slab_common.c 43.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
13
#include <linux/cache.h>
14 15
#include <linux/compiler.h>
#include <linux/module.h>
16 17
#include <linux/cpu.h>
#include <linux/uaccess.h>
18 19
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
20
#include <linux/debugfs.h>
21 22 23
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
24
#include <linux/memcontrol.h>
25 26

#define CREATE_TRACE_POINTS
27
#include <trace/events/kmem.h>
28

29 30 31
#include "slab.h"

enum slab_state slab_state;
32 33
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
34
struct kmem_cache *kmem_cache;
35

36 37 38 39 40 41 42 43
#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

44 45 46 47 48
static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

49 50 51 52
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
A
Alexander Potapenko 已提交
54
		SLAB_FAILSLAB | SLAB_KASAN)
55

V
Vladimir Davydov 已提交
56
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
58 59 60 61

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
62
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63 64 65

static int __init setup_slab_nomerge(char *str)
{
66
	slab_nomerge = true;
67 68 69 70 71 72 73 74 75
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

76 77 78 79 80 81 82 83 84
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

85
#ifdef CONFIG_DEBUG_VM
86
static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 88 89
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
90 91
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
92
	}
93

94
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
95 96 97
	return 0;
}
#else
98
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99 100 101
{
	return 0;
}
102 103
#endif

104 105 106 107
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

108 109 110 111 112 113
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
114 115
}

116
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 118 119 120 121 122 123 124
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
125
			return 0;
126 127
		}
	}
128
	return i;
129 130
}

131
#ifdef CONFIG_MEMCG_KMEM
132 133

LIST_HEAD(slab_root_caches);
134
static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
135

136 137
static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);

138
void slab_init_memcg_params(struct kmem_cache *s)
139
{
T
Tejun Heo 已提交
140
	s->memcg_params.root_cache = NULL;
141
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
T
Tejun Heo 已提交
142
	INIT_LIST_HEAD(&s->memcg_params.children);
143
	s->memcg_params.dying = false;
144 145 146
}

static int init_memcg_params(struct kmem_cache *s,
147
			     struct kmem_cache *root_cache)
148 149
{
	struct memcg_cache_array *arr;
150

T
Tejun Heo 已提交
151
	if (root_cache) {
152 153 154 155 156 157
		int ret = percpu_ref_init(&s->memcg_params.refcnt,
					  kmemcg_cache_shutdown,
					  0, GFP_KERNEL);
		if (ret)
			return ret;

158
		s->memcg_params.root_cache = root_cache;
T
Tejun Heo 已提交
159
		INIT_LIST_HEAD(&s->memcg_params.children_node);
160
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161
		return 0;
162
	}
163

164
	slab_init_memcg_params(s);
165

166 167
	if (!memcg_nr_cache_ids)
		return 0;
168

169 170 171
	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
172 173
	if (!arr)
		return -ENOMEM;
174

175
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 177 178
	return 0;
}

179
static void destroy_memcg_params(struct kmem_cache *s)
180
{
181
	if (is_root_cache(s))
182
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 184
	else
		percpu_ref_exit(&s->memcg_params.refcnt);
185 186 187 188 189 190 191 192
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
193 194
}

195
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
196
{
197
	struct memcg_cache_array *old, *new;
198

199 200
	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
201
	if (!new)
202 203
		return -ENOMEM;

204 205 206 207 208
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
209

210 211
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
212
		call_rcu(&old->rcu, free_memcg_params);
213 214 215
	return 0;
}

216 217 218 219 220
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

221
	mutex_lock(&slab_mutex);
222
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
223
		ret = update_memcg_params(s, num_memcgs);
224 225 226 227 228
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
229
			break;
230 231 232 233
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
234

235
void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
236
{
237 238 239
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
240
		css_get(&memcg->css);
241
		s->memcg_params.memcg = memcg;
242 243 244 245 246 247 248 249 250 251 252 253 254 255
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
256 257
		mem_cgroup_put(s->memcg_params.memcg);
		WRITE_ONCE(s->memcg_params.memcg, NULL);
258
	}
259
}
260
#else
261
static inline int init_memcg_params(struct kmem_cache *s,
262
				    struct kmem_cache *root_cache)
263 264 265 266
{
	return 0;
}

267
static inline void destroy_memcg_params(struct kmem_cache *s)
268 269
{
}
270

271
static inline void memcg_unlink_cache(struct kmem_cache *s)
272 273
{
}
274
#endif /* CONFIG_MEMCG_KMEM */
275

276 277 278 279
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
280 281
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
282 283 284 285 286 287 288 289 290
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
291
		unsigned int ralign;
292 293 294 295 296 297 298 299 300 301 302 303 304

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

319 320 321
	if (s->usersize)
		return 1;

322 323 324 325 326 327 328 329 330
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

331
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
332
		slab_flags_t flags, const char *name, void (*ctor)(void *))
333 334 335
{
	struct kmem_cache *s;

336
	if (slab_nomerge)
337 338 339 340 341 342 343 344 345 346
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

347 348 349
	if (flags & SLAB_NEVER_MERGE)
		return NULL;

350
	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

369 370 371 372
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

373 374 375 376 377
		return s;
	}
	return NULL;
}

378
static struct kmem_cache *create_cache(const char *name,
379
		unsigned int object_size, unsigned int align,
380 381
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
382
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
383 384 385 386
{
	struct kmem_cache *s;
	int err;

387 388 389
	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

390 391 392 393 394 395
	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
396
	s->size = s->object_size = object_size;
397 398
	s->align = align;
	s->ctor = ctor;
399 400
	s->useroffset = useroffset;
	s->usersize = usersize;
401

402
	err = init_memcg_params(s, root_cache);
403 404 405 406 407 408 409 410 411
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
412
	memcg_link_cache(s, memcg);
413 414 415 416 417 418
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
419
	destroy_memcg_params(s);
420
	kmem_cache_free(kmem_cache, s);
421 422
	goto out;
}
423

424 425 426
/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
427 428 429 430
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
431 432
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
433 434 435 436 437 438 439 440 441 442
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
443
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
444 445 446 447 448
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
449 450
 *
 * Return: a pointer to the cache on success, NULL on failure.
451
 */
452
struct kmem_cache *
453 454
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
455 456
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
457
		  void (*ctor)(void *))
458
{
459
	struct kmem_cache *s = NULL;
460
	const char *cache_name;
461
	int err;
462

463
	get_online_cpus();
464
	get_online_mems();
465
	memcg_get_cache_ids();
466

467
	mutex_lock(&slab_mutex);
468

469
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
470
	if (err) {
471
		goto out_unlock;
A
Andrew Morton 已提交
472
	}
473

474 475 476 477 478 479
	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

480 481 482 483 484 485 486
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
487

488 489 490 491 492 493 494
	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
495
	if (s)
496
		goto out_unlock;
497

498
	cache_name = kstrdup_const(name, GFP_KERNEL);
499 500 501 502
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
503

504
	s = create_cache(cache_name, size,
505
			 calculate_alignment(flags, align, size),
506
			 flags, useroffset, usersize, ctor, NULL, NULL);
507 508
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
509
		kfree_const(cache_name);
510
	}
511 512

out_unlock:
513
	mutex_unlock(&slab_mutex);
514

515
	memcg_put_cache_ids();
516
	put_online_mems();
517 518
	put_online_cpus();

519
	if (err) {
520 521 522 523
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
524
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
525 526 527 528 529
				name, err);
			dump_stack();
		}
		return NULL;
	}
530 531
	return s;
}
532 533
EXPORT_SYMBOL(kmem_cache_create_usercopy);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
559
struct kmem_cache *
560
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
561 562
		slab_flags_t flags, void (*ctor)(void *))
{
563
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
564 565
					  ctor);
}
566
EXPORT_SYMBOL(kmem_cache_create);
567

568
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
569
{
570 571
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;
572

573
	/*
574
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
575 576 577 578 579 580 581 582 583 584
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);
585

586 587 588 589 590 591 592 593 594 595 596 597
	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
598 599
}

600
static int shutdown_cache(struct kmem_cache *s)
601
{
602 603 604
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

605 606
	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;
607

608
	memcg_unlink_cache(s);
609
	list_del(&s->list);
610

611
	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
612 613 614
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
615 616 617
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
618
#ifdef SLAB_SUPPORTS_SYSFS
619
		sysfs_slab_unlink(s);
620
		sysfs_slab_release(s);
621 622 623 624
#else
		slab_kmem_cache_release(s);
#endif
	}
625 626

	return 0;
627 628
}

629
#ifdef CONFIG_MEMCG_KMEM
630
/*
631
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
632 633 634 635 636 637 638
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
639 640
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
641
{
642
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
643
	struct cgroup_subsys_state *css = &memcg->css;
644
	struct memcg_cache_array *arr;
645
	struct kmem_cache *s = NULL;
646
	char *cache_name;
647
	int idx;
648 649

	get_online_cpus();
650 651
	get_online_mems();

652 653
	mutex_lock(&slab_mutex);

654
	/*
655
	 * The memory cgroup could have been offlined while the cache
656 657
	 * creation work was pending.
	 */
658
	if (memcg->kmem_state != KMEM_ONLINE)
659 660
		goto out_unlock;

661 662 663 664
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

665 666 667 668 669
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
670
	if (arr->entries[idx])
671 672
		goto out_unlock;

673
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
674 675
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
676 677 678
	if (!cache_name)
		goto out_unlock;

679
	s = create_cache(cache_name, root_cache->object_size,
680
			 root_cache->align,
681
			 root_cache->flags & CACHE_CREATE_MASK,
682
			 root_cache->useroffset, root_cache->usersize,
683
			 root_cache->ctor, memcg, root_cache);
684 685 686 687 688
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
689
	if (IS_ERR(s)) {
690
		kfree(cache_name);
691
		goto out_unlock;
692
	}
693

694
	/*
695
	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
696 697 698 699
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
700
	arr->entries[idx] = s;
701

702 703
out_unlock:
	mutex_unlock(&slab_mutex);
704 705

	put_online_mems();
706
	put_online_cpus();
707
}
708

709
static void kmemcg_workfn(struct work_struct *work)
710 711
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
712
					    memcg_params.work);
713 714 715 716 717

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
718
	s->memcg_params.work_fn(s);
719 720 721 722 723 724
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}

725
static void kmemcg_rcufn(struct rcu_head *head)
726 727
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
728
					    memcg_params.rcu_head);
729 730

	/*
731
	 * We need to grab blocking locks.  Bounce to ->work.  The
732 733 734
	 * work item shares the space with the RCU head and can't be
	 * initialized eariler.
	 */
735 736
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
737 738
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
{
	WARN_ON(shutdown_cache(s));
}

static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
{
	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
					    memcg_params.refcnt);
	unsigned long flags;

	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
	if (s->memcg_params.root_cache->memcg_params.dying)
		goto unlock;

	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);

unlock:
	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
}

static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
{
	__kmemcg_cache_deactivate_after_rcu(s);
	percpu_ref_kill(&s->memcg_params.refcnt);
}

768
static void kmemcg_cache_deactivate(struct kmem_cache *s)
769
{
770
	if (WARN_ON_ONCE(is_root_cache(s)))
771 772
		return;

773
	__kmemcg_cache_deactivate(s);
774
	s->flags |= SLAB_DEACTIVATED;
775

776 777 778 779 780 781
	/*
	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
	 * flag and make sure that no new kmem_cache deactivation tasks
	 * are queued (see flush_memcg_workqueue() ).
	 */
	spin_lock_irq(&memcg_kmem_wq_lock);
782
	if (s->memcg_params.root_cache->memcg_params.dying)
783
		goto unlock;
784

785
	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
786
	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
787 788
unlock:
	spin_unlock_irq(&memcg_kmem_wq_lock);
789 790
}

791 792
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
793 794 795
{
	int idx;
	struct memcg_cache_array *arr;
796
	struct kmem_cache *s, *c;
797
	unsigned int nr_reparented;
798 799 800

	idx = memcg_cache_id(memcg);

801 802 803
	get_online_cpus();
	get_online_mems();

804
	mutex_lock(&slab_mutex);
805
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
806 807
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
808 809 810 811
		c = arr->entries[idx];
		if (!c)
			continue;

812
		kmemcg_cache_deactivate(c);
813 814
		arr->entries[idx] = NULL;
	}
815 816 817 818 819 820 821 822 823 824 825 826
	nr_reparented = 0;
	list_for_each_entry(s, &memcg->kmem_caches,
			    memcg_params.kmem_caches_node) {
		WRITE_ONCE(s->memcg_params.memcg, parent);
		css_put(&memcg->css);
		nr_reparented++;
	}
	if (nr_reparented) {
		list_splice_init(&memcg->kmem_caches,
				 &parent->kmem_caches);
		css_get_many(&parent->css, nr_reparented);
	}
827
	mutex_unlock(&slab_mutex);
828 829 830

	put_online_mems();
	put_online_cpus();
831 832
}

833
static int shutdown_memcg_caches(struct kmem_cache *s)
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
852
		if (shutdown_cache(c))
853 854 855 856 857
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
T
Tejun Heo 已提交
858
			list_move(&c->memcg_params.children_node, &busy);
859 860 861 862 863 864 865 866 867 868 869 870 871 872
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
T
Tejun Heo 已提交
873 874
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
875
		shutdown_cache(c);
876

T
Tejun Heo 已提交
877
	list_splice(&busy, &s->memcg_params.children);
878 879 880 881 882

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
T
Tejun Heo 已提交
883
	if (!list_empty(&s->memcg_params.children))
884 885 886
		return -EBUSY;
	return 0;
}
887 888 889

static void flush_memcg_workqueue(struct kmem_cache *s)
{
890
	spin_lock_irq(&memcg_kmem_wq_lock);
891
	s->memcg_params.dying = true;
892
	spin_unlock_irq(&memcg_kmem_wq_lock);
893 894

	/*
895
	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
896 897
	 * sure all registered rcu callbacks have been invoked.
	 */
898
	rcu_barrier();
899 900 901 902 903 904 905 906

	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
	flush_workqueue(memcg_kmem_cache_wq);
}
907
#else
908
static inline int shutdown_memcg_caches(struct kmem_cache *s)
909 910 911
{
	return 0;
}
912 913 914 915

static inline void flush_memcg_workqueue(struct kmem_cache *s)
{
}
916
#endif /* CONFIG_MEMCG_KMEM */
917

918 919
void slab_kmem_cache_release(struct kmem_cache *s)
{
920
	__kmem_cache_release(s);
921
	destroy_memcg_params(s);
922
	kfree_const(s->name);
923 924 925
	kmem_cache_free(kmem_cache, s);
}

926 927
void kmem_cache_destroy(struct kmem_cache *s)
{
928
	int err;
929

930 931 932
	if (unlikely(!s))
		return;

933 934
	flush_memcg_workqueue(s);

935
	get_online_cpus();
936 937
	get_online_mems();

938
	mutex_lock(&slab_mutex);
939

940
	s->refcount--;
941 942 943
	if (s->refcount)
		goto out_unlock;

944
	err = shutdown_memcg_caches(s);
945
	if (!err)
946
		err = shutdown_cache(s);
947

948
	if (err) {
J
Joe Perches 已提交
949 950
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
951 952
		dump_stack();
	}
953 954
out_unlock:
	mutex_unlock(&slab_mutex);
955

956
	put_online_mems();
957 958 959 960
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

961 962 963 964 965 966
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
967 968
 *
 * Return: %0 if all slabs were released, non-zero otherwise
969 970 971 972 973 974 975
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
976
	kasan_cache_shrink(cachep);
977
	ret = __kmem_cache_shrink(cachep);
978 979 980 981 982 983
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

984
bool slab_is_available(void)
985 986 987
{
	return slab_state >= UP;
}
988

989 990
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
991 992 993
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
994 995 996 997 998
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
999
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
1000 1001
	s->useroffset = useroffset;
	s->usersize = usersize;
1002 1003 1004

	slab_init_memcg_params(s);

1005 1006 1007
	err = __kmem_cache_create(s, flags);

	if (err)
1008
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1009 1010 1011 1012 1013
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

1014 1015 1016
struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
1017 1018 1019 1020 1021 1022
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

1023
	create_boot_cache(s, name, size, flags, useroffset, usersize);
1024
	list_add(&s->list, &slab_caches);
1025
	memcg_link_cache(s, NULL);
1026 1027 1028 1029
	s->refcount = 1;
	return s;
}

1030
struct kmem_cache *
1031 1032
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1033 1034
EXPORT_SYMBOL(kmalloc_caches);

1035 1036 1037 1038 1039 1040
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
1041
static u8 size_index[24] __ro_after_init = {
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

1068
static inline unsigned int size_index_elem(unsigned int bytes)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
1079
	unsigned int index;
1080 1081 1082 1083 1084 1085

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
1086
	} else {
1087
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1088
			return NULL;
1089
		index = fls(size - 1);
1090
	}
1091

1092
	return kmalloc_caches[kmalloc_type(flags)][index];
1093 1094
}

1095 1096 1097 1098 1099
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
1100
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1101 1102 1103 1104 1105
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1106 1107 1108 1109 1110 1111 1112 1113 1114
	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
	{"kmalloc-64M",      67108864}
1115 1116
};

1117
/*
1118 1119 1120 1121 1122 1123 1124 1125 1126
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
1127
 */
1128
void __init setup_kmalloc_cache_index_table(void)
1129
{
1130
	unsigned int i;
1131

1132 1133 1134 1135
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1136
		unsigned int elem = size_index_elem(i);
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static const char *
kmalloc_cache_name(const char *prefix, unsigned int size)
{

	static const char units[3] = "\0kM";
	int idx = 0;

	while (size >= 1024 && (size % 1024 == 0)) {
		size /= 1024;
		idx++;
	}

	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
}

1179 1180
static void __init
new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1181
{
1182 1183 1184 1185
	const char *name;

	if (type == KMALLOC_RECLAIM) {
		flags |= SLAB_RECLAIM_ACCOUNT;
1186
		name = kmalloc_cache_name("kmalloc-rcl",
1187 1188 1189 1190 1191 1192 1193
						kmalloc_info[idx].size);
		BUG_ON(!name);
	} else {
		name = kmalloc_info[idx].name;
	}

	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1194 1195
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
1196 1197
}

1198 1199 1200 1201 1202
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
1203
void __init create_kmalloc_caches(slab_flags_t flags)
1204
{
1205
	int i, type;
1206

1207 1208 1209 1210
	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
1224 1225
	}

1226 1227 1228 1229 1230
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1231
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1232 1233

		if (s) {
1234
			unsigned int size = kmalloc_size(i);
1235
			const char *n = kmalloc_cache_name("dma-kmalloc", size);
1236 1237

			BUG_ON(!n);
1238 1239
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
				n, size, SLAB_CACHE_DMA | flags, 0, 0);
1240 1241 1242 1243
		}
	}
#endif
}
1244 1245
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1246 1247 1248 1249 1250
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1251 1252 1253 1254 1255 1256
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
1257
	page = alloc_pages(flags, order);
V
Vladimir Davydov 已提交
1258
	ret = page ? page_address(page) : NULL;
1259
	ret = kasan_kmalloc_large(ret, size, flags);
1260
	/* As ret might get tagged, call kmemleak hook after KASAN. */
1261
	kmemleak_alloc(ret, size, 1, flags);
V
Vladimir Davydov 已提交
1262 1263 1264 1265
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1266 1267 1268 1269 1270 1271 1272 1273 1274
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1275

1276 1277 1278
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1279
			       unsigned int count)
1280 1281
{
	unsigned int rand;
1282
	unsigned int i;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

Y
Yang Shi 已提交
1323
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1324
#ifdef CONFIG_SLAB
1325
#define SLABINFO_RIGHTS (0600)
1326
#else
1327
#define SLABINFO_RIGHTS (0400)
1328 1329
#endif

1330
static void print_slabinfo_header(struct seq_file *m)
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1341
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1342 1343 1344
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1345
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1346 1347 1348 1349 1350
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1351
void *slab_start(struct seq_file *m, loff_t *pos)
1352 1353
{
	mutex_lock(&slab_mutex);
1354
	return seq_list_start(&slab_root_caches, *pos);
1355 1356
}

1357
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1358
{
1359
	return seq_list_next(p, &slab_root_caches, pos);
1360 1361
}

1362
void slab_stop(struct seq_file *m, void *p)
1363 1364 1365 1366
{
	mutex_unlock(&slab_mutex);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1376
	for_each_memcg_cache(c, s) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1388
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1389
{
1390 1391 1392 1393 1394
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1395 1396
	memcg_accumulate_slabinfo(s, &sinfo);

1397
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1398
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1399 1400 1401 1402 1403 1404 1405 1406
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1407 1408
}

1409
static int slab_show(struct seq_file *m, void *p)
1410
{
1411
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1412

1413
	if (p == slab_root_caches.next)
1414
		print_slabinfo_header(m);
1415
	cache_show(s, m);
1416 1417 1418
	return 0;
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

Y
Yang Shi 已提交
1453
#if defined(CONFIG_MEMCG)
1454 1455
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
1456
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1457 1458 1459 1460 1461 1462 1463

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
1464
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1465 1466 1467 1468 1469 1470 1471 1472 1473

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

1474 1475
int memcg_slab_show(struct seq_file *m, void *p)
{
1476 1477
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
1478
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1479

1480
	if (p == memcg->kmem_caches.next)
1481
		print_slabinfo_header(m);
1482
	cache_show(s, m);
1483
	return 0;
1484
}
1485
#endif
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1501
	.start = slab_start,
1502 1503
	.next = slab_next,
	.stop = slab_stop,
1504
	.show = slab_show,
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1522 1523
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1524 1525 1526
	return 0;
}
module_init(slab_proc_init);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
 * Display information about kmem caches that have child memcg caches.
 */
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
	struct kmem_cache *s, *c;
	struct slabinfo sinfo;

	mutex_lock(&slab_mutex);
	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
	seq_puts(m, " <active_slabs> <num_slabs>\n");
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		/*
		 * Skip kmem caches that don't have any memcg children.
		 */
		if (list_empty(&s->memcg_params.children))
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(s, &sinfo);
		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);

		for_each_memcg_cache(c, s) {
			struct cgroup_subsys_state *css;
			char *status = "";

			css = &c->memcg_params.memcg->css;
			if (!(css->flags & CSS_ONLINE))
				status = ":dead";
			else if (c->flags & SLAB_DEACTIVATED)
				status = ":deact";

			memset(&sinfo, 0, sizeof(sinfo));
			get_slabinfo(c, &sinfo);
			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
				   cache_name(c), css->id, status,
				   sinfo.active_objs, sinfo.num_objs,
				   sinfo.active_slabs, sinfo.num_slabs);
		}
	}
	mutex_unlock(&slab_mutex);
	return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);

static int __init memcg_slabinfo_init(void)
{
	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
			    NULL, NULL, &memcg_slabinfo_fops);
	return 0;
}

late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
Y
Yang Shi 已提交
1585
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1596
	if (ks >= new_size) {
1597
		p = kasan_krealloc((void *)p, new_size, flags);
1598
		return (void *)p;
1599
	}
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
1617 1618
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
1640 1641
 *
 * Return: pointer to the allocated memory or %NULL in case of error
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
1653
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	size_t size;

	if (WARN_ON_ONCE(!objp))
		return 0;
	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
		return 0;

	size = __ksize(objp);
1721 1722 1723 1724 1725 1726 1727 1728 1729
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

1730 1731 1732 1733 1734 1735 1736
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1737 1738 1739 1740 1741 1742 1743 1744

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);