r;
}
2099

2100 2101 2102 2103 2104 2105 2106 2107
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2108
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2109 2110 2111 2112 2113
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2114
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2115 2116 2117 2118 2119 2120
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2121
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2122
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2123
	restore_access_regs(vcpu->run->s.regs.acrs);
2124 2125 2126 2127 2128 2129
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2130
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2131 2132 2133 2134 2135 2136
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2137 2138
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2139 2140
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2141 2142 2143 2144 2145
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2146 2147 2148 2149 2150
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2151 2152 2153 2154 2155 2156 2157
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2158 2159 2160 2161 2162 2163 2164
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2165
	if (!is_vcpu_stopped(vcpu))
2166
		rc = -EBUSY;
2167 2168 2169 2170
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2171 2172 2173 2174 2175 2176 2177 2178 2179
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2180 2181 2182 2183
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2184 2185
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2186
{
2187 2188 2189 2190 2191
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2192
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2193
		return -EINVAL;
2194 2195
	if (!sclp.has_gpere)
		return -EINVAL;
2196 2197 2198 2199

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2200
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2201 2202 2203 2204

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2205
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2206 2207 2208 2209 2210 2211
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2212
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2213 2214 2215
	}

	return rc;
2216 2217
}

2218 2219 2220
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2221 2222 2223
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2224 2225 2226 2227 2228
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2249 2250
}

2251 2252 2253 2254 2255
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2256 2257
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2258
retry:
2259
	kvm_s390_vcpu_request_handled(vcpu);
2260 2261
	if (!vcpu->requests)
		return 0;
2262 2263 2264 2265 2266 2267 2268
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2269
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2270 2271
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2272
				      kvm_s390_get_prefix(vcpu),
2273 2274 2275
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2276
		goto retry;
2277
	}
2278

2279 2280 2281 2282 2283
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2284 2285 2286
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2287
			atomic_or(CPUSTAT_IBS,
2288 2289 2290
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2291
	}
2292 2293 2294 2295

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2296
			atomic_andnot(CPUSTAT_IBS,
2297 2298 2299 2300 2301
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2302 2303 2304
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2305 2306 2307
	return 0;
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2335
{
2336 2337
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2338 2339
}

2340 2341 2342 2343
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2344
	struct kvm_s390_irq irq;
2345 2346

	if (start_token) {
2347 2348 2349
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2350 2351
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2352
		inti.parm64 = token;
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2399
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2400 2401 2402 2403 2404 2405
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2406 2407 2408
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2409 2410 2411 2412 2413 2414
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2415
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2416
{
2417
	int rc, cpuflags;
2418

2419 2420 2421 2422 2423 2424 2425
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2426 2427
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2428 2429 2430 2431

	if (need_resched())
		schedule();

2432
	if (test_cpu_flag(CIF_MCCK_PENDING))
2433 2434
		s390_handle_mcck();

2435 2436 2437 2438 2439
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2440

2441 2442 2443 2444
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2445 2446 2447 2448 2449
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2450
	vcpu->arch.sie_block->icptcode = 0;
2451 2452 2453
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2454

2455 2456 2457
	return 0;
}

2458 2459
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2460 2461 2462 2463
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2477
	rc = read_guest_instr(vcpu, &opcode, 1);
2478
	ilen = insn_length(opcode);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2489 2490 2491
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2492 2493
}

2494 2495
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2496 2497 2498 2499
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2500 2501 2502
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2503 2504
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2519 2520 2521 2522 2523
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2524
		return -EREMOTE;
2525
	} else if (current->thread.gmap_pfault) {
2526
		trace_kvm_s390_major_guest_pfault(vcpu);
2527
		current->thread.gmap_pfault = 0;
2528 2529 2530
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2531
	}
2532
	return vcpu_post_run_fault_in_sie(vcpu);
2533 2534 2535 2536 2537 2538
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2539 2540 2541 2542 2543 2544
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2545 2546 2547 2548
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2549

2550
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2551 2552 2553 2554
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2555 2556
		local_irq_disable();
		__kvm_guest_enter();
2557
		__disable_cpu_timer_accounting(vcpu);
2558
		local_irq_enable();
2559 2560
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2561
		local_irq_disable();
2562
		__enable_cpu_timer_accounting(vcpu);
2563 2564
		__kvm_guest_exit();
		local_irq_enable();
2565
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2566 2567

		rc = vcpu_post_run(vcpu, exit_reason);
2568
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2569

2570
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2571
	return rc;
2572 2573
}

2574 2575 2576 2577 2578 2579 2580 2581
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2582 2583
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2584 2585
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2586
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2587 2588 2589 2590 2591 2592 2593 2594 2595
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2596 2597
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2608
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2609 2610 2611 2612 2613 2614 2615 2616 2617
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2618 2619
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2620
	int rc;
2621 2622
	sigset_t sigsaved;

2623 2624 2625 2626 2627
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2628 2629 2630
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2631 2632 2633
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2634
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2635 2636 2637
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2638

2639
	sync_regs(vcpu, kvm_run);
2640
	enable_cpu_timer_accounting(vcpu);
2641

2642
	might_fault();
2643
	rc = __vcpu_run(vcpu);
2644

2645 2646
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2647
		rc = -EINTR;
2648
	}
2649

2650 2651 2652 2653 2654
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2655
	if (rc == -EREMOTE) {
2656
		/* userspace support is needed, kvm_run has been prepared */
2657 2658
		rc = 0;
	}
2659

2660
	disable_cpu_timer_accounting(vcpu);
2661
	store_regs(vcpu, kvm_run);
2662

2663 2664 2665 2666
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2667
	return rc;
2668 2669 2670 2671 2672 2673 2674 2675
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2676
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2677
{
2678
	unsigned char archmode = 1;
2679
	freg_t fprs[NUM_FPRS];
2680
	unsigned int px;
2681
	u64 clkcomp, cputm;
2682
	int rc;
2683

2684
	px = kvm_s390_get_prefix(vcpu);
2685 2686
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2687
			return -EFAULT;
2688
		gpa = 0;
2689 2690
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2691
			return -EFAULT;
2692 2693 2694
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2695 2696 2697

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2698
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2699 2700 2701 2702
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2703
				     vcpu->run->s.regs.fprs, 128);
2704
	}
2705
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2706
			      vcpu->run->s.regs.gprs, 128);
2707
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2708
			      &vcpu->arch.sie_block->gpsw, 16);
2709
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2710
			      &px, 4);
2711
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2712
			      &vcpu->run->s.regs.fpc, 4);
2713
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2714
			      &vcpu->arch.sie_block->todpr, 4);
2715
	cputm = kvm_s390_get_cpu_timer(vcpu);
2716
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2717
			      &cputm, 8);
2718
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2719
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2720
			      &clkcomp, 8);
2721
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2722
			      &vcpu->run->s.regs.acrs, 64);
2723
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2724 2725
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2726 2727
}

2728 2729 2730 2731 2732 2733 2734
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2735
	save_fpu_regs();
2736
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2737 2738 2739 2740 2741
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2763 2764 2765 2766 2767
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2768
	 */
2769
	save_fpu_regs();
E
Eric Farman 已提交
2770 2771 2772 2773

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2774 2775 2776
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2777
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2793
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2794 2795
}

2796 2797
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2798 2799 2800 2801 2802
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2803
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2804
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2805
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2825
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2826 2827 2828 2829
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2830
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2831
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2832
	return;
2833 2834 2835 2836
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2837 2838 2839 2840 2841 2842
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2843
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2844
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2845
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2846 2847
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2848
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2849
	kvm_s390_clear_stop_irq(vcpu);
2850

2851
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2869
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2870
	return;
2871 2872
}

2873 2874 2875 2876 2877 2878 2879 2880 2881
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2882 2883 2884
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2885
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2886 2887 2888 2889
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2890 2891 2892 2893 2894 2895 2896
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2923 2924
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2935 2936
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2958 2959 2960 2961 2962
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2963
	int idx;
2964
	long r;
2965

2966
	switch (ioctl) {
2967 2968 2969 2970 2971 2972 2973 2974 2975
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2976
	case KVM_S390_INTERRUPT: {
2977
		struct kvm_s390_interrupt s390int;
2978
		struct kvm_s390_irq s390irq;
2979

2980
		r = -EFAULT;
2981
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2982
			break;
2983 2984 2985
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2986
		break;
2987
	}
2988
	case KVM_S390_STORE_STATUS:
2989
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2990
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2991
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2992
		break;
2993 2994 2995
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2996
		r = -EFAULT;
2997
		if (copy_from_user(&psw, argp, sizeof(psw)))
2998 2999 3000
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3001 3002
	}
	case KVM_S390_INITIAL_RESET:
3003 3004
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3053
	case KVM_S390_VCPU_FAULT: {
3054
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3055 3056
		break;
	}
3057 3058 3059 3060 3061 3062 3063 3064 3065
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3066 3067 3068 3069 3070 3071 3072 3073 3074
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3107
	default:
3108
		r = -ENOTTY;
3109
	}
3110
	return r;
3111 3112
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3126 3127
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3128 3129 3130 3131
{
	return 0;
}

3132
/* Section: memory related */
3133 3134
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3135
				   const struct kvm_userspace_memory_region *mem,
3136
				   enum kvm_mr_change change)
3137
{
3138 3139 3140 3141
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3142

3143
	if (mem->userspace_addr & 0xffffful)
3144 3145
		return -EINVAL;

3146
	if (mem->memory_size & 0xffffful)
3147 3148
		return -EINVAL;

3149 3150 3151
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3152 3153 3154 3155
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3156
				const struct kvm_userspace_memory_region *mem,
3157
				const struct kvm_memory_slot *old,
3158
				const struct kvm_memory_slot *new,
3159
				enum kvm_mr_change change)
3160
{
3161
	int rc;
3162

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3173 3174 3175 3176

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3177
		pr_warn("failed to commit memory region\n");
3178
	return;
3179 3180
}

3181 3182 3183 3184 3185 3186 3187
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3188 3189 3190 3191 3192
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3193 3194
static int __init kvm_s390_init(void)
{
3195 3196
	int i;

3197 3198 3199 3200 3201
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3202 3203 3204 3205
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3206
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3207 3208 3209 3210 3211 3212 3213 3214 3215
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3216 3217 3218 3219 3220 3221 3222 3223 3224

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");