rt2800pci.c 36.2 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static int modparam_nohwcrypt = 0;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 89
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
90
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 92

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 94

	iounmap(base_addr);
95 96 97 98 99
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
100
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101

102
#ifdef CONFIG_PCI
103 104 105 106 107
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

108
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

130
	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 132 133 134 135 136 137
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

138
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 140 141 142

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
143 144 145 146 147 148 149 150 151 152 153 154
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
155 156 157 158 159 160 161 162 163
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

164 165
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
166
	return rt2800_efuse_detect(rt2x00dev);
167 168
}

169
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170
{
171
	rt2800_read_eeprom_efuse(rt2x00dev);
172 173 174 175 176 177
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

178 179 180 181 182
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

183 184 185
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
186
#endif /* CONFIG_PCI */
187

188 189 190 191 192 193 194 195 196 197
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
198
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 202
		break;
	case QID_BEACON:
203
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 205 206
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208

209
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 213 214
		break;
	default:
		break;
215
	}
216 217 218 219 220 221 222 223
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
224 225
	case QID_AC_VO:
	case QID_AC_VI:
226 227 228
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 230
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					 entry->entry_idx);
231 232 233
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 235
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
					 entry->entry_idx);
236 237 238 239 240 241 242 243 244 245 246 247 248
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
249
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 253
		break;
	case QID_BEACON:
254
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 256 257
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259

260
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263 264

		/*
265 266 267
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
268
		 */
269 270 271
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

272 273 274 275 276 277
		break;
	default:
		break;
	}
}

278 279 280 281 282 283 284 285
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

286
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287 288 289 290 291 292 293 294 295
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297 298 299 300

	/*
	 * Write firmware to device.
	 */
301 302
	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);
303

304 305
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306

307 308
	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337 338 339 340 341 342 343 344 345 346
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
347 348 349 350 351

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
352
		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353
				      entry->entry_idx);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
370 371 372 373 374
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
				 rt2x00dev->tx[0].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
375 376

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
377 378 379 380 381
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
				 rt2x00dev->tx[1].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382 383

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384 385 386 387 388
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
				 rt2x00dev->tx[2].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
389 390

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
391 392 393 394 395
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
				 rt2x00dev->tx[3].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
396 397

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
398 399 400 401 402 403
	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
				 rt2x00dev->rx[0].limit);
	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
				 rt2x00dev->rx[0].limit - 1);
	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
404 405 406 407

	/*
	 * Enable global DMA configuration
	 */
408
	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
409 410 411
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
412
	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
413

414
	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
415 416 417 418 419 420 421 422 423 424

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
425
	int mask = (state == STATE_RADIO_IRQ_ON);
426
	u32 reg;
427
	unsigned long flags;
428 429 430 431 432 433

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
434 435
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
436
	}
437

438
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
439
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
440 441
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
442
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
443 444 445 446 447 448 449 450
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
451 452 453 454
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
455 456 457
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
458
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
459 460 461 462
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
463
		 * Wait for possibly running tasklets to finish.
464
		 */
465 466 467 468 469
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
470
	}
471 472
}

473 474 475 476 477 478 479
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
480
	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
481 482 483 484 485 486 487
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
488
	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
489

490 491
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
492

493 494 495
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
	     rt2x00_rt(rt2x00dev, RT5390))) {
496
		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
497 498
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
499
		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
500
	}
501

502
	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
503

504
	rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
505 506
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
507
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
508

509
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
510 511 512 513

	return 0;
}

514 515
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
516
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
517
		     rt2800pci_init_queues(rt2x00dev)))
518 519
		return -EIO;

520
	return rt2800_enable_radio(rt2x00dev);
521 522 523 524
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
525 526
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
527 528
		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
529
	}
530 531 532 533 534 535
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
536
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
537
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
538
	} else if (state == STATE_SLEEP) {
539 540 541 542
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					 0xffffffff);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
					 0xffffffff);
543
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
598
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
599
{
600
	return (__le32 *) entry->skb->data;
601 602
}

603
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
604 605
				    struct txentry_desc *txdesc)
{
606 607
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
608
	__le32 *txd = entry_priv->desc;
609 610
	u32 word;

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
627
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
628 629 630 631
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
632
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
633 634 635 636 637 638
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
639
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
640 641 642 643 644 645 646
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
647 648 649 650 651 652

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
653 654 655 656 657 658 659 660 661 662
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
663 664 665 666 667
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
668 669
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

670 671 672 673 674
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
675
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
676

677
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
678 679 680 681 682 683 684 685
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

686 687 688 689 690 691
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

692 693 694 695 696 697
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

698
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
699 700
		rxdesc->dev_flags |= RXDONE_MY_BSS;

701
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
702 703 704
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
705
	 * Process the RXWI structure that is at the start of the buffer.
706
	 */
707
	rt2800_process_rxwi(entry, rxdesc);
708 709 710 711 712
}

/*
 * Interrupt functions.
 */
713 714 715 716 717 718 719 720
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

721
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
722 723 724 725 726
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;
727
	int max_tx_done = 16;
728

729
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
730
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
731
		if (unlikely(qid >= QID_RX)) {
732 733 734 735 736
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
737
					   "unexpected pid %u, dropping\n", qid);
738 739 740
			break;
		}

741
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
742 743 744 745 746 747
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
748
					   "queue %u, dropping\n", qid);
749 750 751
			break;
		}

752
		if (unlikely(rt2x00queue_empty(queue))) {
753 754 755 756 757
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
758
					   "queue %u, dropping\n", qid);
759 760 761 762 763
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		rt2800_txdone_entry(entry, status);
764 765 766

		if (--max_tx_done == 0)
			break;
767
	}
768 769

	return !max_tx_done;
770 771
}

772 773
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
774
{
775
	u32 reg;
776 777

	/*
778 779
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
780
	 */
781
	spin_lock_irq(&rt2x00dev->irqmask_lock);
782
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
783
	rt2x00_set_field32(&reg, irq_field, 1);
784
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
785
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
786
}
787

788 789
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
790 791 792
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
793 794

	/*
795 796 797
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
798
	 */
799
}
800

801 802 803 804
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
805 806
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
807
}
808

809 810 811 812
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_beacondone(rt2x00dev);
813 814
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
815
}
816

817 818 819
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
820 821
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
822
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
823
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
824 825 826 827 828 829
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
830 831
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
852
	 * can also be read while the tx status tasklet gets executed.
853 854 855 856
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
857
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
858
		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
859 860 861 862

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

863
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
864 865 866 867 868 869 870 871 872 873
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

874 875 876
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
877
	u32 reg, mask;
878 879

	/* Read status and ACK all interrupts */
880 881
	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
882 883 884 885 886 887 888

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

889 890 891 892 893 894
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
895

896 897
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
898
		/*
899
		 * Never disable the TX_FIFO_STATUS interrupt.
900
		 */
901 902
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
903

904 905
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
906

907 908
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
909

910 911
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
912

913 914 915 916 917 918 919
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
920
	spin_lock(&rt2x00dev->irqmask_lock);
921
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
922
	reg &= mask;
923
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
924
	spin_unlock(&rt2x00dev->irqmask_lock);
925 926

	return IRQ_HANDLED;
927 928
}

929 930 931
/*
 * Device probe functions.
 */
932 933 934 935 936
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
937
	if (rt2x00_is_soc(rt2x00dev))
938
		rt2800pci_read_eeprom_soc(rt2x00dev);
939 940 941 942
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
943 944 945 946

	return rt2800_validate_eeprom(rt2x00dev);
}

947 948 949 950 951 952 953 954 955 956 957
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

958
	retval = rt2800_init_eeprom(rt2x00dev);
959 960 961 962 963 964
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
965
	retval = rt2800_probe_hw_mode(rt2x00dev);
966 967 968 969 970 971 972
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
I
Ivo van Doorn 已提交
973 974
	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
975

976 977 978 979
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
I
Ivo van Doorn 已提交
980
	__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
981

982 983 984
	/*
	 * This device requires firmware.
	 */
985
	if (!rt2x00_is_soc(rt2x00dev))
I
Ivo van Doorn 已提交
986 987 988 989 990
		__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
991
	if (!modparam_nohwcrypt)
I
Ivo van Doorn 已提交
992 993 994
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
995 996 997 998 999 1000 1001 1002 1003

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1023
	.flush			= rt2x00mac_flush,
1024
	.get_survey		= rt2800_get_survey,
1025
	.get_ringparam		= rt2x00mac_get_ringparam,
1026
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1027 1028
};

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1039
	.drv_get_txwi		= rt2800pci_get_txwi,
1040 1041
};

1042 1043
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1044 1045 1046 1047 1048
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1049 1050
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
1051 1052
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1053 1054 1055 1056 1057
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1058 1059 1060 1061
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1062
	.gain_calibration	= rt2800_gain_calibration,
1063 1064 1065
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1066
	.flush_queue		= rt2x00pci_flush_queue,
1067
	.write_tx_desc		= rt2800pci_write_tx_desc,
1068
	.write_tx_data		= rt2800_write_tx_data,
1069
	.write_beacon		= rt2800_write_beacon,
1070
	.clear_beacon		= rt2800_clear_beacon,
1071
	.fill_rxdone		= rt2800pci_fill_rxdone,
1072 1073 1074 1075 1076 1077 1078
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1079 1080 1081
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1082
	.entry_num		= 128,
1083 1084 1085 1086 1087 1088
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1089
	.entry_num		= 64,
1090 1091 1092 1093 1094 1095
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1096
	.entry_num		= 8,
1097 1098 1099 1100 1101 1102
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1103 1104 1105 1106 1107 1108
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1109
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1110 1111 1112 1113
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1114
	.drv			= &rt2800pci_rt2800_ops,
1115
	.hw			= &rt2800pci_mac80211_ops,
1116
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1117
	.debugfs		= &rt2800_rt2x00debug,
1118 1119 1120 1121 1122 1123
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1124
#ifdef CONFIG_PCI
1125
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
1142
#ifdef CONFIG_RT2800PCI_RT33XX
1143
	{ PCI_DEVICE(0x1814, 0x3390) },
1144
#endif
1145
#ifdef CONFIG_RT2800PCI_RT35XX
1146 1147 1148 1149 1150 1151 1152
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1153 1154
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1155
	{ PCI_DEVICE(0x1814, 0x5390) },
Z
zero.lin 已提交
1156
	{ PCI_DEVICE(0x1814, 0x539a) },
1157
	{ PCI_DEVICE(0x1814, 0x539f) },
1158
#endif
1159 1160
	{ 0, }
};
1161
#endif /* CONFIG_PCI */
1162 1163 1164 1165 1166

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1167
#ifdef CONFIG_PCI
1168 1169
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1170
#endif /* CONFIG_PCI */
1171 1172
MODULE_LICENSE("GPL");

1173
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1174 1175
static int rt2800soc_probe(struct platform_device *pdev)
{
1176
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1177
}
1178 1179 1180 1181 1182 1183 1184

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1185
	.probe		= rt2800soc_probe,
1186 1187 1188 1189
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1190
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1191

1192
#ifdef CONFIG_PCI
1193 1194 1195 1196 1197 1198
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1199 1200 1201
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1202
	.probe		= rt2800pci_probe,
1203 1204 1205 1206
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1207
#endif /* CONFIG_PCI */
1208 1209 1210 1211 1212

static int __init rt2800pci_init(void)
{
	int ret = 0;

1213
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1214 1215 1216 1217
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1218
#ifdef CONFIG_PCI
1219 1220
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1221
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1233
#ifdef CONFIG_PCI
1234 1235
	pci_unregister_driver(&rt2800pci_driver);
#endif
1236
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1237 1238 1239 1240 1241 1242
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);