kvm-s390.c 58.2 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <asm/asm-offsets.h>
29 30
#include <asm/lowcore.h>
#include <asm/pgtable.h>
31
#include <asm/nmi.h>
32
#include <asm/switch_to.h>
33
#include <asm/sclp.h>
34
#include "kvm-s390.h"
35 36
#include "gaccess.h"

37 38
#define CREATE_TRACE_POINTS
#include "trace.h"
39
#include "trace-s390.h"
40

41 42 43 44
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
45
	{ "exit_null", VCPU_STAT(exit_null) },
46 47 48 49
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
50 51 52
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
53
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
54
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
55
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
56
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
57 58
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
59
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
60
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
61 62 63 64 65 66 67
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
68
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
69 70 71 72 73
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
74
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
75 76
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
77
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
78 79
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
80
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
81
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
82
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
83
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
84
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
85 86
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
87
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
88 89
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
90 91 92
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
93 94 95
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
96
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
97
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
98
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
99 100 101
	{ NULL }
};

102 103 104 105 106
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
	0xff82fffbf4fc2000UL,
	0x005c000000000000UL,
};
107

108
unsigned long kvm_s390_fac_list_mask_size(void)
109
{
110 111
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
112 113
}

114 115
static struct gmap_notifier gmap_notifier;

116
/* Section: not file related */
117
int kvm_arch_hardware_enable(void)
118 119
{
	/* every s390 is virtualization enabled ;-) */
120
	return 0;
121 122
}

123 124
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

125 126
int kvm_arch_hardware_setup(void)
{
127 128
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
129 130 131 132 133
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
134
	gmap_unregister_ipte_notifier(&gmap_notifier);
135 136 137 138
}

int kvm_arch_init(void *opaque)
{
139 140
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
141 142 143 144 145 146 147 148 149 150 151
}

/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

152
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
153
{
154 155
	int r;

156
	switch (ext) {
157
	case KVM_CAP_S390_PSW:
158
	case KVM_CAP_S390_GMAP:
159
	case KVM_CAP_SYNC_MMU:
160 161 162
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
163
	case KVM_CAP_ASYNC_PF:
164
	case KVM_CAP_SYNC_REGS:
165
	case KVM_CAP_ONE_REG:
166
	case KVM_CAP_ENABLE_CAP:
167
	case KVM_CAP_S390_CSS_SUPPORT:
168
	case KVM_CAP_IRQFD:
C
Cornelia Huck 已提交
169
	case KVM_CAP_IOEVENTFD:
170
	case KVM_CAP_DEVICE_CTRL:
171
	case KVM_CAP_ENABLE_CAP_VM:
172
	case KVM_CAP_S390_IRQCHIP:
173
	case KVM_CAP_VM_ATTRIBUTES:
174
	case KVM_CAP_MP_STATE:
175
	case KVM_CAP_S390_USER_SIGP:
176 177
		r = 1;
		break;
178 179 180 181
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
182 183 184
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
185
	case KVM_CAP_S390_COW:
186
		r = MACHINE_HAS_ESOP;
187
		break;
188
	default:
189
		r = 0;
190
	}
191
	return r;
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

213 214 215 216 217 218 219
/* Section: vm related */
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	int r;
	unsigned long n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
250 251
}

252 253 254 255 256 257 258 259
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
260 261 262 263
	case KVM_CAP_S390_IRQCHIP:
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
264 265 266 267
	case KVM_CAP_S390_USER_SIGP:
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
268 269 270 271 272 273 274
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
309
		s390_reset_cmma(kvm->arch.gmap->mm);
310 311 312 313
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
		break;
	}
344 345 346 347 348 349 350
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

351 352 353 354 355 356 357
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

358
	if (!test_kvm_facility(kvm, 76))
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *cur_vcpu;
	unsigned int vcpu_idx;
	u64 host_tod, gtod;
	int r;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	mutex_lock(&kvm->lock);
	kvm->arch.epoch = gtod - host_tod;
	kvm_for_each_vcpu(vcpu_idx, cur_vcpu, kvm) {
		cur_vcpu->arch.sie_block->epoch = kvm->arch.epoch;
		exit_sie(cur_vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u64 host_tod, gtod;
	int r;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	gtod = host_tod + kvm->arch.epoch;
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
525
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
559
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
	mach->ibc = sclp_get_ibc();
579 580
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
581
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
582
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

605 606 607 608 609
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
610
	case KVM_S390_VM_MEM_CTRL:
611
		ret = kvm_s390_set_mem_control(kvm, attr);
612
		break;
613 614 615
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
616 617 618
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
619 620 621
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
622 623 624 625 626 627 628 629 630 631
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
632 633 634 635 636 637
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
638 639 640
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
641 642 643
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
644 645 646 647 648 649
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
650 651 652 653 654 655 656
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
657 658 659 660
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
661
		case KVM_S390_VM_MEM_LIMIT_SIZE:
662 663 664 665 666 667 668
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
669 670 671 672 673 674 675 676 677 678 679
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
680 681 682 683 684 685 686 687 688 689 690
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
691 692 693 694 695 696 697 698 699 700 701 702 703
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
704 705 706 707 708 709 710 711
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

712 713 714 715 716
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
717
	struct kvm_device_attr attr;
718 719 720
	int r;

	switch (ioctl) {
721 722 723 724 725 726 727 728 729
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
730 731 732 733 734 735 736 737
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
738 739 740 741 742 743 744 745 746 747 748 749
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
			kvm_set_irq_routing(kvm, &routing, 0, 0);
			r = 0;
		}
		break;
	}
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
771
	default:
772
		r = -ENOTTY;
773 774 775 776 777
	}

	return r;
}

778 779 780
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
781
	u32 cc = 0;
782

783
	memset(config, 0, 128);
784 785 786 787
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
788
		"0: ipm %0\n"
789
		"srl %0,28\n"
790 791 792
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

827 828 829 830 831 832
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

833 834
static int kvm_s390_crypto_init(struct kvm *kvm)
{
835
	if (!test_kvm_facility(kvm, 76))
836 837 838 839 840 841 842
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

843
	kvm_s390_set_crycb_format(kvm);
844

845 846 847 848 849 850 851
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
852

853 854 855
	return 0;
}

856
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
857
{
858
	int i, rc;
859
	char debug_name[16];
860
	static unsigned long sca_offset;
861

862 863 864 865 866 867 868 869 870 871 872
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

873 874
	rc = s390_enable_sie();
	if (rc)
875
		goto out_err;
876

877 878
	rc = -ENOMEM;

879 880
	kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
	if (!kvm->arch.sca)
881
		goto out_err;
882 883 884 885
	spin_lock(&kvm_lock);
	sca_offset = (sca_offset + 16) & 0x7f0;
	kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
	spin_unlock(&kvm_lock);
886 887 888 889 890 891 892

	sprintf(debug_name, "kvm-%u", current->pid);

	kvm->arch.dbf = debug_register(debug_name, 8, 2, 8 * sizeof(long));
	if (!kvm->arch.dbf)
		goto out_nodbf;

893 894 895
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
896 897
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
898 899 900
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
901
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
902 903 904
	if (!kvm->arch.model.fac)
		goto out_nofac;

905
	/* Populate the facility mask initially. */
906
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
907
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
908 909
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
910
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
911
		else
912
			kvm->arch.model.fac->mask[i] = 0UL;
913 914
	}

915 916 917 918
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

919
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
920
	kvm->arch.model.ibc = sclp_get_ibc() & 0x0fff;
921

922 923 924
	if (kvm_s390_crypto_init(kvm) < 0)
		goto out_crypto;

925 926
	spin_lock_init(&kvm->arch.float_int.lock);
	INIT_LIST_HEAD(&kvm->arch.float_int.list);
927
	init_waitqueue_head(&kvm->arch.ipte_wq);
928
	mutex_init(&kvm->arch.ipte_mutex);
929

930 931 932
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
	VM_EVENT(kvm, 3, "%s", "vm created");

933 934 935
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
936
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
937 938
		if (!kvm->arch.gmap)
			goto out_nogmap;
939
		kvm->arch.gmap->private = kvm;
940
		kvm->arch.gmap->pfault_enabled = 0;
941
	}
942 943

	kvm->arch.css_support = 0;
944
	kvm->arch.use_irqchip = 0;
945
	kvm->arch.epoch = 0;
946

947 948
	spin_lock_init(&kvm->arch.start_stop_lock);

949
	return 0;
950
out_nogmap:
951 952
	kfree(kvm->arch.crypto.crycb);
out_crypto:
953 954
	free_page((unsigned long)kvm->arch.model.fac);
out_nofac:
955
	debug_unregister(kvm->arch.dbf);
956 957
out_nodbf:
	free_page((unsigned long)(kvm->arch.sca));
958 959
out_err:
	return rc;
960 961
}

962 963 964
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
965
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
966
	kvm_s390_clear_local_irqs(vcpu);
967
	kvm_clear_async_pf_completion_queue(vcpu);
C
Carsten Otte 已提交
968 969 970 971 972 973 974
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		clear_bit(63 - vcpu->vcpu_id,
			  (unsigned long *) &vcpu->kvm->arch.sca->mcn);
		if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
		    (__u64) vcpu->arch.sie_block)
			vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
	}
975
	smp_mb();
976 977 978 979

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

980 981
	if (kvm_s390_cmma_enabled(vcpu->kvm))
		kvm_s390_vcpu_unsetup_cmma(vcpu);
982
	free_page((unsigned long)(vcpu->arch.sie_block));
983

984
	kvm_vcpu_uninit(vcpu);
985
	kmem_cache_free(kvm_vcpu_cache, vcpu);
986 987 988 989 990
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
991
	struct kvm_vcpu *vcpu;
992

993 994 995 996 997 998 999 1000 1001
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1002 1003
}

1004 1005
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1006
	kvm_free_vcpus(kvm);
1007
	free_page((unsigned long)kvm->arch.model.fac);
1008
	free_page((unsigned long)(kvm->arch.sca));
1009
	debug_unregister(kvm->arch.dbf);
1010
	kfree(kvm->arch.crypto.crycb);
1011 1012
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1013
	kvm_s390_destroy_adapters(kvm);
1014
	kvm_s390_clear_float_irqs(kvm);
1015 1016 1017
}

/* Section: vcpu related */
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1028 1029
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1030 1031
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1032 1033
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1034
				    KVM_SYNC_ACRS |
1035 1036 1037
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1038 1039 1040 1041

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1042 1043 1044 1045 1046
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1047 1048
	save_fp_ctl(&vcpu->arch.host_fpregs.fpc);
	save_fp_regs(vcpu->arch.host_fpregs.fprs);
1049
	save_access_regs(vcpu->arch.host_acrs);
1050 1051
	restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
1052
	restore_access_regs(vcpu->run->s.regs.acrs);
1053
	gmap_enable(vcpu->arch.gmap);
1054
	atomic_set_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1055 1056 1057 1058
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1059
	atomic_clear_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1060
	gmap_disable(vcpu->arch.gmap);
1061 1062
	save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	save_fp_regs(vcpu->arch.guest_fpregs.fprs);
1063
	save_access_regs(vcpu->run->s.regs.acrs);
1064 1065
	restore_fp_ctl(&vcpu->arch.host_fpregs.fpc);
	restore_fp_regs(vcpu->arch.host_fpregs.fprs);
1066 1067 1068 1069 1070 1071 1072 1073
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1074
	kvm_s390_set_prefix(vcpu, 0);
1075 1076 1077 1078 1079 1080 1081 1082 1083
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1084
	vcpu->arch.sie_block->pp = 0;
1085 1086
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1087 1088
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1089
	kvm_s390_clear_local_irqs(vcpu);
1090 1091
}

1092
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1093
{
1094 1095 1096
	mutex_lock(&vcpu->kvm->lock);
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
	mutex_unlock(&vcpu->kvm->lock);
1097 1098
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1099 1100
}

1101 1102
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1103
	if (!test_kvm_facility(vcpu->kvm, 76))
1104 1105
		return;

1106 1107 1108 1109 1110 1111 1112
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1113 1114 1115
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1133 1134
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1135
	int rc = 0;
1136

1137 1138
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1139 1140
						    CPUSTAT_STOPPED |
						    CPUSTAT_GED);
1141
	vcpu->arch.sie_block->ecb   = 6;
1142
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1143 1144
		vcpu->arch.sie_block->ecb |= 0x10;

1145
	vcpu->arch.sie_block->ecb2  = 8;
1146
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1147 1148
	if (sclp_has_siif())
		vcpu->arch.sie_block->eca |= 1;
1149 1150
	if (sclp_has_sigpif())
		vcpu->arch.sie_block->eca |= 0x10000000U;
1151
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1152

1153 1154 1155 1156
	if (kvm_s390_cmma_enabled(vcpu->kvm)) {
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1157
	}
1158
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1159
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1160

1161
	mutex_lock(&vcpu->kvm->lock);
1162
	vcpu->arch.cpu_id = vcpu->kvm->arch.model.cpu_id;
1163 1164
	vcpu->arch.sie_block->ibc = vcpu->kvm->arch.model.ibc;
	mutex_unlock(&vcpu->kvm->lock);
1165 1166 1167

	kvm_s390_vcpu_crypto_setup(vcpu);

1168
	return rc;
1169 1170 1171 1172 1173
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1174
	struct kvm_vcpu *vcpu;
1175
	struct sie_page *sie_page;
1176 1177 1178 1179 1180 1181
	int rc = -EINVAL;

	if (id >= KVM_MAX_VCPUS)
		goto out;

	rc = -ENOMEM;
1182

1183
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1184
	if (!vcpu)
1185
		goto out;
1186

1187 1188
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1189 1190
		goto out_free_cpu;

1191 1192 1193
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1194
	vcpu->arch.sie_block->icpua = id;
C
Carsten Otte 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	if (!kvm_is_ucontrol(kvm)) {
		if (!kvm->arch.sca) {
			WARN_ON_ONCE(1);
			goto out_free_cpu;
		}
		if (!kvm->arch.sca->cpu[id].sda)
			kvm->arch.sca->cpu[id].sda =
				(__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh =
			(__u32)(((__u64)kvm->arch.sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
		set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
	}
1208
	vcpu->arch.sie_block->fac = (int) (long) kvm->arch.model.fac->list;
1209

1210 1211
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1212
	vcpu->arch.local_int.wq = &vcpu->wq;
1213
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1214

1215 1216
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1217
		goto out_free_sie_block;
1218 1219
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1220
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1221 1222

	return vcpu;
1223 1224
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1225
out_free_cpu:
1226
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1227
out:
1228 1229 1230 1231 1232
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1233
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1234 1235
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
void s390_vcpu_block(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

void s390_vcpu_unblock(struct kvm_vcpu *vcpu)
{
	atomic_clear_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

/* Kick a guest cpu out of SIE and prevent SIE-reentry */
void exit_sie_sync(struct kvm_vcpu *vcpu)
{
	s390_vcpu_block(vcpu);
	exit_sie(vcpu);
}

1264 1265 1266 1267 1268 1269 1270 1271
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1272
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1273 1274 1275 1276 1277 1278 1279
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
			exit_sie_sync(vcpu);
		}
	}
}

1280 1281 1282 1283 1284 1285 1286
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1287 1288 1289 1290 1291 1292
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1293 1294 1295 1296 1297 1298 1299 1300
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1301 1302 1303 1304 1305 1306 1307 1308
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1321 1322 1323 1324
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1325 1326 1327 1328
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1342 1343 1344 1345 1346 1347 1348 1349
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1350 1351 1352 1353 1354 1355 1356 1357
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1358 1359 1360
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1361 1362
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1363 1364 1365 1366 1367 1368 1369 1370 1371
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1372 1373 1374 1375
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1376 1377 1378 1379
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1380 1381 1382 1383 1384 1385
	default:
		break;
	}

	return r;
}
1386

1387 1388 1389 1390 1391 1392 1393 1394
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1395
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1396 1397 1398 1399 1400
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1401
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1402 1403 1404 1405 1406 1407
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1408
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1409
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1410
	restore_access_regs(vcpu->run->s.regs.acrs);
1411 1412 1413 1414 1415 1416
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1417
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1418 1419 1420 1421 1422 1423
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1424 1425
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1426
	memcpy(&vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1427 1428 1429
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
	restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	memcpy(&fpu->fprs, &vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1444
	if (!is_vcpu_stopped(vcpu))
1445
		rc = -EBUSY;
1446 1447 1448 1449
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1450 1451 1452 1453 1454 1455 1456 1457 1458
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1459 1460 1461 1462
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1463 1464
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1465
{
1466 1467 1468 1469 1470
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1471
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
		atomic_set_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
	}

	return rc;
1493 1494
}

1495 1496 1497
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1498 1499 1500
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1501 1502 1503 1504 1505
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
bool kvm_s390_cmma_enabled(struct kvm *kvm)
{
	if (!MACHINE_IS_LPAR)
		return false;
	/* only enable for z10 and later */
	if (!MACHINE_HAS_EDAT1)
		return false;
	if (!kvm->arch.use_cmma)
		return false;
	return true;
}

1540 1541 1542 1543 1544
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1545 1546
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1547 1548
retry:
	s390_vcpu_unblock(vcpu);
1549 1550 1551 1552 1553 1554 1555
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1556
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1557 1558
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1559
				      kvm_s390_get_prefix(vcpu),
1560 1561 1562
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1563
		goto retry;
1564
	}
1565

1566 1567 1568 1569 1570
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1571 1572 1573 1574 1575 1576 1577
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
			atomic_set_mask(CPUSTAT_IBS,
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1578
	}
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
			atomic_clear_mask(CPUSTAT_IBS,
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

1589 1590 1591
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

1592 1593 1594
	return 0;
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1606
{
1607 1608
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
1609 1610
}

1611 1612 1613 1614
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
1615
	struct kvm_s390_irq irq;
1616 1617

	if (start_token) {
1618 1619 1620
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1621 1622
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
1623
		inti.parm64 = token;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
1670
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
1671 1672 1673 1674 1675 1676
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
1677 1678 1679
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
1680 1681 1682 1683 1684 1685
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

1686
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
1687
{
1688
	int rc, cpuflags;
1689

1690 1691 1692 1693 1694 1695 1696
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

1697
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
1698 1699 1700 1701

	if (need_resched())
		schedule();

1702
	if (test_cpu_flag(CIF_MCCK_PENDING))
1703 1704
		s390_handle_mcck();

1705 1706 1707 1708 1709
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
1710

1711 1712 1713 1714
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

1715 1716 1717 1718 1719
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

1720
	vcpu->arch.sie_block->icptcode = 0;
1721 1722 1723
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
1724

1725 1726 1727
	return 0;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
	rc = read_guest(vcpu, psw->addr, &opcode, 1);
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

1753 1754
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
1755
	int rc = -1;
1756 1757 1758 1759 1760

	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

1761 1762 1763
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

1764
	if (exit_reason >= 0) {
1765
		rc = 0;
1766 1767 1768 1769 1770 1771
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
		rc = -EREMOTE;
1772 1773

	} else if (current->thread.gmap_pfault) {
1774
		trace_kvm_s390_major_guest_pfault(vcpu);
1775
		current->thread.gmap_pfault = 0;
1776
		if (kvm_arch_setup_async_pf(vcpu)) {
1777
			rc = 0;
1778 1779 1780 1781
		} else {
			gpa_t gpa = current->thread.gmap_addr;
			rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
		}
1782 1783
	}

1784 1785
	if (rc == -1)
		rc = vcpu_post_run_fault_in_sie(vcpu);
1786

1787
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
1788

1789 1790
	if (rc == 0) {
		if (kvm_is_ucontrol(vcpu->kvm))
1791 1792
			/* Don't exit for host interrupts. */
			rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
1793 1794 1795 1796
		else
			rc = kvm_handle_sie_intercept(vcpu);
	}

1797 1798 1799 1800 1801 1802 1803
	return rc;
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

1804 1805 1806 1807 1808 1809
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1810 1811 1812 1813
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
1814

1815
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
		preempt_disable();
		kvm_guest_enter();
		preempt_enable();
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
		kvm_guest_exit();
1826
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1827 1828

		rc = vcpu_post_run(vcpu, exit_reason);
1829
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
1830

1831
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1832
	return rc;
1833 1834
}

1835 1836 1837 1838 1839 1840 1841 1842
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
1843 1844
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
1857 1858
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

1879 1880
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
1881
	int rc;
1882 1883
	sigset_t sigsaved;

1884 1885 1886 1887 1888
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

1889 1890 1891
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

1892 1893 1894 1895 1896 1897 1898
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
		pr_err_ratelimited("kvm-s390: can't run stopped vcpu %d\n",
				   vcpu->vcpu_id);
		return -EINVAL;
	}
1899

1900
	sync_regs(vcpu, kvm_run);
1901

1902
	might_fault();
1903
	rc = __vcpu_run(vcpu);
1904

1905 1906
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
1907
		rc = -EINTR;
1908
	}
1909

1910 1911 1912 1913 1914
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

1915
	if (rc == -EOPNOTSUPP) {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/* intercept cannot be handled in-kernel, prepare kvm-run */
		kvm_run->exit_reason         = KVM_EXIT_S390_SIEIC;
		kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		kvm_run->s390_sieic.ipa      = vcpu->arch.sie_block->ipa;
		kvm_run->s390_sieic.ipb      = vcpu->arch.sie_block->ipb;
		rc = 0;
	}

	if (rc == -EREMOTE) {
		/* intercept was handled, but userspace support is needed
		 * kvm_run has been prepared by the handler */
		rc = 0;
	}
1929

1930
	store_regs(vcpu, kvm_run);
1931

1932 1933 1934 1935
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
1936
	return rc;
1937 1938 1939 1940 1941 1942 1943 1944
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
1945
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
1946
{
1947
	unsigned char archmode = 1;
1948
	unsigned int px;
1949
	u64 clkcomp;
1950
	int rc;
1951

1952 1953
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
1954
			return -EFAULT;
1955 1956 1957
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
1958
			return -EFAULT;
1959 1960 1961 1962 1963 1964 1965 1966
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
1967
	px = kvm_s390_get_prefix(vcpu);
1968
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
1969
			      &px, 4);
1970 1971 1972 1973 1974 1975 1976
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
1977
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
1978 1979 1980 1981 1982 1983 1984
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
1985 1986
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
	save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
	kvm_make_request(KVM_REQ_DISABLE_IBS, vcpu);
	exit_sie_sync(vcpu);
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
	kvm_make_request(KVM_REQ_ENABLE_IBS, vcpu);
	exit_sie_sync(vcpu);
}

2025 2026
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2027 2028 2029 2030 2031
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2032
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2033
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2034
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2054
	atomic_clear_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2055 2056 2057 2058
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2059
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2060
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2061
	return;
2062 2063 2064 2065
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2066 2067 2068 2069 2070 2071
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2072
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2073
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2074
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2075 2076
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2077
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2078
	kvm_s390_clear_stop_irq(vcpu);
2079

2080
	atomic_set_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2098
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2099
	return;
2100 2101
}

2102 2103 2104 2105 2106 2107 2108 2109 2110
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2111 2112 2113 2114 2115 2116 2117
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2118 2119 2120 2121 2122 2123 2124
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2125 2126 2127 2128 2129
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2130
	int idx;
2131
	long r;
2132

2133 2134
	switch (ioctl) {
	case KVM_S390_INTERRUPT: {
2135
		struct kvm_s390_interrupt s390int;
2136
		struct kvm_s390_irq s390irq;
2137

2138
		r = -EFAULT;
2139
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2140
			break;
2141 2142 2143
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2144
		break;
2145
	}
2146
	case KVM_S390_STORE_STATUS:
2147
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2148
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2149
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2150
		break;
2151 2152 2153
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2154
		r = -EFAULT;
2155
		if (copy_from_user(&psw, argp, sizeof(psw)))
2156 2157 2158
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2159 2160
	}
	case KVM_S390_INITIAL_RESET:
2161 2162
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2211
	case KVM_S390_VCPU_FAULT: {
2212
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2213 2214
		break;
	}
2215 2216 2217 2218 2219 2220 2221 2222 2223
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2224
	default:
2225
		r = -ENOTTY;
2226
	}
2227
	return r;
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2243 2244
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2245 2246 2247 2248
{
	return 0;
}

2249
/* Section: memory related */
2250 2251
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2252 2253
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
2254
{
2255 2256 2257 2258
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2259

2260
	if (mem->userspace_addr & 0xffffful)
2261 2262
		return -EINVAL;

2263
	if (mem->memory_size & 0xffffful)
2264 2265
		return -EINVAL;

2266 2267 2268 2269 2270
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
2271 2272
				const struct kvm_memory_slot *old,
				enum kvm_mr_change change)
2273
{
2274
	int rc;
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2286 2287 2288 2289

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2290
		printk(KERN_WARNING "kvm-s390: failed to commit memory region\n");
2291
	return;
2292 2293 2294 2295
}

static int __init kvm_s390_init(void)
{
2296
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2297 2298 2299 2300 2301 2302 2303 2304 2305
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2306 2307 2308 2309 2310 2311 2312 2313 2314

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");