hci_request.c 70.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31

#include "smp.h"
#include "hci_request.h"
32
#include "msft.h"
33
#include "eir.h"
34 35 36 37 38 39 40 41

void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

42 43 44 45 46
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

47 48 49 50 51
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

52 53
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
54 55 56 57 58
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

59
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
60 61 62 63 64 65 66 67 68 69 70 71 72 73

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
74 75 76 77 78 79
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
80 81 82 83 84 85 86 87 88 89

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

90 91 92 93 94 95 96 97 98 99
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

100 101
void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
			   struct sk_buff *skb)
102
{
103
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
104 105 106 107 108 109 110 111 112 113

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

114
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
115
{
116
	bt_dev_dbg(hdev, "err 0x%2.2x", err);
117 118 119 120 121 122 123 124 125

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

/* Execute request and wait for completion. */
126 127
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
128
		   unsigned long opt, u32 timeout, u8 *hci_status)
129 130 131 132
{
	struct hci_request req;
	int err = 0;

133
	bt_dev_dbg(hdev, "start");
134 135 136 137 138

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

139 140 141 142 143 144
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
145 146 147 148 149 150 151 152 153 154

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
155 156 157
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
158
			return 0;
159 160 161 162
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
163 164 165 166

		return err;
	}

167 168
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
169

170
	if (err == -ERESTARTSYS)
171 172 173 174 175
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
176 177
		if (hci_status)
			*hci_status = hdev->req_result;
178 179 180 181
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
182 183
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
184 185 186 187
		break;

	default:
		err = -ETIMEDOUT;
188 189
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
190 191 192
		break;
	}

193 194
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
195 196
	hdev->req_status = hdev->req_result = 0;

197
	bt_dev_dbg(hdev, "end: err %d", err);
198 199 200 201

	return err;
}

202 203
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
204
		 unsigned long opt, u32 timeout, u8 *hci_status)
205 206 207 208
{
	int ret;

	/* Serialize all requests */
209
	hci_req_sync_lock(hdev);
210 211 212 213 214 215 216 217
	/* check the state after obtaing the lock to protect the HCI_UP
	 * against any races from hci_dev_do_close when the controller
	 * gets removed.
	 */
	if (test_bit(HCI_UP, &hdev->flags))
		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
	else
		ret = -ENETDOWN;
218
	hci_req_sync_unlock(hdev);
219 220 221 222

	return ret;
}

223 224 225 226 227 228 229 230 231 232 233
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

234
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
235 236 237 238
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
239
		skb_put_data(skb, param, plen);
240

241
	bt_dev_dbg(hdev, "skb len %d", skb->len);
242

243 244
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
245 246 247 248 249 250 251 252 253 254 255

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

256
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
257 258 259 260 261 262 263 264 265

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
266 267
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
268 269 270 271 272
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
273
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
274

275
	bt_cb(skb)->hci.req_event = event;
276 277 278 279 280 281 282 283 284 285

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
304 305
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
306 307
	}

308
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
309 310 311 312 313 314 315 316 317 318

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
345 346 347 348 349 350
	/* Do interleaved scan only if all of the following are true:
	 * - There is at least one ADV monitor
	 * - At least one pending LE connection or one device to be scanned for
	 * - Monitor offloading is not supported
	 * If so, we should alternate between allowlist scan and one without
	 * any filters to save power.
351 352 353
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
354 355 356
				  list_empty(&hdev->pend_le_reports)) &&
				hci_get_adv_monitor_offload_ext(hdev) ==
				    HCI_ADV_MONITOR_EXT_NONE;
357 358 359 360 361 362 363 364 365 366 367 368 369 370
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

371 372 373 374 375 376 377 378 379 380
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

400
	eir_create(hdev, cp.data);
401 402 403 404 405 406 407 408 409

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

410
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
411
{
412
	struct hci_dev *hdev = req->hdev;
413

414 415 416 417 418
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

419 420 421 422 423 424 425 426 427 428 429 430 431 432
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
433

434
	/* Disable address resolution */
435
	if (hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
436
		__u8 enable = 0x00;
437

438 439
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
440 441
}

442 443
static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
				 u8 bdaddr_type)
444
{
445
	struct hci_cp_le_del_from_accept_list cp;
446 447 448 449

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

450
	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
451
		   cp.bdaddr_type);
452
	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
453

454
	if (use_ll_privacy(req->hdev)) {
455 456 457 458 459 460 461 462 463 464 465 466 467
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
468 469
}

470 471 472 473
/* Adds connection to accept list if needed. On error, returns -1. */
static int add_to_accept_list(struct hci_request *req,
			      struct hci_conn_params *params, u8 *num_entries,
			      bool allow_rpa)
474
{
475
	struct hci_cp_le_add_to_accept_list cp;
476 477
	struct hci_dev *hdev = req->hdev;

478 479
	/* Already in accept list */
	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
480 481
				   params->addr_type))
		return 0;
482

483
	/* Select filter policy to accept all advertising */
484
	if (*num_entries >= hdev->le_accept_list_size)
485 486
		return -1;

487
	/* Accept list can not be used with RPAs */
488 489
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
490 491 492 493
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

494
	/* During suspend, only wakeable devices can be in accept list */
495 496
	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
						   params->current_flags))
497 498 499
		return 0;

	*num_entries += 1;
500 501 502
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

503
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
504
		   cp.bdaddr_type);
505
	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
506

507
	if (use_ll_privacy(hdev)) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

529
	return 0;
530 531
}

532
static u8 update_accept_list(struct hci_request *req)
533 534 535 536
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
537 538
	u8 num_entries = 0;
	bool pend_conn, pend_report;
539 540
	/* We allow usage of accept list even with RPAs in suspend. In the worst
	 * case, we won't be able to wake from devices that use the privacy1.2
541 542 543 544
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
545

546
	if (use_ll_privacy(hdev))
547 548
		allow_rpa = true;

549
	/* Go through the current accept list programmed into the
550 551 552 553 554
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
555
	list_for_each_entry(b, &hdev->le_accept_list, list) {
556 557 558 559 560 561 562 563
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
564
		 * remove it from the accept list.
565
		 */
566
		if (!pend_conn && !pend_report) {
567
			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
568 569 570
			continue;
		}

571
		/* Accept list can not be used with RPAs */
572 573
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
574
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
575 576
			return 0x00;
		}
577

578
		num_entries++;
579 580
	}

581
	/* Since all no longer valid accept list entries have been
582 583 584 585 586
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
587
	 * available accept list entries in the controller, then
588
	 * just abort and return filer policy value to not use the
589
	 * accept list.
590 591
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
592
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
593 594 595 596 597
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
598
	 * accept list if there is still space. Abort if space runs out.
599 600
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
601
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
602 603 604
			return 0x00;
	}

605 606
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
607
	 * - There are 1 or more ADV monitors registered and it's not offloaded
608
	 * - Interleaved scanning is not currently using the allowlist
609
	 */
610
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
611
	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
612
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
613 614
		return 0x00;

615
	/* Select filter policy to use accept list */
616 617 618
	return 0x01;
}

619 620 621 622 623
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

624
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
625
			       u16 window, u8 own_addr_type, u8 filter_policy,
626
			       bool filter_dup, bool addr_resolv)
627
{
628
	struct hci_dev *hdev = req->hdev;
629

630 631 632 633 634
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

635
	if (use_ll_privacy(hdev) && addr_resolv) {
636
		u8 enable = 0x01;
637

638 639 640
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

641 642 643 644 645 646 647
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
648 649
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
650 651 652 653 654 655 656 657

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
683 684

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
685
			    plen, ext_param_cp);
686 687 688

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
689
		ext_enable_cp.filter_dup = filter_dup;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
708
		enable_cp.filter_dup = filter_dup;
709 710 711
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
712 713
}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

735 736 737 738
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
739 740
void hci_req_add_le_passive_scan(struct hci_request *req)
{
741 742 743
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
744
	u16 window, interval;
745 746
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
747 748
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
749 750 751 752 753

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
754 755 756 757 758 759 760

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
761 762
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
763 764
		return;

765 766
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
767 768 769
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
770
	/* Adding or removing entries from the accept list must
771
	 * happen before enabling scanning. The controller does
772
	 * not allow accept list modification while scanning.
773
	 */
774
	filter_policy = update_accept_list(req);
775 776 777 778 779 780

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
781 782 783
	 * So instead of using filter polices 0x00 (no accept list)
	 * and 0x01 (accept list enabled) use the new filter policies
	 * 0x02 (no accept list) and 0x03 (accept list enabled).
784
	 */
785
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
786 787 788
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

789
	if (hdev->suspended) {
790 791
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
792 793 794
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
795 796 797
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
798 799 800 801 802 803 804 805 806 807 808 809 810 811

		/* Disable duplicates filter when scanning for advertisement
		 * monitor for the following reasons.
		 *
		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
		 * controllers ignore RSSI_Sampling_Period when the duplicates
		 * filter is enabled.
		 *
		 * For SW pattern filtering, when we're not doing interleaved
		 * scanning, it is necessary to disable duplicates filter,
		 * otherwise hosts can only receive one advertisement and it's
		 * impossible to know if a peer is still in range.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
812 813 814 815 816
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

817 818
	bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
		   filter_policy);
819
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
820 821
			   own_addr_type, filter_policy, filter_dup,
			   addr_resolv);
822 823
}

824 825 826 827 828 829 830 831 832
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* This function requires the caller holds hdev->lock */
833
void __hci_req_pause_adv_instances(struct hci_request *req)
834
{
835
	bt_dev_dbg(req->hdev, "Pausing advertising instances");
836 837 838 839 840 841 842 843 844 845 846 847

	/* Call to disable any advertisements active on the controller.
	 * This will succeed even if no advertisements are configured.
	 */
	__hci_req_disable_advertising(req);

	/* If we are using software rotation, pause the loop */
	if (!ext_adv_capable(req->hdev))
		cancel_adv_timeout(req->hdev);
}

/* This function requires the caller holds hdev->lock */
848
static void __hci_req_resume_adv_instances(struct hci_request *req)
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
{
	struct adv_info *adv;

	bt_dev_dbg(req->hdev, "Resuming advertising instances");

	if (ext_adv_capable(req->hdev)) {
		/* Call for each tracked instance to be re-enabled */
		list_for_each_entry(adv, &req->hdev->adv_instances, list) {
			__hci_req_enable_ext_advertising(req,
							 adv->instance);
		}

	} else {
		/* Schedule for most recent instance to be restarted and begin
		 * the software rotation loop
		 */
		__hci_req_schedule_adv_instance(req,
						req->hdev->cur_adv_instance,
						true);
	}
}

871 872 873 874 875 876 877 878 879 880 881
/* This function requires the caller holds hdev->lock */
int hci_req_resume_adv_instances(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_resume_adv_instances(&req);

	return hci_req_run(&req, NULL);
}

882
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
883
{
884
	return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
885 886 887 888
}

void __hci_req_disable_advertising(struct hci_request *req)
{
889
	if (ext_adv_capable(req->hdev)) {
890
		__hci_req_disable_ext_adv_instance(req, 0x00);
891

892 893 894 895 896
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

922 923 924 925 926 927
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

928 929 930 931
	/* Check le_states if there is any connection in peripheral role. */
	if (hdev->conn_hash.le_num_peripheral > 0) {
		/* Peripheral connection state and non connectable mode bit 20.
		 */
932 933 934
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

935
		/* Peripheral connection state and connectable mode bit 38
936 937
		 * and scannable bit 21.
		 */
938 939
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
940 941 942
			return false;
	}

943 944 945
	/* Check le_states if there is any connection in central role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
		/* Central connection state and non connectable mode bit 18. */
946 947 948
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

949
		/* Central connection state and connectable mode bit 35 and
950 951
		 * scannable 19.
		 */
952
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
953 954 955 956 957 958 959
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

960 961 962
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
963
	struct adv_info *adv;
964 965 966
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
967
	u16 adv_min_interval, adv_max_interval;
968 969
	u32 flags;

970 971
	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
	adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
972 973 974 975 976 977 978 979

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
996 997 998
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
999 1000 1001 1002
		return;

	memset(&cp, 0, sizeof(cp));

1003 1004 1005
	if (adv) {
		adv_min_interval = adv->min_interval;
		adv_max_interval = adv->max_interval;
1006
	} else {
1007 1008
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
1009 1010 1011 1012
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
1013
	} else {
1014
		if (adv_cur_instance_is_scannable(hdev))
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1028 1029 1030 1031 1032 1033 1034 1035
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1036
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1037 1038 1039 1040 1041 1042 1043
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1044
	if (ext_adv_capable(hdev)) {
1045 1046 1047 1048
		struct {
			struct hci_cp_le_set_ext_scan_rsp_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1049

1050
		memset(&pdu, 0, sizeof(pdu));
1051

1052
		len = eir_create_scan_rsp(hdev, instance, pdu.data);
1053 1054

		if (hdev->scan_rsp_data_len == len &&
1055
		    !memcmp(pdu.data, hdev->scan_rsp_data, len))
1056 1057
			return;

1058
		memcpy(hdev->scan_rsp_data, pdu.data, len);
1059 1060
		hdev->scan_rsp_data_len = len;

1061 1062 1063 1064
		pdu.cp.handle = instance;
		pdu.cp.length = len;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1065

1066 1067
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1068 1069 1070 1071 1072
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

1073
		len = eir_create_scan_rsp(hdev, instance, cp.data);
1074 1075 1076 1077

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1078

1079 1080
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1081

1082
		cp.length = len;
1083

1084 1085
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1086 1087
}

1088
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1089 1090 1091 1092 1093 1094 1095
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1096
	if (ext_adv_capable(hdev)) {
1097 1098 1099 1100
		struct {
			struct hci_cp_le_set_ext_adv_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1101

1102
		memset(&pdu, 0, sizeof(pdu));
1103

1104
		len = eir_create_adv_data(hdev, instance, pdu.data);
1105 1106 1107

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
1108
		    memcmp(pdu.data, hdev->adv_data, len) == 0)
1109 1110
			return;

1111
		memcpy(hdev->adv_data, pdu.data, len);
1112 1113
		hdev->adv_data_len = len;

1114 1115 1116 1117
		pdu.cp.length = len;
		pdu.cp.handle = instance;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1118

1119 1120
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1121 1122 1123 1124
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1125

1126
		len = eir_create_adv_data(hdev, instance, cp.data);
1127 1128 1129 1130 1131

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1132

1133 1134 1135 1136 1137 1138 1139
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1140 1141
}

1142
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1143 1144 1145 1146 1147 1148 1149 1150 1151
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

1163
	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1164 1165 1166 1167 1168 1169 1170 1171 1172
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1173 1174
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1175
	bt_dev_dbg(hdev, "status %u", status);
1176 1177 1178 1179 1180 1181 1182
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1183
	    list_empty(&hdev->adv_instances))
1184 1185 1186 1187
		return;

	hci_req_init(&req, hdev);

1188 1189 1190
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1191
	} else {
1192 1193 1194 1195 1196 1197 1198
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1212
	bt_dev_dbg(hdev, "");
1213 1214 1215 1216 1217

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1218
	instance = hdev->cur_adv_instance;
1219 1220 1221 1222 1223
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1224
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1225 1226 1227 1228

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1229
	hci_req_run(&req, NULL);
1230 1231 1232 1233 1234

unlock:
	hci_dev_unlock(hdev);
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
1303 1304 1305
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1306
		if (use_ll_privacy(hdev))
1307 1308 1309
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1310 1311

		if (adv_instance) {
1312
			if (adv_rpa_valid(adv_instance))
1313 1314
				return 0;
		} else {
1315
			if (rpa_valid(hdev))
1316 1317 1318 1319 1320
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1321
			bt_dev_err(hdev, "failed to generate new RPA");
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1364 1365 1366 1367 1368
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
	    hci_lookup_le_connect(hdev)) {
		bt_dev_dbg(hdev, "Deferring random address update");
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

1393
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1394 1395 1396 1397 1398
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1399 1400 1401 1402
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1403
	bool secondary_adv;
1404

1405 1406 1407 1408 1409 1410 1411 1412
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1413
	flags = hci_adv_instance_flags(hdev, instance);
1414 1415 1416 1417 1418 1419 1420

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1421
	if (!is_advertising_allowed(hdev, connectable))
1422 1423
		return -EPERM;

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1434 1435
	memset(&cp, 0, sizeof(cp));

1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
1445

1446 1447 1448 1449 1450 1451 1452
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1453
	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1454
		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1465

1466
	cp.own_addr_type = own_addr_type;
1467
	cp.channel_map = hdev->le_adv_channel_map;
1468
	cp.handle = instance;
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1482 1483
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1484 1485
	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
1496 1497 1498 1499 1500 1501 1502
			/* Instance 0x00 doesn't have an adv_info, instead it
			 * uses hdev->random_addr to track its address so
			 * whenever it needs to be updated this also set the
			 * random address since hdev->random_addr is shared with
			 * scan state machine.
			 */
			set_random_addr(req, &random_addr);
1503 1504 1505 1506
		}

		memset(&cp, 0, sizeof(cp));

1507
		cp.handle = instance;
1508 1509 1510 1511 1512 1513 1514
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1515 1516 1517
	return 0;
}

1518
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1519
{
1520
	struct hci_dev *hdev = req->hdev;
1521 1522 1523
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1524 1525 1526 1527 1528 1529 1530 1531 1532
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1544 1545 1546 1547 1548 1549
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1550
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1551 1552 1553 1554

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1555 1556 1557 1558

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1559 1560

	return 0;
1561 1562
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

1605 1606
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1607
	struct hci_dev *hdev = req->hdev;
1608
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
1609 1610
	int err;

1611 1612 1613 1614 1615
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
1616

1617 1618 1619 1620
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

1621
	__hci_req_update_scan_rsp_data(req, instance);
1622
	__hci_req_enable_ext_advertising(req, instance);
1623 1624 1625 1626

	return 0;
}

1627 1628 1629 1630 1631 1632 1633 1634
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1635
	    list_empty(&hdev->adv_instances))
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

1666 1667 1668 1669
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
1670 1671
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
1672
	}
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
1683 1684 1685 1686 1687 1688 1689
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
1705 1706 1707
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
1733
				mgmt_advertising_removed(sk, hdev, rem_inst);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
1747
				mgmt_advertising_removed(sk, hdev, instance);
1748 1749 1750 1751 1752 1753 1754
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

1755
	if (next_instance && !ext_adv_capable(hdev))
1756 1757 1758 1759
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

1760
int hci_update_random_address(struct hci_request *req, bool require_privacy,
1761
			      bool use_rpa, u8 *own_addr_type)
1762 1763 1764 1765 1766 1767 1768 1769
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
1770
	if (use_rpa) {
1771 1772 1773
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1774
		if (use_ll_privacy(hdev))
1775 1776 1777
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1778

1779
		if (rpa_valid(hdev))
1780 1781 1782 1783
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1784
			bt_dev_err(hdev, "failed to generate new RPA");
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
1824 1825 1826 1827
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
1828
	 */
1829
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1830
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1831
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1832
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
1847

1848
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
1849 1850 1851
{
	struct bdaddr_list *b;

1852
	list_for_each_entry(b, &hdev->accept_list, list) {
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

1866
void __hci_req_update_scan(struct hci_request *req)
1867 1868 1869 1870
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

1871
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1872 1873 1874 1875 1876 1877 1878 1879
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

1880 1881 1882
	if (hdev->scanning_paused)
		return;

1883
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1884
	    disconnected_accept_list_entries(hdev))
1885 1886 1887 1888
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

1889
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1890 1891
		scan |= SCAN_INQUIRY;

1892 1893 1894 1895
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

1896 1897 1898
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

1899
static int update_scan(struct hci_request *req, unsigned long opt)
1900
{
1901 1902 1903 1904 1905
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
1906

1907 1908 1909 1910 1911
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1912 1913
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

1930
	bt_dev_dbg(hdev, "");
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
1998
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1999
		__hci_req_update_adv_data(req, 0x00);
2000

2001 2002 2003
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2004 2005 2006 2007 2008 2009
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2010 2011
	}

2012 2013 2014 2015 2016
	hci_dev_unlock(hdev);

	return 0;
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2074
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2089
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2103
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2104 2105 2106 2107 2108
		return err;
	}

	return 0;
}
2109

2110
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2111
{
2112
	hci_req_add_le_scan_disable(req, false);
2113
	return 0;
2114 2115
}

2116
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2117
{
2118
	u8 length = opt;
2119 2120
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2121 2122
	struct hci_cp_inquiry cp;

2123 2124 2125
	if (test_bit(HCI_INQUIRY, &req->hdev->flags))
		return 0;

2126
	bt_dev_dbg(req->hdev, "");
2127

2128 2129 2130
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2131

2132
	memset(&cp, 0, sizeof(cp));
2133 2134 2135 2136 2137 2138

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2139
	cp.length = length;
2140

2141
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2142

2143
	return 0;
2144 2145 2146 2147 2148 2149 2150 2151
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2152
	bt_dev_dbg(hdev, "");
2153

2154 2155 2156
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2157 2158
	cancel_delayed_work(&hdev->le_scan_restart);

2159 2160
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2161 2162
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2180 2181
		return;

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2193
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2194 2195 2196 2197 2198 2199 2200 2201 2202
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

2213 2214 2215 2216 2217
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

2218
	hci_req_add_le_scan_disable(req, false);
2219

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2237 2238 2239 2240 2241

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2242
{
2243 2244
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2245
	unsigned long timeout, duration, scan_start, now;
2246
	u8 status;
2247

2248
	bt_dev_dbg(hdev, "");
2249

2250
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2251
	if (status) {
2252 2253
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2291 2292 2293 2294 2295
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
2296
	/* Accept list is not used for discovery */
2297
	u8 filter_policy = 0x00;
2298 2299
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2300 2301
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
2302 2303
	int err;

2304
	bt_dev_dbg(hdev, "");
2305 2306 2307 2308 2309

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
2310
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2311
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
2312 2313
		cancel_interleave_scan(hdev);
	}
2314 2315 2316 2317 2318

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2319 2320
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2321 2322 2323
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	if (hci_is_adv_monitoring(hdev)) {
		/* Duplicate filter should be disabled when some advertisement
		 * monitor is activated, otherwise AdvMon can only receive one
		 * advertisement for one peer(*) during active scanning, and
		 * might report loss to these peers.
		 *
		 * Note that different controllers have different meanings of
		 * |duplicate|. Some of them consider packets with the same
		 * address as duplicate, and others consider packets with the
		 * same address and the same RSSI as duplicate. Although in the
		 * latter case we don't need to disable duplicate filter, but
		 * it is common to have active scanning for a short period of
		 * time, the power impact should be neglectable.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
	}

2341 2342
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
2343
			   filter_policy, filter_dup, addr_resolv);
2344 2345 2346 2347 2348 2349 2350
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

2351
	bt_dev_dbg(req->hdev, "");
2352 2353 2354 2355 2356

	err = active_scan(req, opt);
	if (err)
		return err;

2357
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2358 2359 2360 2361 2362 2363
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

2364
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
2365 2366 2367 2368

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2369 2370
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
2390
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2391 2392 2393 2394 2395
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2396
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2397 2398 2399 2400
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2401
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

2412
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2429 2430 2431 2432 2433 2434 2435 2436
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

2437
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
2438 2439 2440 2441 2442 2443 2444

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
2445
			cancel_delayed_work(&hdev->le_scan_restart);
2446
			hci_req_add_le_scan_disable(req, false);
2447 2448 2449 2450 2451 2452
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2453
			hci_req_add_le_scan_disable(req, false);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
static void config_data_path_complete(struct hci_dev *hdev, u8 status,
				      u16 opcode)
{
	bt_dev_dbg(hdev, "status %u", status);
}

int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec)
{
	struct hci_request req;
	int err;
	__u8 vnd_len, *vnd_data = NULL;
	struct hci_op_configure_data_path *cmd = NULL;

	hci_req_init(&req, hdev);

	err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
					  &vnd_data);
	if (err < 0)
		goto error;

	cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
	if (!cmd) {
		err = -ENOMEM;
		goto error;
	}

	err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
	if (err < 0)
		goto error;

	cmd->vnd_len = vnd_len;
	memcpy(cmd->vnd_data, vnd_data, vnd_len);

	cmd->direction = 0x00;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	cmd->direction = 0x01;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	err = hci_req_run(&req, config_data_path_complete);
error:

	kfree(cmd);
	kfree(vnd_data);
	return err;
}

2524 2525 2526 2527 2528 2529 2530 2531 2532
static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2548 2549 2550 2551 2552 2553
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2554 2555 2556 2557 2558 2559
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2560 2561 2562 2563 2564
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

2565
	bt_dev_dbg(hdev, "");
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

2621
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2622 2623 2624 2625
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
2626 2627
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
2641

2642
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2643
				if (!ext_adv_capable(hdev))
2644
					__hci_req_enable_advertising(req);
2645
				else if (!err)
2646 2647
					__hci_req_enable_ext_advertising(req,
									 0x00);
2648
			}
2649 2650
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
2651 2652 2653 2654

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
2655
							adv_instance->instance,
2656
							true);
2657
		}
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

2693 2694
void hci_request_setup(struct hci_dev *hdev)
{
2695
	INIT_WORK(&hdev->discov_update, discov_update);
2696
	INIT_WORK(&hdev->scan_update, scan_update_work);
2697
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2698 2699
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2700
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2701
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
2702 2703 2704 2705
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
2706 2707
	hci_req_sync_cancel(hdev, ENODEV);

2708
	cancel_work_sync(&hdev->discov_update);
2709
	cancel_work_sync(&hdev->scan_update);
2710
	cancel_delayed_work_sync(&hdev->discov_off);
2711 2712
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
2713 2714 2715 2716 2717

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
2718 2719

	cancel_interleave_scan(hdev);
2720
}