rt2800pci.c 37.6 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static bool modparam_nohwcrypt = false;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 89
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
90
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 92

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 94

	iounmap(base_addr);
95 96 97 98 99
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
100
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101

102
#ifdef CONFIG_PCI
103 104 105 106 107
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

108
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

130
	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 132 133 134 135 136 137
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

138
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 140 141 142

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
143 144 145 146 147 148 149 150 151 152 153 154
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
155 156 157 158 159 160 161 162 163
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

164 165
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
166
	return rt2800_efuse_detect(rt2x00dev);
167 168
}

169
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170
{
171
	rt2800_read_eeprom_efuse(rt2x00dev);
172 173 174 175 176 177
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

178 179 180 181 182
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

183 184 185
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
186
#endif /* CONFIG_PCI */
187

188 189 190 191 192 193 194 195 196 197
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
198
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 202
		break;
	case QID_BEACON:
203
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 205 206
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208

209
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 213 214
		break;
	default:
		break;
215
	}
216 217 218 219 220 221 222 223
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
224 225
	case QID_AC_VO:
	case QID_AC_VI:
226 227 228
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 230
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					 entry->entry_idx);
231 232 233
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 235
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
					 entry->entry_idx);
236 237 238 239 240 241 242 243 244 245 246 247 248
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
249
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 253
		break;
	case QID_BEACON:
254
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 256 257
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259

260
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263 264

		/*
265 266 267
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
268
		 */
269 270 271
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

272 273 274 275 276 277
		break;
	default:
		break;
	}
}

278 279 280 281 282
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
W
Woody Hung 已提交
283 284 285 286 287 288 289
	/*
	 * Chip rt3290 use specific 4KB firmware named rt3290.bin.
	 */
	if (rt2x00_rt(rt2x00dev, RT3290))
		return FIRMWARE_RT3290;
	else
		return FIRMWARE_RT2860;
290 291
}

292
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
293 294 295 296 297 298 299 300 301
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
302
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
303 304 305 306

	/*
	 * Write firmware to device.
	 */
307 308
	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);
309

310 311
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
312

313 314
	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
342
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
343 344 345 346 347 348 349 350 351 352
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
353 354 355 356 357

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
358
		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
359
				      entry->entry_idx);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
375 376 377 378 379
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
				 rt2x00dev->tx[0].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
380 381

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
382 383 384 385 386
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
				 rt2x00dev->tx[1].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
387 388

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
389 390 391 392 393
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
				 rt2x00dev->tx[2].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
394 395

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
396 397 398 399 400
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
				 rt2x00dev->tx[3].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
401

402 403 404 405 406 407 408 409 410 411
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);

	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);

412
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
413 414 415 416 417 418
	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
				 rt2x00dev->rx[0].limit);
	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
				 rt2x00dev->rx[0].limit - 1);
	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
419

420
	rt2800_disable_wpdma(rt2x00dev);
421

422
	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
423 424 425 426 427 428 429 430 431 432 433

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	u32 reg;
434
	unsigned long flags;
435 436 437 438 439 440

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
441 442
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
443
	}
444

445
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
446 447 448 449 450 451 452 453
	reg = 0;
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
	}
454
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
455 456 457 458
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
459
		 * Wait for possibly running tasklets to finish.
460
		 */
461 462 463 464 465
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
466
	}
467 468
}

469 470 471 472 473 474 475
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
476
	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
477 478 479 480 481 482 483
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
484
	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
485

486 487
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
488

489 490
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
J
John Li 已提交
491 492
	     rt2x00_rt(rt2x00dev, RT5390) ||
	     rt2x00_rt(rt2x00dev, RT5392))) {
493
		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
494 495
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
496
		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
497
	}
498

499
	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
500

501
	reg = 0;
502 503
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
504
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
505

506
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
507 508 509 510

	return 0;
}

511 512
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
513 514
	int retval;

515 516 517 518
	/* Wait for DMA, ignore error until we initialize queues. */
	rt2800_wait_wpdma_ready(rt2x00dev);

	if (unlikely(rt2800pci_init_queues(rt2x00dev)))
519 520
		return -EIO;

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	retval = rt2800_enable_radio(rt2x00dev);
	if (retval)
		return retval;

	/* After resume MCU_BOOT_SIGNAL will trash these. */
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);

	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);

	rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);

	return retval;
536 537 538 539
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
540 541
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
542 543
		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
544
	}
545 546 547 548 549 550
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
551 552 553
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
				   0, 0x02);
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
554
	} else if (state == STATE_SLEEP) {
555 556 557 558
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					 0xffffffff);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
					 0xffffffff);
559 560
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
				   0xff, 0x01);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
608
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
609
{
610
	return (__le32 *) entry->skb->data;
611 612
}

613
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
614 615
				    struct txentry_desc *txdesc)
{
616 617
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
618
	__le32 *txd = entry_priv->desc;
619 620
	u32 word;

621 622 623 624 625 626 627 628 629 630 631
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
632
	word = 0;
633 634 635
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

636
	word = 0;
637
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
638 639 640 641
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
642
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
643 644 645 646
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

647
	word = 0;
648
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
649
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
650 651
	rt2x00_desc_write(txd, 2, word);

652
	word = 0;
653 654 655 656
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
657 658 659 660 661 662

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
663 664 665 666 667 668 669 670 671 672
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
673 674 675 676 677
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
678 679
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

680 681 682 683 684
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
685
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
686

687
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
688 689 690 691 692 693 694 695
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

696 697 698 699 700 701
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

702 703 704 705 706 707
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

708
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
709 710
		rxdesc->dev_flags |= RXDONE_MY_BSS;

711
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
712 713 714
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
715
	 * Process the RXWI structure that is at the start of the buffer.
716
	 */
717
	rt2800_process_rxwi(entry, rxdesc);
718 719 720 721 722
}

/*
 * Interrupt functions.
 */
723 724 725 726 727 728 729 730
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

731
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
732 733 734 735 736
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;
737
	int max_tx_done = 16;
738

739
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
740
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
741
		if (unlikely(qid >= QID_RX)) {
742 743 744 745 746
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
747
					   "unexpected pid %u, dropping\n", qid);
748 749 750
			break;
		}

751
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
752 753 754 755 756 757
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
758
					   "queue %u, dropping\n", qid);
759 760 761
			break;
		}

762
		if (unlikely(rt2x00queue_empty(queue))) {
763 764 765 766 767
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
768
					   "queue %u, dropping\n", qid);
769 770 771 772
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
773
		rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
774 775 776

		if (--max_tx_done == 0)
			break;
777
	}
778 779

	return !max_tx_done;
780 781
}

782 783
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
784
{
785
	u32 reg;
786 787

	/*
788 789
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
790
	 */
791
	spin_lock_irq(&rt2x00dev->irqmask_lock);
792
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
793
	rt2x00_set_field32(&reg, irq_field, 1);
794
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
795
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
796
}
797

798 799
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
800 801 802
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
803 804

	/*
805 806 807
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
808
	 */
809
}
810

811 812 813 814
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
815 816
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
817
}
818

819 820 821
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
822 823 824
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u32 reg;

825
	rt2x00lib_beacondone(rt2x00dev);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

	if (rt2x00dev->intf_ap_count) {
		/*
		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
		 * causing beacon skew and as a result causing problems with
		 * some powersaving clients over time. Shorten the beacon
		 * interval every 64 beacons by 64us to mitigate this effect.
		 */
		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16) - 1);
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16));
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		}
		drv_data->tbtt_tick++;
		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
	}

849 850
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
851
}
852

853 854 855
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
856 857
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
858
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
859
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
860 861 862 863 864 865
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
866 867
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
868 869
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
888
	 * can also be read while the tx status tasklet gets executed.
889 890 891 892
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
893
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
894
		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
895 896 897 898

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

899
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
900 901 902 903 904 905 906 907 908 909
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

910 911 912
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
913
	u32 reg, mask;
914 915

	/* Read status and ACK all interrupts */
916 917
	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
918 919 920 921 922 923 924

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

925 926 927 928 929 930
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
931

932 933
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
934
		/*
935
		 * Never disable the TX_FIFO_STATUS interrupt.
936
		 */
937 938
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
939

940 941
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
942

943 944
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
945

946 947
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
948

949 950 951 952 953 954 955
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
956
	spin_lock(&rt2x00dev->irqmask_lock);
957
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
958
	reg &= mask;
959
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
960
	spin_unlock(&rt2x00dev->irqmask_lock);
961 962

	return IRQ_HANDLED;
963 964
}

965 966 967
/*
 * Device probe functions.
 */
968 969 970 971 972
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
973
	if (rt2x00_is_soc(rt2x00dev))
974
		rt2800pci_read_eeprom_soc(rt2x00dev);
975 976 977 978
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
979 980 981 982

	return rt2800_validate_eeprom(rt2x00dev);
}

983 984 985
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;
986
	u32 reg;
987 988 989 990 991 992 993 994

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

995
	retval = rt2800_init_eeprom(rt2x00dev);
996 997 998
	if (retval)
		return retval;

999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * Enable rfkill polling by setting GPIO direction of the
	 * rfkill switch GPIO pin correctly.
	 */
	rt2x00pci_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
	rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT2, 1);
	rt2x00pci_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);

1007 1008 1009
	/*
	 * Initialize hw specifications.
	 */
1010
	retval = rt2800_probe_hw_mode(rt2x00dev);
1011 1012 1013 1014 1015 1016 1017
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
I
Ivo van Doorn 已提交
1018 1019
	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1020

1021 1022 1023 1024
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
I
Ivo van Doorn 已提交
1025
	__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1026

1027 1028 1029
	/*
	 * This device requires firmware.
	 */
1030
	if (!rt2x00_is_soc(rt2x00dev))
I
Ivo van Doorn 已提交
1031 1032 1033 1034 1035
		__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1036
	if (!modparam_nohwcrypt)
I
Ivo van Doorn 已提交
1037 1038 1039
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1040 1041 1042 1043 1044 1045 1046 1047 1048

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
1063 1064
	.sta_add		= rt2x00mac_sta_add,
	.sta_remove		= rt2x00mac_sta_remove,
1065 1066 1067 1068 1069
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1070
	.flush			= rt2x00mac_flush,
1071
	.get_survey		= rt2800_get_survey,
1072
	.get_ringparam		= rt2x00mac_get_ringparam,
1073
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1074 1075
};

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1086
	.drv_get_txwi		= rt2800pci_get_txwi,
1087 1088
};

1089 1090
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1091 1092 1093 1094 1095
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1096 1097
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
1098 1099
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1100 1101 1102 1103 1104
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1105 1106 1107 1108
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1109
	.gain_calibration	= rt2800_gain_calibration,
J
John Li 已提交
1110
	.vco_calibration	= rt2800_vco_calibration,
1111 1112 1113
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1114
	.flush_queue		= rt2x00pci_flush_queue,
1115
	.write_tx_desc		= rt2800pci_write_tx_desc,
1116
	.write_tx_data		= rt2800_write_tx_data,
1117
	.write_beacon		= rt2800_write_beacon,
1118
	.clear_beacon		= rt2800_clear_beacon,
1119
	.fill_rxdone		= rt2800pci_fill_rxdone,
1120 1121 1122 1123 1124 1125 1126
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1127 1128
	.sta_add		= rt2800_sta_add,
	.sta_remove		= rt2800_sta_remove,
1129 1130 1131
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1132
	.entry_num		= 128,
1133 1134 1135 1136 1137 1138
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1139
	.entry_num		= 64,
1140 1141 1142 1143 1144 1145
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1146
	.entry_num		= 8,
1147 1148 1149 1150 1151 1152
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1153
	.name			= KBUILD_MODNAME,
1154
	.drv_data_size		= sizeof(struct rt2800_drv_data),
G
Gertjan van Wingerde 已提交
1155 1156 1157 1158 1159
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1160
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1161 1162 1163 1164
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1165
	.drv			= &rt2800pci_rt2800_ops,
1166
	.hw			= &rt2800pci_mac80211_ops,
1167
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1168
	.debugfs		= &rt2800_rt2x00debug,
1169 1170 1171 1172 1173 1174
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1175
#ifdef CONFIG_PCI
1176
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
W
Woody Hung 已提交
1193 1194 1195
#ifdef CONFIG_RT2800PCI_RT3290
	{ PCI_DEVICE(0x1814, 0x3290) },
#endif
1196
#ifdef CONFIG_RT2800PCI_RT33XX
1197
	{ PCI_DEVICE(0x1814, 0x3390) },
1198
#endif
1199
#ifdef CONFIG_RT2800PCI_RT35XX
1200 1201 1202 1203 1204 1205 1206
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1207 1208
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1209
	{ PCI_DEVICE(0x1814, 0x5360) },
1210
	{ PCI_DEVICE(0x1814, 0x5362) },
1211
	{ PCI_DEVICE(0x1814, 0x5390) },
1212
	{ PCI_DEVICE(0x1814, 0x5392) },
Z
zero.lin 已提交
1213
	{ PCI_DEVICE(0x1814, 0x539a) },
Z
Zero.Lin 已提交
1214
	{ PCI_DEVICE(0x1814, 0x539b) },
1215
	{ PCI_DEVICE(0x1814, 0x539f) },
1216
#endif
1217 1218
	{ 0, }
};
1219
#endif /* CONFIG_PCI */
1220 1221 1222 1223 1224

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1225
#ifdef CONFIG_PCI
1226 1227
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1228
#endif /* CONFIG_PCI */
1229 1230
MODULE_LICENSE("GPL");

1231
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1232 1233
static int rt2800soc_probe(struct platform_device *pdev)
{
1234
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1235
}
1236 1237 1238 1239 1240 1241 1242

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1243
	.probe		= rt2800soc_probe,
1244 1245 1246 1247
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1248
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1249

1250
#ifdef CONFIG_PCI
1251 1252 1253 1254 1255 1256
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1257 1258 1259
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1260
	.probe		= rt2800pci_probe,
1261 1262 1263 1264
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1265
#endif /* CONFIG_PCI */
1266 1267 1268 1269 1270

static int __init rt2800pci_init(void)
{
	int ret = 0;

1271
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1272 1273 1274 1275
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1276
#ifdef CONFIG_PCI
1277 1278
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1279
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1291
#ifdef CONFIG_PCI
1292 1293
	pci_unregister_driver(&rt2800pci_driver);
#endif
1294
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1295 1296 1297 1298 1299 1300
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);