intel_dp.c 232.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43

44
#include "i915_debugfs.h"
45
#include "i915_drv.h"
46
#include "i915_trace.h"
47
#include "intel_atomic.h"
48
#include "intel_audio.h"
49
#include "intel_connector.h"
50
#include "intel_ddi.h"
51
#include "intel_display_debugfs.h"
52
#include "intel_display_types.h"
53
#include "intel_dp.h"
54
#include "intel_dp_link_training.h"
55
#include "intel_dp_mst.h"
56
#include "intel_dpio_phy.h"
57
#include "intel_fifo_underrun.h"
58
#include "intel_hdcp.h"
59
#include "intel_hdmi.h"
60
#include "intel_hotplug.h"
61
#include "intel_lspcon.h"
62
#include "intel_lvds.h"
63
#include "intel_panel.h"
64
#include "intel_psr.h"
65
#include "intel_sideband.h"
66
#include "intel_tc.h"
67
#include "intel_vdsc.h"
68

69
#define DP_DPRX_ESI_LEN 14
70

71 72 73 74 75
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

76 77
/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261
78

79 80 81 82 83 84
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

85
struct dp_link_dpll {
86
	int clock;
87 88 89
	struct dpll dpll;
};

90
static const struct dp_link_dpll g4x_dpll[] = {
91
	{ 162000,
92
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93
	{ 270000,
94 95 96 97
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
98
	{ 162000,
99
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100
	{ 270000,
101 102 103
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

104
static const struct dp_link_dpll vlv_dpll[] = {
105
	{ 162000,
C
Chon Ming Lee 已提交
106
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107
	{ 270000,
108 109 110
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

111 112 113 114 115 116 117 118 119 120
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
121
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
122
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
124 125
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
126

127 128 129 130 131 132 133 134
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

135
/**
136
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137 138 139 140 141
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
142
bool intel_dp_is_edp(struct intel_dp *intel_dp)
143
{
144 145 146
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 148
}

149 150
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
151
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
152
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
153 154
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
155
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
156
				      enum pipe pipe);
157
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
158

159 160 161
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
162
	static const int dp_rates[] = {
163
		162000, 270000, 540000, 810000
164
	};
165
	int i, max_rate;
166

167 168 169 170 171 172 173 174 175 176 177
	if (drm_dp_has_quirk(&intel_dp->desc, 0,
			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
		static const int quirk_rates[] = { 162000, 270000, 324000 };

		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);

		return;
	}

178
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
179

180 181
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
182
			break;
183
		intel_dp->sink_rates[i] = dp_rates[i];
184
	}
185

186
	intel_dp->num_sink_rates = i;
187 188
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

211 212
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
213
{
214
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
215 216
}

217 218
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
219 220
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
221 222
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
223
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
224

225
	return min3(source_max, sink_max, fia_max);
226 227
}

228
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
229 230 231 232
{
	return intel_dp->max_link_lane_count;
}

233
int
234
intel_dp_link_required(int pixel_clock, int bpp)
235
{
236 237
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
238 239
}

240
int
241 242
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
243 244 245 246 247 248 249
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
250 251
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

275
static int cnl_max_source_rate(struct intel_dp *intel_dp)
276 277 278 279 280
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

281
	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
282 283 284

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
285
		return 540000;
286 287 288

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
289
		return 810000;
290

291
	/* For other SKUs, max rate on ports A and D is 5.4G */
292
	if (port == PORT_A || port == PORT_D)
293
		return 540000;
294

295
	return 810000;
296 297
}

298 299 300
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
301
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
302
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
303

304
	if (intel_phy_is_combo(dev_priv, phy) &&
305
	    !IS_ELKHARTLAKE(dev_priv) &&
306
	    !intel_dp_is_edp(intel_dp))
307 308 309 310 311
		return 540000;

	return 810000;
}

312 313
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
314
{
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
331
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
332
	struct intel_encoder *encoder = &dig_port->base;
333
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
334
	const int *source_rates;
335
	int size, max_rate = 0, vbt_max_rate;
336

337
	/* This should only be done once */
338 339
	drm_WARN_ON(&dev_priv->drm,
		    intel_dp->source_rates || intel_dp->num_source_rates);
340

341
	if (INTEL_GEN(dev_priv) >= 10) {
342
		source_rates = cnl_rates;
343
		size = ARRAY_SIZE(cnl_rates);
344
		if (IS_GEN(dev_priv, 10))
345 346 347
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
348 349 350
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
351
	} else if (IS_GEN9_BC(dev_priv)) {
352
		source_rates = skl_rates;
353
		size = ARRAY_SIZE(skl_rates);
354 355
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
356 357
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
358
	} else {
359 360
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
361 362
	}

363
	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
364 365 366 367 368
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

369 370 371
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

372 373
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

399 400 401 402 403 404 405 406 407 408 409 410
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

411
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
412
{
413
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
414

415 416 417 418 419 420 421 422
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
423
		intel_dp->common_rates[0] = 162000;
424 425 426 427
		intel_dp->num_common_rates = 1;
	}
}

428
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
429
				       u8 lane_count)
430 431 432 433 434 435
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
436 437
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
438 439
		return false;

440 441
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
442 443 444 445 446
		return false;

	return true;
}

447 448
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
449
						     u8 lane_count)
450 451 452 453 454 455 456 457 458 459 460 461 462
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

463
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
464
					    int link_rate, u8 lane_count)
465
{
466
	int index;
467

468 469 470 471
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
472 473 474 475 476 477 478
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
479 480
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
481
	} else if (lane_count > 1) {
482 483 484 485 486 487 488
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
489
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
490
		intel_dp->max_link_lane_count = lane_count >> 1;
491 492 493 494 495 496 497 498
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

499 500 501 502 503 504
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

505 506 507 508 509 510 511 512 513 514 515
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) >= 11)
		return 7680 * 8;
	else
		return 6144 * 8;
}

static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
				       u32 link_clock, u32 lane_count,
516 517 518 519 520 521 522 523 524 525 526 527 528
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
529
	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
530 531

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
532 533
	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
		mode_hdisplay;
534 535
	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
		    max_bpp_small_joiner_ram);
536 537 538 539 540 541 542 543 544

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
545 546
		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
			    bits_per_pixel, valid_dsc_bpp[0]);
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
				  int hdisplay)
{
	/*
	 * Older platforms don't like hdisplay==4096 with DP.
	 *
	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
	 * and frame counter increment), but we don't get vblank interrupts,
	 * and the pipe underruns immediately. The link also doesn't seem
	 * to get trained properly.
	 *
	 * On CHV the vblank interrupts don't seem to disappear but
	 * otherwise the symptoms are similar.
	 *
	 * TODO: confirm the behaviour on HSW+
	 */
	return hdisplay == 4096 && !HAS_DDI(dev_priv);
}

621
static enum drm_mode_status
622 623 624
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
625
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
626 627
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
628
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
629 630
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
631
	int max_dotclk;
632 633
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
634

635 636 637
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

638
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
639

640
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
641
		if (mode->hdisplay > fixed_mode->hdisplay)
642 643
			return MODE_PANEL;

644
		if (mode->vdisplay > fixed_mode->vdisplay)
645
			return MODE_PANEL;
646 647

		target_clock = fixed_mode->clock;
648 649
	}

650
	max_link_clock = intel_dp_max_link_rate(intel_dp);
651
	max_lanes = intel_dp_max_lane_count(intel_dp);
652 653 654 655

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

656 657 658
	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
		return MODE_H_ILLEGAL;

659 660 661 662 663 664 665 666 667 668 669 670
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
671
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
672
			dsc_max_output_bpp =
673 674
				intel_dp_dsc_get_output_bpp(dev_priv,
							    max_link_clock,
675 676 677 678 679 680 681 682 683 684 685 686
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
687
		return MODE_CLOCK_HIGH;
688 689 690 691

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

692 693 694
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

695
	return intel_mode_valid_max_plane_size(dev_priv, mode);
696 697
}

698
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
699
{
700 701
	int i;
	u32 v = 0;
702 703 704 705

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
706
		v |= ((u32)src[i]) << ((3 - i) * 8);
707 708 709
	return v;
}

710
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
711 712 713 714 715 716 717 718
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

719
static void
720
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
721
static void
722
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
723
					      bool force_disable_vdd);
724
static void
725
intel_dp_pps_init(struct intel_dp *intel_dp);
726

727 728
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
729
{
730
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
731
	intel_wakeref_t wakeref;
732 733

	/*
734
	 * See intel_power_sequencer_reset() why we need
735 736
	 * a power domain reference here.
	 */
737 738
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
739 740

	mutex_lock(&dev_priv->pps_mutex);
741 742

	return wakeref;
743 744
}

745 746
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
747
{
748
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
749 750

	mutex_unlock(&dev_priv->pps_mutex);
751 752 753 754
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
755 756
}

757 758 759
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

760 761 762
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
763
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
764 765
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
766 767 768
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
769
	u32 DP;
770

771 772 773 774 775
	if (drm_WARN(&dev_priv->drm,
		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
		     pipe_name(pipe), intel_dig_port->base.base.base.id,
		     intel_dig_port->base.base.name))
776 777
		return;

778 779 780 781
	drm_dbg_kms(&dev_priv->drm,
		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
782 783 784 785

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
786
	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
787 788 789 790
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

791
	if (IS_CHERRYVIEW(dev_priv))
792 793 794
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
795

796
	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
797 798 799 800 801

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
802
	if (!pll_enabled) {
803
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
804 805
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

806
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
807
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
808 809 810
			drm_err(&dev_priv->drm,
				"Failed to force on pll for pipe %c!\n",
				pipe_name(pipe));
811 812
			return;
		}
813
	}
814

815 816 817
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
818
	 * to make this power sequencer lock onto the port.
819 820
	 * Otherwise even VDD force bit won't work.
	 */
821 822
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
823

824 825
	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
826

827 828
	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
829

830
	if (!pll_enabled) {
831
		vlv_force_pll_off(dev_priv, pipe);
832 833 834 835

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
836 837
}

838 839 840 841 842 843 844 845 846
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
847
	for_each_intel_dp(&dev_priv->drm, encoder) {
848
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
849 850

		if (encoder->type == INTEL_OUTPUT_EDP) {
851 852 853 854
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->active_pipe != INVALID_PIPE &&
				    intel_dp->active_pipe !=
				    intel_dp->pps_pipe);
855 856 857 858

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
859 860
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->pps_pipe != INVALID_PIPE);
861 862 863 864 865 866 867 868 869 870 871 872

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

873 874 875
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
876
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
877
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
878
	enum pipe pipe;
879

V
Ville Syrjälä 已提交
880
	lockdep_assert_held(&dev_priv->pps_mutex);
881

882
	/* We should never land here with regular DP ports */
883
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
884

885 886
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
		    intel_dp->active_pipe != intel_dp->pps_pipe);
887

888 889 890
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

891
	pipe = vlv_find_free_pps(dev_priv);
892 893 894 895 896

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
897
	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
898
		pipe = PIPE_A;
899

900
	vlv_steal_power_sequencer(dev_priv, pipe);
901
	intel_dp->pps_pipe = pipe;
902

903 904 905 906 907
	drm_dbg_kms(&dev_priv->drm,
		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe),
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
908 909

	/* init power sequencer on this pipe and port */
910 911
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
912

913 914 915 916 917
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
918 919 920 921

	return intel_dp->pps_pipe;
}

922 923 924
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
925
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
926
	int backlight_controller = dev_priv->vbt.backlight.controller;
927 928 929 930

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
931
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
932 933

	if (!intel_dp->pps_reset)
934
		return backlight_controller;
935 936 937 938 939 940 941

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
942
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
943

944
	return backlight_controller;
945 946
}

947 948 949 950 951 952
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
953
	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
954 955 956 957 958
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
959
	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
960 961 962 963 964 965 966
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
967

968
static enum pipe
969 970 971
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
972 973
{
	enum pipe pipe;
974 975

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
976
		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
977
			PANEL_PORT_SELECT_MASK;
978 979 980 981

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

982 983 984
		if (!pipe_check(dev_priv, pipe))
			continue;

985
		return pipe;
986 987
	}

988 989 990 991 992 993
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
994
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
995
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
996
	enum port port = intel_dig_port->base.port;
997 998 999 1000

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
1012 1013 1014

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
1015 1016 1017 1018
		drm_dbg_kms(&dev_priv->drm,
			    "no initial power sequencer for [ENCODER:%d:%s]\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
1019
		return;
1020 1021
	}

1022 1023 1024 1025 1026
	drm_dbg_kms(&dev_priv->drm,
		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name,
		    pipe_name(intel_dp->pps_pipe));
1027

1028 1029
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1030 1031
}

1032
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1033 1034 1035
{
	struct intel_encoder *encoder;

1036 1037 1038 1039
	if (drm_WARN_ON(&dev_priv->drm,
			!(IS_VALLEYVIEW(dev_priv) ||
			  IS_CHERRYVIEW(dev_priv) ||
			  IS_GEN9_LP(dev_priv))))
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1052
	for_each_intel_dp(&dev_priv->drm, encoder) {
1053
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1054

1055 1056
		drm_WARN_ON(&dev_priv->drm,
			    intel_dp->active_pipe != INVALID_PIPE);
1057 1058 1059 1060

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1061
		if (IS_GEN9_LP(dev_priv))
1062 1063 1064
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1065
	}
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1076
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1077 1078
				    struct pps_registers *regs)
{
1079
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1080 1081
	int pps_idx = 0;

1082 1083
	memset(regs, 0, sizeof(*regs));

1084
	if (IS_GEN9_LP(dev_priv))
1085 1086 1087
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1088

1089 1090 1091 1092
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1093 1094

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1095
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1096 1097
		regs->pp_div = INVALID_MMIO_REG;
	else
1098
		regs->pp_div = PP_DIVISOR(pps_idx);
1099 1100
}

1101 1102
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1103
{
1104
	struct pps_registers regs;
1105

1106
	intel_pps_get_registers(intel_dp, &regs);
1107 1108

	return regs.pp_ctrl;
1109 1110
}

1111 1112
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1113
{
1114
	struct pps_registers regs;
1115

1116
	intel_pps_get_registers(intel_dp, &regs);
1117 1118

	return regs.pp_stat;
1119 1120
}

1121 1122 1123 1124 1125 1126 1127
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1128
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1129
	intel_wakeref_t wakeref;
1130

1131
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1132 1133
		return 0;

1134 1135 1136 1137 1138 1139 1140 1141
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
1142
			pp_div = intel_de_read(dev_priv, pp_div_reg);
1143 1144 1145
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1146 1147 1148
			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
			intel_de_write(dev_priv, pp_ctrl_reg,
				       PANEL_UNLOCK_REGS);
1149 1150
			msleep(intel_dp->panel_power_cycle_delay);
		}
1151 1152 1153 1154 1155
	}

	return 0;
}

1156
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1157
{
1158
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1159

V
Ville Syrjälä 已提交
1160 1161
	lockdep_assert_held(&dev_priv->pps_mutex);

1162
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1163 1164 1165
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1166
	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1167 1168
}

1169
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1170
{
1171
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1172

V
Ville Syrjälä 已提交
1173 1174
	lockdep_assert_held(&dev_priv->pps_mutex);

1175
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1176 1177 1178
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1179
	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1180 1181
}

1182 1183 1184
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1185
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1186

1187
	if (!intel_dp_is_edp(intel_dp))
1188
		return;
1189

1190
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1191 1192
		drm_WARN(&dev_priv->drm, 1,
			 "eDP powered off while attempting aux channel communication.\n");
1193
		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1194 1195
			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1196 1197 1198
	}
}

1199
static u32
1200
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1201
{
1202
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1203
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1204
	const unsigned int timeout_ms = 10;
1205
	u32 status;
1206 1207
	bool done;

1208 1209
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1210
				  msecs_to_jiffies_timeout(timeout_ms));
1211 1212 1213 1214

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1215
	if (!done)
1216
		drm_err(&i915->drm,
1217
			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1218
			intel_dp->aux.name, timeout_ms, status);
1219 1220 1221 1222 1223
#undef C

	return status;
}

1224
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1225
{
1226
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1227

1228 1229 1230
	if (index)
		return 0;

1231 1232
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1233
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1234
	 */
1235
	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1236 1237
}

1238
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1239
{
1240
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1241
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1242
	u32 freq;
1243 1244 1245 1246

	if (index)
		return 0;

1247 1248 1249 1250 1251
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1252
	if (dig_port->aux_ch == AUX_CH_A)
1253
		freq = dev_priv->cdclk.hw.cdclk;
1254
	else
1255 1256
		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
	return DIV_ROUND_CLOSEST(freq, 2000);
1257 1258
}

1259
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1260
{
1261
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1262
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1263

1264
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1265
		/* Workaround for non-ULT HSW */
1266 1267 1268 1269 1270
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1271
	}
1272 1273

	return ilk_get_aux_clock_divider(intel_dp, index);
1274 1275
}

1276
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1277 1278 1279 1280 1281 1282 1283 1284 1285
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1286 1287 1288
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1289 1290
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1291 1292
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1293
	u32 precharge, timeout;
1294

1295
	if (IS_GEN(dev_priv, 6))
1296 1297 1298 1299
		precharge = 3;
	else
		precharge = 5;

1300
	if (IS_BROADWELL(dev_priv))
1301 1302 1303 1304 1305
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1306
	       DP_AUX_CH_CTL_DONE |
1307
	       DP_AUX_CH_CTL_INTERRUPT |
1308
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1309
	       timeout |
1310
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1311 1312
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1313
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1314 1315
}

1316 1317 1318
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1319
{
1320
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1321 1322 1323
	struct drm_i915_private *i915 =
			to_i915(intel_dig_port->base.base.dev);
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1324
	u32 ret;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1336 1337
	if (intel_phy_is_tc(i915, phy) &&
	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1338 1339 1340
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1341 1342
}

1343
static int
1344
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1345 1346
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1347
		  u32 aux_send_ctl_flags)
1348 1349
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1350
	struct drm_i915_private *i915 =
1351
			to_i915(intel_dig_port->base.base.dev);
1352
	struct intel_uncore *uncore = &i915->uncore;
1353 1354
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1355
	i915_reg_t ch_ctl, ch_data[5];
1356
	u32 aux_clock_divider;
1357 1358 1359 1360
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1361
	int i, ret, recv_bytes;
1362
	int try, clock = 0;
1363
	u32 status;
1364 1365
	bool vdd;

1366 1367 1368 1369
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1370 1371 1372
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1373
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1374
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1375

1376 1377 1378 1379 1380 1381
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1382
	vdd = edp_panel_vdd_on(intel_dp);
1383 1384 1385 1386 1387

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1388
	pm_qos_update_request(&i915->pm_qos, 0);
1389 1390

	intel_dp_check_edp(intel_dp);
1391

1392 1393
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1394
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1395 1396 1397 1398
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1399 1400
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1401 1402

	if (try == 3) {
1403
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1404

1405
		if (status != intel_dp->aux_busy_last_status) {
1406 1407 1408
			drm_WARN(&i915->drm, 1,
				 "%s: not started (status 0x%08x)\n",
				 intel_dp->aux.name, status);
1409
			intel_dp->aux_busy_last_status = status;
1410 1411
		}

1412 1413
		ret = -EBUSY;
		goto out;
1414 1415
	}

1416
	/* Only 5 data registers! */
1417
	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1418 1419 1420 1421
		ret = -E2BIG;
		goto out;
	}

1422
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1423 1424 1425 1426 1427
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1428

1429 1430 1431 1432
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1433 1434 1435 1436
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1437 1438

			/* Send the command and wait for it to complete */
1439
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1440

1441
			status = intel_dp_aux_wait_done(intel_dp);
1442 1443

			/* Clear done status and any errors */
1444 1445 1446 1447 1448 1449
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1450

1451 1452 1453 1454 1455
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1456 1457 1458
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1459 1460
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1461
				continue;
1462
			}
1463
			if (status & DP_AUX_CH_CTL_DONE)
1464
				goto done;
1465
		}
1466 1467 1468
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1469 1470
		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
			intel_dp->aux.name, status);
1471 1472
		ret = -EBUSY;
		goto out;
1473 1474
	}

1475
done:
1476 1477 1478
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1479
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1480 1481
		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
			intel_dp->aux.name, status);
1482 1483
		ret = -EIO;
		goto out;
1484
	}
1485 1486 1487

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1488
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1489 1490
		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
			    intel_dp->aux.name, status);
1491 1492
		ret = -ETIMEDOUT;
		goto out;
1493 1494 1495 1496 1497
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1498 1499 1500 1501 1502 1503 1504

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
1505
		drm_dbg_kms(&i915->drm,
1506 1507
			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
			    intel_dp->aux.name, recv_bytes);
1508 1509 1510 1511
		ret = -EBUSY;
		goto out;
	}

1512 1513
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1514

1515
	for (i = 0; i < recv_bytes; i += 4)
1516
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1517
				    recv + i, recv_bytes - i);
1518

1519 1520
	ret = recv_bytes;
out:
1521
	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1522

1523 1524 1525
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1526
	pps_unlock(intel_dp, pps_wakeref);
1527
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1528

1529 1530 1531
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1532
	return ret;
1533 1534
}

1535 1536
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1548 1549
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1550
{
1551
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1552
	u8 txbuf[20], rxbuf[20];
1553
	size_t txsize, rxsize;
1554 1555
	int ret;

1556
	intel_dp_aux_header(txbuf, msg);
1557

1558 1559 1560
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1561
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1562
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1563
		rxsize = 2; /* 0 or 1 data bytes */
1564

1565 1566
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1567

1568 1569
		WARN_ON(!msg->buffer != !msg->size);

1570 1571
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1572

1573
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1574
					rxbuf, rxsize, 0);
1575 1576
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1577

1578 1579 1580 1581 1582 1583 1584
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1585 1586
		}
		break;
1587

1588 1589
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1590
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1591
		rxsize = msg->size + 1;
1592

1593 1594
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1595

1596
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1597
					rxbuf, rxsize, 0);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1608
		}
1609 1610 1611 1612 1613
		break;

	default:
		ret = -EINVAL;
		break;
1614
	}
1615

1616
	return ret;
1617 1618
}

1619

1620
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1621
{
1622
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1623 1624
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1625

1626 1627 1628 1629 1630
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1631
	default:
1632 1633
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1634 1635 1636
	}
}

1637
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1638
{
1639
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1640 1641
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1642

1643 1644 1645 1646 1647
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1648
	default:
1649 1650
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1651 1652 1653
	}
}

1654
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1655
{
1656
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1657 1658
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1659

1660 1661 1662 1663 1664 1665 1666
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1667
	default:
1668 1669
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1670 1671 1672
	}
}

1673
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1674
{
1675
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1676 1677
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1678

1679 1680 1681 1682 1683 1684 1685
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1686
	default:
1687 1688
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1689 1690 1691
	}
}

1692
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1693
{
1694
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1695 1696
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1697

1698 1699 1700 1701 1702
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1703
	case AUX_CH_E:
1704
	case AUX_CH_F:
1705
	case AUX_CH_G:
1706
		return DP_AUX_CH_CTL(aux_ch);
1707
	default:
1708 1709
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1710 1711 1712
	}
}

1713
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1714
{
1715
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1716 1717
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1718

1719 1720 1721 1722 1723
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1724
	case AUX_CH_E:
1725
	case AUX_CH_F:
1726
	case AUX_CH_G:
1727
		return DP_AUX_CH_DATA(aux_ch, index);
1728
	default:
1729 1730
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1731 1732 1733
	}
}

1734 1735 1736 1737 1738 1739 1740 1741
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1742
{
1743
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1744 1745
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1757

1758 1759 1760 1761 1762 1763 1764 1765
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1766

1767 1768 1769 1770
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1771

1772
	drm_dp_aux_init(&intel_dp->aux);
1773

1774
	/* Failure to allocate our preferred name is not critical */
1775 1776
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
				       aux_ch_name(dig_port->aux_ch),
1777
				       port_name(encoder->port));
1778
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1779 1780
}

1781
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1782
{
1783
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1784

1785
	return max_rate >= 540000;
1786 1787
}

1788 1789 1790 1791 1792 1793 1794
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1795 1796
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1797
		   struct intel_crtc_state *pipe_config)
1798
{
1799
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1800 1801
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1802

1803
	if (IS_G4X(dev_priv)) {
1804 1805
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1806
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1807 1808
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1809
	} else if (IS_CHERRYVIEW(dev_priv)) {
1810 1811
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1812
	} else if (IS_VALLEYVIEW(dev_priv)) {
1813 1814
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1815
	}
1816 1817 1818

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1819
			if (pipe_config->port_clock == divisor[i].clock) {
1820 1821 1822 1823 1824
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1825 1826 1827
	}
}

1828 1829 1830 1831 1832 1833 1834 1835
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1836
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

1848
	if (!drm_debug_enabled(DRM_UT_KMS))
1849 1850
		return;

1851 1852
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1853 1854
	DRM_DEBUG_KMS("source rates: %s\n", str);

1855 1856
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1857 1858
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1859 1860
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1861
	DRM_DEBUG_KMS("common rates: %s\n", str);
1862 1863
}

1864 1865 1866 1867 1868
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1869
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1870 1871 1872
	if (WARN_ON(len <= 0))
		return 162000;

1873
	return intel_dp->common_rates[len - 1];
1874 1875
}

1876 1877
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1878 1879
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1880 1881 1882 1883 1884

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1885 1886
}

1887
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1888
			   u8 *link_bw, u8 *rate_select)
1889
{
1890 1891
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1892 1893 1894 1895 1896 1897 1898 1899 1900
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1901
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1902 1903 1904 1905
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1906 1907 1908 1909 1910 1911 1912 1913
	/* On TGL, FEC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1914 1915 1916 1917 1918 1919 1920 1921 1922
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

1923
static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1924
				  const struct intel_crtc_state *crtc_state)
1925
{
1926 1927 1928
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1929 1930
		return false;

1931
	return intel_dsc_source_support(encoder, crtc_state) &&
1932 1933 1934
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1935 1936
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1937
{
1938
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1939
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1940 1941 1942 1943 1944 1945 1946 1947
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1948 1949 1950 1951
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1952 1953 1954
			drm_dbg_kms(&dev_priv->drm,
				    "clamping bpp for eDP panel to BIOS-provided %i\n",
				    dev_priv->vbt.edp.bpp);
1955 1956 1957 1958
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1959 1960 1961
	return bpp;
}

1962
/* Adjust link config limits based on compliance test requests. */
1963
void
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

2011
/* Optimize link config in order: max bpp, min clock, min lanes */
2012
static int
2013 2014 2015 2016
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
2017
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2018 2019 2020 2021
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2022 2023
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

2024
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2025
						   output_bpp);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

2040
					return 0;
2041 2042 2043 2044 2045
				}
			}
		}
	}

2046
	return -EINVAL;
2047 2048
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

2064 2065 2066 2067 2068
#define DSC_SUPPORTED_VERSION_MIN		1

static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
				       struct intel_crtc_state *crtc_state)
{
2069
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2070 2071 2072 2073 2074 2075 2076 2077
	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
	u8 line_buf_depth;
	int ret;

	ret = intel_dsc_compute_params(encoder, crtc_state);
	if (ret)
		return ret;

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	/*
	 * Slice Height of 8 works for all currently available panels. So start
	 * with that if pic_height is an integral multiple of 8. Eventually add
	 * logic to try multiple slice heights.
	 */
	if (vdsc_cfg->pic_height % 8 == 0)
		vdsc_cfg->slice_height = 8;
	else if (vdsc_cfg->pic_height % 4 == 0)
		vdsc_cfg->slice_height = 4;
	else
		vdsc_cfg->slice_height = 2;

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	vdsc_cfg->dsc_version_major =
		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
	vdsc_cfg->dsc_version_minor =
		min(DSC_SUPPORTED_VERSION_MIN,
		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);

	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
		DP_DSC_RGB;

	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
	if (!line_buf_depth) {
		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
		return -EINVAL;
	}

	if (vdsc_cfg->dsc_version_minor == 2)
		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
	else
		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;

	vdsc_cfg->block_pred_enable =
		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;

	return drm_dsc_compute_rc_parameters(vdsc_cfg);
}

2121 2122 2123 2124
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
2125 2126 2127
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2128 2129
	const struct drm_display_mode *adjusted_mode =
		&pipe_config->hw.adjusted_mode;
2130 2131
	u8 dsc_max_bpc;
	int pipe_bpp;
2132
	int ret;
2133

2134 2135 2136
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

2137
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2138
		return -EINVAL;
2139

2140 2141 2142 2143 2144 2145
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
2146 2147

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2148 2149 2150

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
2151 2152
		drm_dbg_kms(&dev_priv->drm,
			    "No DSC support for less than 8bpc\n");
2153
		return -EINVAL;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
2166
		pipe_config->dsc.compressed_bpp =
2167 2168
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
2169
		pipe_config->dsc.slice_count =
2170 2171 2172 2173 2174 2175 2176
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
2177 2178
			intel_dp_dsc_get_output_bpp(dev_priv,
						    pipe_config->port_clock,
2179 2180 2181 2182 2183 2184 2185 2186
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2187 2188
			drm_dbg_kms(&dev_priv->drm,
				    "Compressed BPP/Slice Count not supported\n");
2189
			return -EINVAL;
2190
		}
2191
		pipe_config->dsc.compressed_bpp = min_t(u16,
2192 2193
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
2194
		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2195 2196 2197 2198 2199 2200 2201
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2202 2203
		if (pipe_config->dsc.slice_count > 1) {
			pipe_config->dsc.dsc_split = true;
2204
		} else {
2205 2206
			drm_dbg_kms(&dev_priv->drm,
				    "Cannot split stream to use 2 VDSC instances\n");
2207
			return -EINVAL;
2208 2209
		}
	}
2210

2211
	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2212
	if (ret < 0) {
2213 2214 2215 2216 2217
		drm_dbg_kms(&dev_priv->drm,
			    "Cannot compute valid DSC parameters for Input Bpp = %d "
			    "Compressed BPP = %d\n",
			    pipe_config->pipe_bpp,
			    pipe_config->dsc.compressed_bpp);
2218
		return ret;
2219
	}
2220

2221
	pipe_config->dsc.compression_enable = true;
2222 2223 2224 2225 2226
	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
		    "Compressed Bpp = %d Slice Count = %d\n",
		    pipe_config->pipe_bpp,
		    pipe_config->dsc.compressed_bpp,
		    pipe_config->dsc.slice_count);
2227

2228
	return 0;
2229 2230
}

2231 2232 2233 2234 2235 2236 2237 2238
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2239
static int
2240
intel_dp_compute_link_config(struct intel_encoder *encoder,
2241 2242
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2243
{
2244 2245
	const struct drm_display_mode *adjusted_mode =
		&pipe_config->hw.adjusted_mode;
2246
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2247
	struct link_config_limits limits;
2248
	int common_len;
2249
	int ret;
2250

2251
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2252
						    intel_dp->max_link_rate);
2253 2254

	/* No common link rates between source and sink */
2255
	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2256

2257 2258 2259 2260 2261 2262
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2263
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2264
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2265

2266
	if (intel_dp_is_edp(intel_dp)) {
2267 2268
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2269 2270 2271 2272
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2273
		 */
2274 2275
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2276
	}
2277

2278 2279
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2280 2281 2282 2283 2284 2285
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2286 2287 2288 2289 2290
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2291 2292

	/* enable compression if the mode doesn't fit available BW */
2293
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2294 2295 2296 2297 2298
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2299
	}
2300

2301
	if (pipe_config->dsc.compression_enable) {
2302 2303 2304
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
2305
			      pipe_config->dsc.compressed_bpp);
2306 2307 2308

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
2309
						     pipe_config->dsc.compressed_bpp),
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2323
	return 0;
2324 2325
}

2326 2327 2328 2329 2330 2331 2332
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
2333
		&crtc_state->hw.adjusted_mode;
2334
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

2356 2357 2358 2359 2360 2361
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
2362
		&crtc_state->hw.adjusted_mode;
2363

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	/*
	 * Our YCbCr output is always limited range.
	 * crtc_state->limited_color_range only applies to RGB,
	 * and it must never be set for YCbCr or we risk setting
	 * some conflicting bits in PIPECONF which will mess up
	 * the colors on the monitor.
	 */
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
		return false;

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
				    enum port port)
{
	if (IS_G4X(dev_priv))
		return false;
	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
		return false;

	return true;
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
					     const struct drm_connector_state *conn_state,
					     struct drm_dp_vsc_sdp *vsc)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	/*
	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc->revision = 0x5;
	vsc->length = 0x13;

	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		vsc->pixelformat = DP_PIXELFORMAT_RGB;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
		break;
	default:
		/*
		 * RGB->YCBCR color conversion uses the BT.709
		 * color space.
		 */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
		else
			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
		break;
	}

	vsc->bpc = crtc_state->pipe_bpp / 3;

	/* only RGB pixelformat supports 6 bpc */
	drm_WARN_ON(&dev_priv->drm,
		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);

	/* all YCbCr are always limited range */
	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
}

static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
				     struct intel_crtc_state *crtc_state,
				     const struct drm_connector_state *conn_state)
{
	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;

	/* When PSR is enabled, VSC SDP is handled by PSR routine */
	if (intel_psr_enabled(intel_dp))
		return;

	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
		return;

	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
	vsc->sdp_type = DP_SDP_VSC;
	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
					 &crtc_state->infoframes.vsc);
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					    struct intel_crtc_state *crtc_state,
					    const struct drm_connector_state *conn_state)
{
	int ret;
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;

	if (!conn_state->hdr_output_metadata)
		return;

	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);

	if (ret) {
		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
		return;
	}

	crtc_state->infoframes.enable |=
		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
}

2522
int
2523 2524 2525 2526 2527
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2528
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2529 2530
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2531
	enum port port = encoder->port;
2532
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2533 2534 2535
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
L
Lyude Paul 已提交
2536
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2537
					   DP_DPCD_QUIRK_CONSTANT_N);
2538
	int ret = 0, output_bpp;
2539 2540 2541 2542

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2543
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2544

2545 2546
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2547 2548 2549 2550 2551 2552
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;
2553

2554
	pipe_config->has_drrs = false;
2555
	if (!intel_dp_port_has_audio(dev_priv, port))
2556 2557 2558 2559 2560 2561 2562
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2563 2564
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2565 2566 2567 2568 2569 2570 2571

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2572
		if (HAS_GMCH(dev_priv))
2573 2574 2575 2576 2577 2578 2579
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2580
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2581
		return -EINVAL;
2582

R
Rodrigo Vivi 已提交
2583
	if (HAS_GMCH(dev_priv) &&
2584
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2585
		return -EINVAL;
2586 2587

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2588
		return -EINVAL;
2589

2590 2591 2592
	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
		return -EINVAL;

2593 2594 2595
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2596

2597 2598
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2599

2600 2601
	if (pipe_config->dsc.compression_enable)
		output_bpp = pipe_config->dsc.compressed_bpp;
2602
	else
2603
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2604 2605 2606 2607 2608 2609

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
2610
			       constant_n, pipe_config->fec_enable);
2611

2612
	if (intel_connector->panel.downclock_mode != NULL &&
2613
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2614
			pipe_config->has_drrs = true;
2615
			intel_link_compute_m_n(output_bpp,
2616 2617 2618 2619
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2620
					       constant_n, pipe_config->fec_enable);
2621 2622
	}

2623
	if (!HAS_DDI(dev_priv))
2624
		intel_dp_set_clock(encoder, pipe_config);
2625

2626
	intel_psr_compute_config(intel_dp, pipe_config);
2627
	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2628
	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2629

2630
	return 0;
2631 2632
}

2633
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2634
			      int link_rate, u8 lane_count,
2635
			      bool link_mst)
2636
{
2637
	intel_dp->link_trained = false;
2638 2639 2640
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2641 2642
}

2643
static void intel_dp_prepare(struct intel_encoder *encoder,
2644
			     const struct intel_crtc_state *pipe_config)
2645
{
2646
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2647
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2648
	enum port port = encoder->port;
2649
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2650
	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2651

2652 2653 2654 2655
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2656

2657 2658 2659
	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);

2660
	/*
K
Keith Packard 已提交
2661
	 * There are four kinds of DP registers:
2662 2663
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2664 2665
	 * 	SNB CPU
	 *	IVB CPU
2666 2667 2668 2669 2670 2671 2672 2673
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
2674
	 * configuration happens (oddly) in ilk_pch_enable
2675
	 */
2676

2677 2678 2679
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
2680
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2681

2682 2683
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2684
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2685

2686
	/* Split out the IBX/CPU vs CPT settings */
2687

2688
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2689 2690 2691 2692 2693 2694
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2695
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2696 2697
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2698
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2699
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2700 2701
		u32 trans_dp;

2702
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2703

2704
		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2705 2706 2707 2708
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2709
		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2710
	} else {
2711
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2712
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2713 2714 2715 2716 2717 2718 2719

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2720
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2721 2722
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2723
		if (IS_CHERRYVIEW(dev_priv))
2724 2725 2726
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2727
	}
2728 2729
}

2730 2731
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2732

2733 2734
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2735

2736 2737
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2738

2739
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2740

2741
static void wait_panel_status(struct intel_dp *intel_dp,
2742 2743
				       u32 mask,
				       u32 value)
2744
{
2745
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2746
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2747

V
Ville Syrjälä 已提交
2748 2749
	lockdep_assert_held(&dev_priv->pps_mutex);

2750
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2751

2752 2753
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2754

2755 2756 2757
	drm_dbg_kms(&dev_priv->drm,
		    "mask %08x value %08x status %08x control %08x\n",
		    mask, value,
2758 2759
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2760

2761 2762
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2763 2764
		drm_err(&dev_priv->drm,
			"Panel status timeout: status %08x control %08x\n",
2765 2766
			intel_de_read(dev_priv, pp_stat_reg),
			intel_de_read(dev_priv, pp_ctrl_reg));
2767

2768
	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2769
}
2770

2771
static void wait_panel_on(struct intel_dp *intel_dp)
2772 2773
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2774
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2775 2776
}

2777
static void wait_panel_off(struct intel_dp *intel_dp)
2778 2779
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2780
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2781 2782
}

2783
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2784
{
2785 2786 2787
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2788
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2789

2790 2791 2792 2793 2794
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2795 2796
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2797 2798 2799
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2800

2801
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2802 2803
}

2804
static void wait_backlight_on(struct intel_dp *intel_dp)
2805 2806 2807 2808 2809
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2810
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2811 2812 2813 2814
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2815

2816 2817 2818 2819
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2820
static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2821
{
2822
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2823
	u32 control;
2824

V
Ville Syrjälä 已提交
2825 2826
	lockdep_assert_held(&dev_priv->pps_mutex);

2827
	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2828 2829
	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2830 2831 2832
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2833
	return control;
2834 2835
}

2836 2837 2838 2839 2840
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2841
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2842
{
2843
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2844
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2845
	u32 pp;
2846
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2847
	bool need_to_disable = !intel_dp->want_panel_vdd;
2848

V
Ville Syrjälä 已提交
2849 2850
	lockdep_assert_held(&dev_priv->pps_mutex);

2851
	if (!intel_dp_is_edp(intel_dp))
2852
		return false;
2853

2854
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2855
	intel_dp->want_panel_vdd = true;
2856

2857
	if (edp_have_panel_vdd(intel_dp))
2858
		return need_to_disable;
2859

2860 2861
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2862

2863 2864 2865
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2866

2867 2868
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2869

2870
	pp = ilk_get_pp_control(intel_dp);
2871
	pp |= EDP_FORCE_VDD;
2872

2873 2874
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2875

2876 2877
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2878
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2879 2880
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2881 2882 2883
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2884
	if (!edp_have_panel_power(intel_dp)) {
2885 2886 2887 2888
		drm_dbg_kms(&dev_priv->drm,
			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
2889 2890
		msleep(intel_dp->panel_power_up_delay);
	}
2891 2892 2893 2894

	return need_to_disable;
}

2895 2896 2897 2898 2899 2900 2901
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2902
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2903
{
2904
	intel_wakeref_t wakeref;
2905
	bool vdd;
2906

2907
	if (!intel_dp_is_edp(intel_dp))
2908 2909
		return;

2910 2911 2912
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
2913 2914 2915
	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2916 2917
}

2918
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2919
{
2920
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2921 2922
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2923
	u32 pp;
2924
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2925

V
Ville Syrjälä 已提交
2926
	lockdep_assert_held(&dev_priv->pps_mutex);
2927

2928
	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2929

2930
	if (!edp_have_panel_vdd(intel_dp))
2931
		return;
2932

2933 2934 2935
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2936

2937
	pp = ilk_get_pp_control(intel_dp);
2938
	pp &= ~EDP_FORCE_VDD;
2939

2940 2941
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2942

2943 2944
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
P
Paulo Zanoni 已提交
2945

2946
	/* Make sure sequencer is idle before allowing subsequent activity */
2947
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2948 2949
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2950

2951
	if ((pp & PANEL_POWER_ON) == 0)
2952
		intel_dp->panel_power_off_time = ktime_get_boottime();
2953

2954 2955
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2956
}
2957

2958
static void edp_panel_vdd_work(struct work_struct *__work)
2959
{
2960 2961 2962 2963
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2964

2965 2966 2967 2968
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2969 2970
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2984 2985 2986 2987 2988
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2989
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2990
{
2991
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2992 2993 2994

	lockdep_assert_held(&dev_priv->pps_mutex);

2995
	if (!intel_dp_is_edp(intel_dp))
2996
		return;
2997

2998 2999 3000
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
3001

3002 3003
	intel_dp->want_panel_vdd = false;

3004
	if (sync)
3005
		edp_panel_vdd_off_sync(intel_dp);
3006 3007
	else
		edp_panel_vdd_schedule_off(intel_dp);
3008 3009
}

3010
static void edp_panel_on(struct intel_dp *intel_dp)
3011
{
3012
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3013
	u32 pp;
3014
	i915_reg_t pp_ctrl_reg;
3015

3016 3017
	lockdep_assert_held(&dev_priv->pps_mutex);

3018
	if (!intel_dp_is_edp(intel_dp))
3019
		return;
3020

3021 3022 3023
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
		    dp_to_dig_port(intel_dp)->base.base.base.id,
		    dp_to_dig_port(intel_dp)->base.base.name);
V
Ville Syrjälä 已提交
3024

3025 3026 3027 3028
	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
		     "[ENCODER:%d:%s] panel power already on\n",
		     dp_to_dig_port(intel_dp)->base.base.base.id,
		     dp_to_dig_port(intel_dp)->base.base.name))
3029
		return;
3030

3031
	wait_panel_power_cycle(intel_dp);
3032

3033
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3034
	pp = ilk_get_pp_control(intel_dp);
3035
	if (IS_GEN(dev_priv, 5)) {
3036 3037
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
3038 3039
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3040
	}
3041

3042
	pp |= PANEL_POWER_ON;
3043
	if (!IS_GEN(dev_priv, 5))
3044 3045
		pp |= PANEL_POWER_RESET;

3046 3047
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3048

3049
	wait_panel_on(intel_dp);
3050
	intel_dp->last_power_on = jiffies;
3051

3052
	if (IS_GEN(dev_priv, 5)) {
3053
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3054 3055
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3056
	}
3057
}
V
Ville Syrjälä 已提交
3058

3059 3060
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
3061 3062
	intel_wakeref_t wakeref;

3063
	if (!intel_dp_is_edp(intel_dp))
3064 3065
		return;

3066 3067
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
3068 3069
}

3070 3071

static void edp_panel_off(struct intel_dp *intel_dp)
3072
{
3073
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3074
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3075
	u32 pp;
3076
	i915_reg_t pp_ctrl_reg;
3077

3078 3079
	lockdep_assert_held(&dev_priv->pps_mutex);

3080
	if (!intel_dp_is_edp(intel_dp))
3081
		return;
3082

3083 3084
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
		    dig_port->base.base.base.id, dig_port->base.base.name);
3085

3086 3087 3088
	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
		 dig_port->base.base.base.id, dig_port->base.base.name);
3089

3090
	pp = ilk_get_pp_control(intel_dp);
3091 3092
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
3093
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3094
		EDP_BLC_ENABLE);
3095

3096
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3097

3098 3099
	intel_dp->want_panel_vdd = false;

3100 3101
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3102

3103
	wait_panel_off(intel_dp);
3104
	intel_dp->panel_power_off_time = ktime_get_boottime();
3105 3106

	/* We got a reference when we enabled the VDD. */
3107
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3108
}
V
Ville Syrjälä 已提交
3109

3110 3111
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
3112 3113
	intel_wakeref_t wakeref;

3114
	if (!intel_dp_is_edp(intel_dp))
3115
		return;
V
Ville Syrjälä 已提交
3116

3117 3118
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
3119 3120
}

3121 3122
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3123
{
3124
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3125
	intel_wakeref_t wakeref;
3126

3127 3128 3129 3130 3131 3132
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
3133
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
3134

3135 3136 3137
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
3138

3139
		pp = ilk_get_pp_control(intel_dp);
3140
		pp |= EDP_BLC_ENABLE;
3141

3142 3143
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3144
	}
3145 3146
}

3147
/* Enable backlight PWM and backlight PP control. */
3148 3149
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
3150
{
3151
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3152

3153
	if (!intel_dp_is_edp(intel_dp))
3154 3155 3156 3157
		return;

	DRM_DEBUG_KMS("\n");

3158
	intel_panel_enable_backlight(crtc_state, conn_state);
3159 3160 3161 3162 3163
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3164
{
3165
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3166
	intel_wakeref_t wakeref;
3167

3168
	if (!intel_dp_is_edp(intel_dp))
3169 3170
		return;

3171 3172 3173
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
3174

3175
		pp = ilk_get_pp_control(intel_dp);
3176
		pp &= ~EDP_BLC_ENABLE;
3177

3178 3179
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3180
	}
V
Ville Syrjälä 已提交
3181 3182

	intel_dp->last_backlight_off = jiffies;
3183
	edp_wait_backlight_off(intel_dp);
3184
}
3185

3186
/* Disable backlight PP control and backlight PWM. */
3187
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3188
{
3189
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3190

3191
	if (!intel_dp_is_edp(intel_dp))
3192 3193 3194
		return;

	DRM_DEBUG_KMS("\n");
3195

3196
	_intel_edp_backlight_off(intel_dp);
3197
	intel_panel_disable_backlight(old_conn_state);
3198
}
3199

3200 3201 3202 3203 3204 3205 3206
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
3207
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3208
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
3209 3210
	bool is_enabled;

3211 3212
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
3213
		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3214 3215 3216
	if (is_enabled == enable)
		return;

3217 3218
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
3219 3220 3221 3222 3223 3224 3225

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

3226 3227 3228 3229
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3230
	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3231 3232

	I915_STATE_WARN(cur_state != state,
3233 3234
			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
			dig_port->base.base.base.id, dig_port->base.base.name,
3235
			onoff(state), onoff(cur_state));
3236 3237 3238 3239 3240
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
3241
	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3242 3243 3244

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
3245
			onoff(state), onoff(cur_state));
3246 3247 3248 3249
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

3250 3251
static void ilk_edp_pll_on(struct intel_dp *intel_dp,
			   const struct intel_crtc_state *pipe_config)
3252
{
3253
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3254
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3255

3256
	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3257 3258
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
3259

3260 3261
	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
		    pipe_config->port_clock);
3262 3263 3264

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

3265
	if (pipe_config->port_clock == 162000)
3266 3267 3268 3269
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

3270 3271
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3272 3273
	udelay(500);

3274 3275 3276 3277 3278 3279
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
3280
	if (IS_GEN(dev_priv, 5))
3281
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3282

3283
	intel_dp->DP |= DP_PLL_ENABLE;
3284

3285 3286
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3287
	udelay(200);
3288 3289
}

3290 3291
static void ilk_edp_pll_off(struct intel_dp *intel_dp,
			    const struct intel_crtc_state *old_crtc_state)
3292
{
3293
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3294
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3295

3296
	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3297 3298
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
3299

3300
	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3301

3302
	intel_dp->DP &= ~DP_PLL_ENABLE;
3303

3304 3305
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3306 3307 3308
	udelay(200);
}

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3320
		drm_dp_is_branch(intel_dp->dpcd) &&
3321 3322 3323
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

3324 3325 3326 3327 3328 3329
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

3330
	if (!crtc_state->dsc.compression_enable)
3331 3332 3333 3334 3335 3336 3337 3338 3339
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

3340
/* If the sink supports it, try to set the power state appropriately */
3341
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3342 3343 3344 3345 3346 3347 3348 3349
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
3350 3351 3352
		if (downstream_hpd_needs_d0(intel_dp))
			return;

3353 3354
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
3355
	} else {
3356 3357
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

3358 3359 3360 3361 3362
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
3363 3364
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
3365 3366 3367 3368
			if (ret == 1)
				break;
			msleep(1);
		}
3369 3370 3371

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
3372
	}
3373 3374 3375 3376

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3377 3378
}

3379 3380 3381 3382 3383 3384
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
3385
		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3386 3387 3388 3389 3390 3391 3392

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

3393 3394
	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
		    port_name(port));
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

3409
	val = intel_de_read(dev_priv, dp_reg);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3426 3427
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3428
{
3429
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3430
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3431
	intel_wakeref_t wakeref;
3432
	bool ret;
3433

3434 3435 3436
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3437 3438
		return false;

3439 3440
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3441

3442
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3443 3444

	return ret;
3445
}
3446

3447
static void intel_dp_get_config(struct intel_encoder *encoder,
3448
				struct intel_crtc_state *pipe_config)
3449
{
3450
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3451
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3452
	u32 tmp, flags = 0;
3453
	enum port port = encoder->port;
3454
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3455

3456 3457 3458 3459
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3460

3461
	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3462 3463

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3464

3465
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3466 3467
		u32 trans_dp = intel_de_read(dev_priv,
					     TRANS_DP_CTL(crtc->pipe));
3468 3469

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3470 3471 3472
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3473

3474
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3475 3476 3477 3478
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3479
		if (tmp & DP_SYNC_HS_HIGH)
3480 3481 3482
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3483

3484
		if (tmp & DP_SYNC_VS_HIGH)
3485 3486 3487 3488
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3489

3490
	pipe_config->hw.adjusted_mode.flags |= flags;
3491

3492
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3493 3494
		pipe_config->limited_color_range = true;

3495 3496 3497
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3498 3499
	intel_dp_get_m_n(crtc, pipe_config);

3500
	if (port == PORT_A) {
3501
		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3502 3503 3504 3505
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3506

3507
	pipe_config->hw.adjusted_mode.crtc_clock =
3508 3509
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3510

3511
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3512
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
3526 3527 3528
		drm_dbg_kms(&dev_priv->drm,
			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3529
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3530
	}
3531 3532
}

3533 3534
static void intel_disable_dp(struct intel_atomic_state *state,
			     struct intel_encoder *encoder,
3535 3536
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3537
{
3538
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3539

3540 3541
	intel_dp->link_trained = false;

3542
	if (old_crtc_state->has_audio)
3543 3544
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3545 3546 3547

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3548
	intel_edp_panel_vdd_on(intel_dp);
3549
	intel_edp_backlight_off(old_conn_state);
3550
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3551
	intel_edp_panel_off(intel_dp);
3552 3553
}

3554 3555
static void g4x_disable_dp(struct intel_atomic_state *state,
			   struct intel_encoder *encoder,
3556 3557 3558
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
3559
	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3560 3561
}

3562 3563
static void vlv_disable_dp(struct intel_atomic_state *state,
			   struct intel_encoder *encoder,
3564 3565 3566
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
3567
	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3568 3569
}

3570 3571
static void g4x_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3572 3573
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3574
{
3575
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3576
	enum port port = encoder->port;
3577

3578 3579 3580 3581 3582 3583
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3584
	intel_dp_link_down(encoder, old_crtc_state);
3585 3586

	/* Only ilk+ has port A */
3587
	if (port == PORT_A)
3588
		ilk_edp_pll_off(intel_dp, old_crtc_state);
3589 3590
}

3591 3592
static void vlv_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3593 3594
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3595
{
3596
	intel_dp_link_down(encoder, old_crtc_state);
3597 3598
}

3599 3600
static void chv_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3601 3602
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3603
{
3604
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3605

3606
	intel_dp_link_down(encoder, old_crtc_state);
3607

3608
	vlv_dpio_get(dev_priv);
3609 3610

	/* Assert data lane reset */
3611
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3612

3613
	vlv_dpio_put(dev_priv);
3614 3615
}

3616 3617
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3618 3619
			 u32 *DP,
			 u8 dp_train_pat)
3620
{
3621
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3622
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3623
	enum port port = intel_dig_port->base.port;
3624
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3625

3626
	if (dp_train_pat & train_pat_mask)
3627 3628 3629
		drm_dbg_kms(&dev_priv->drm,
			    "Using DP training pattern TPS%d\n",
			    dp_train_pat & train_pat_mask);
3630

3631
	if (HAS_DDI(dev_priv)) {
3632
		u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3633 3634 3635 3636 3637 3638 3639

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3640
		switch (dp_train_pat & train_pat_mask) {
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3654 3655 3656
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3657
		}
3658
		intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3659

3660
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3661
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3675 3676
			drm_dbg_kms(&dev_priv->drm,
				    "TPS3 not supported, using TPS2 instead\n");
3677 3678 3679 3680 3681
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3682
		*DP &= ~DP_LINK_TRAIN_MASK;
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3695 3696
			drm_dbg_kms(&dev_priv->drm,
				    "TPS3 not supported, using TPS2 instead\n");
3697
			*DP |= DP_LINK_TRAIN_PAT_2;
3698 3699 3700 3701 3702
			break;
		}
	}
}

3703
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3704
				 const struct intel_crtc_state *old_crtc_state)
3705
{
3706
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3707 3708 3709

	/* enable with pattern 1 (as per spec) */

3710
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3711 3712 3713 3714 3715 3716 3717 3718

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3719
	if (old_crtc_state->has_audio)
3720
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3721

3722 3723
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3724 3725
}

3726 3727
static void intel_enable_dp(struct intel_atomic_state *state,
			    struct intel_encoder *encoder,
3728 3729
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3730
{
3731
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3732
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3733
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3734
	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3735
	enum pipe pipe = crtc->pipe;
3736
	intel_wakeref_t wakeref;
3737

3738
	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3739
		return;
3740

3741 3742 3743
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3744

3745
		intel_dp_enable_port(intel_dp, pipe_config);
3746

3747 3748 3749 3750
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3751

3752
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3753 3754
		unsigned int lane_mask = 0x0;

3755
		if (IS_CHERRYVIEW(dev_priv))
3756
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3757

3758 3759
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3760
	}
3761

3762
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3763
	intel_dp_start_link_train(intel_dp);
3764
	intel_dp_stop_link_train(intel_dp);
3765

3766
	if (pipe_config->has_audio) {
3767 3768
		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
			pipe_name(pipe));
3769
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3770
	}
3771
}
3772

3773 3774
static void g4x_enable_dp(struct intel_atomic_state *state,
			  struct intel_encoder *encoder,
3775 3776
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3777
{
3778
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3779
	intel_edp_backlight_on(pipe_config, conn_state);
3780
}
3781

3782 3783
static void vlv_enable_dp(struct intel_atomic_state *state,
			  struct intel_encoder *encoder,
3784 3785
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3786
{
3787
	intel_edp_backlight_on(pipe_config, conn_state);
3788 3789
}

3790 3791
static void g4x_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3792 3793
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3794
{
3795
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3796
	enum port port = encoder->port;
3797

3798
	intel_dp_prepare(encoder, pipe_config);
3799

3800
	/* Only ilk+ has port A */
3801
	if (port == PORT_A)
3802
		ilk_edp_pll_on(intel_dp, pipe_config);
3803 3804
}

3805 3806 3807
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3808
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3809
	enum pipe pipe = intel_dp->pps_pipe;
3810
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3811

3812
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3813

3814
	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3815 3816
		return;

3817 3818 3819
	edp_panel_vdd_off_sync(intel_dp);

	/*
3820
	 * VLV seems to get confused when multiple power sequencers
3821 3822 3823
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3824
	 * selected in multiple power sequencers, but let's clear the
3825 3826 3827
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
3828 3829 3830 3831
	drm_dbg_kms(&dev_priv->drm,
		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
3832 3833
	intel_de_write(dev_priv, pp_on_reg, 0);
	intel_de_posting_read(dev_priv, pp_on_reg);
3834 3835 3836 3837

	intel_dp->pps_pipe = INVALID_PIPE;
}

3838
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3839 3840 3841 3842 3843 3844
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3845
	for_each_intel_dp(&dev_priv->drm, encoder) {
3846
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3847

3848 3849 3850 3851
		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
			 pipe_name(pipe), encoder->base.base.id,
			 encoder->base.name);
3852

3853 3854 3855
		if (intel_dp->pps_pipe != pipe)
			continue;

3856 3857 3858 3859
		drm_dbg_kms(&dev_priv->drm,
			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
			    pipe_name(pipe), encoder->base.base.id,
			    encoder->base.name);
3860 3861

		/* make sure vdd is off before we steal it */
3862
		vlv_detach_power_sequencer(intel_dp);
3863 3864 3865
	}
}

3866 3867
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3868
{
3869
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3870
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3871
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3872 3873 3874

	lockdep_assert_held(&dev_priv->pps_mutex);

3875
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3876

3877 3878 3879 3880 3881 3882 3883
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3884
		vlv_detach_power_sequencer(intel_dp);
3885
	}
3886 3887 3888 3889 3890

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3891
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3892

3893 3894
	intel_dp->active_pipe = crtc->pipe;

3895
	if (!intel_dp_is_edp(intel_dp))
3896 3897
		return;

3898 3899 3900
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

3901 3902 3903 3904
	drm_dbg_kms(&dev_priv->drm,
		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
		    encoder->base.name);
3905 3906

	/* init power sequencer on this pipe and port */
3907 3908
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3909 3910
}

3911 3912
static void vlv_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3913 3914
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3915
{
3916
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3917

3918
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3919 3920
}

3921 3922
static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
				  struct intel_encoder *encoder,
3923 3924
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3925
{
3926
	intel_dp_prepare(encoder, pipe_config);
3927

3928
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3929 3930
}

3931 3932
static void chv_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3933 3934
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3935
{
3936
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3937

3938
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3939 3940

	/* Second common lane will stay alive on its own now */
3941
	chv_phy_release_cl2_override(encoder);
3942 3943
}

3944 3945
static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
				  struct intel_encoder *encoder,
3946 3947
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3948
{
3949
	intel_dp_prepare(encoder, pipe_config);
3950

3951
	chv_phy_pre_pll_enable(encoder, pipe_config);
3952 3953
}

3954 3955
static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
				    struct intel_encoder *encoder,
3956 3957
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3958
{
3959
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3960 3961
}

3962 3963 3964 3965
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3966
bool
3967
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3968
{
3969 3970
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3971 3972
}

3973
/* These are source-specific values. */
3974
u8
K
Keith Packard 已提交
3975
intel_dp_voltage_max(struct intel_dp *intel_dp)
3976
{
3977
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3978 3979
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3980

3981
	if (HAS_DDI(dev_priv))
3982
		return intel_ddi_dp_voltage_max(encoder);
3983
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3984
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3985
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3986
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3987
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3988
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3989
	else
3990
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3991 3992
}

3993 3994
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3995
{
3996
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3997 3998
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3999

4000 4001
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4002
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4003
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4004 4005 4006 4007 4008 4009 4010
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4011
		default:
4012
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
4013
		}
4014
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
4015
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4016 4017 4018 4019 4020
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
4021
		default:
4022
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
4023 4024 4025
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4026 4027 4028 4029 4030 4031 4032
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
4033
		default:
4034
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
4035
		}
4036 4037 4038
	}
}

4039
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
4040
{
4041
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4042 4043
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
4044
	u8 train_set = intel_dp->train_set[0];
4045 4046

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4047
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4048 4049
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4050
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4051 4052 4053
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
4054
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4055 4056 4057
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
4058
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4059 4060 4061
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
4062
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4063 4064 4065 4066 4067 4068 4069
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
4070
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4071 4072
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4073
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4074 4075 4076
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
4077
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4078 4079 4080
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
4081
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4082 4083 4084 4085 4086 4087 4088
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
4089
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4090 4091
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4092
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4093 4094 4095
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
4096
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4097 4098 4099 4100 4101 4102 4103
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
4104
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4105 4106
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4107
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

4119 4120
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
4121 4122 4123 4124

	return 0;
}

4125
static u32 chv_signal_levels(struct intel_dp *intel_dp)
4126
{
4127 4128 4129
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
4130
	u8 train_set = intel_dp->train_set[0];
4131 4132

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4133
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4134
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4135
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4136 4137 4138
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
4139
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4140 4141 4142
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
4143
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4144 4145 4146
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
4147
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4148 4149
			deemph_reg_value = 128;
			margin_reg_value = 154;
4150
			uniq_trans_scale = true;
4151 4152 4153 4154 4155
			break;
		default:
			return 0;
		}
		break;
4156
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4157
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4158
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4159 4160 4161
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
4162
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4163 4164 4165
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
4166
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4167 4168 4169 4170 4171 4172 4173
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
4174
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4175
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4176
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4177 4178 4179
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
4180
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4181 4182 4183 4184 4185 4186 4187
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
4188
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4189
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4190
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

4202 4203
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
4204 4205 4206 4207

	return 0;
}

4208 4209
static u32
g4x_signal_levels(u8 train_set)
4210
{
4211
	u32 signal_levels = 0;
4212

4213
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4214
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4215 4216 4217
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
4218
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4219 4220
		signal_levels |= DP_VOLTAGE_0_6;
		break;
4221
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4222 4223
		signal_levels |= DP_VOLTAGE_0_8;
		break;
4224
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4225 4226 4227
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
4228
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4229
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4230 4231 4232
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
4233
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4234 4235
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
4236
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4237 4238
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
4239
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4240 4241 4242 4243 4244 4245
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

4246
/* SNB CPU eDP voltage swing and pre-emphasis control */
4247 4248
static u32
snb_cpu_edp_signal_levels(u8 train_set)
4249
{
4250 4251 4252
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4253 4254
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4255
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4256
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4257
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4258 4259
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4260
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4261 4262
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4263
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4264 4265
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4266
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4267
	default:
4268 4269 4270
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4271 4272 4273
	}
}

4274
/* IVB CPU eDP voltage swing and pre-emphasis control */
4275 4276
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
4277 4278 4279 4280
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
4281
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4282
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4283
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4284
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4285
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
4286 4287
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

4288
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4289
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4290
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4291 4292
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

4293
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4294
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4295
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

4305
void
4306
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4307
{
4308
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4309
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4310
	enum port port = intel_dig_port->base.port;
4311 4312
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
4313

R
Rodrigo Vivi 已提交
4314
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4315 4316
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
4317
		signal_levels = ddi_signal_levels(intel_dp);
4318
		mask = DDI_BUF_EMP_MASK;
4319
	} else if (IS_CHERRYVIEW(dev_priv)) {
4320
		signal_levels = chv_signal_levels(intel_dp);
4321
	} else if (IS_VALLEYVIEW(dev_priv)) {
4322
		signal_levels = vlv_signal_levels(intel_dp);
4323
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4324
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
4325
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4326
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4327
		signal_levels = snb_cpu_edp_signal_levels(train_set);
4328 4329
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
4330
		signal_levels = g4x_signal_levels(train_set);
4331 4332 4333
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

4334
	if (mask)
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
		drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
			    signal_levels);

	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
		    " (max)" : "");
4346

4347
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4348

4349 4350
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4351 4352
}

4353
void
4354
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4355
				       u8 dp_train_pat)
4356
{
4357
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4358 4359
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
4360

4361
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4362

4363 4364
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4365 4366
}

4367
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4368
{
4369
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4370
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4371
	enum port port = intel_dig_port->base.port;
4372
	u32 val;
4373

4374
	if (!HAS_DDI(dev_priv))
4375 4376
		return;

4377
	val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4378 4379
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4380
	intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4381 4382

	/*
4383 4384 4385
	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
	 * reason we need to set idle transmission mode is to work around a HW
	 * issue where we enable the pipe while not in idle link-training mode.
4386 4387 4388
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
4389
	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4390 4391
		return;

4392
	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4393
				  DP_TP_STATUS_IDLE_DONE, 1))
4394 4395
		drm_err(&dev_priv->drm,
			"Timed out waiting for DP idle patterns\n");
4396 4397
}

4398
static void
4399 4400
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
4401
{
4402
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4403
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4404
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4405
	enum port port = encoder->port;
4406
	u32 DP = intel_dp->DP;
4407

4408 4409 4410
	if (drm_WARN_ON(&dev_priv->drm,
			(intel_de_read(dev_priv, intel_dp->output_reg) &
			 DP_PORT_EN) == 0))
4411 4412
		return;

4413
	drm_dbg_kms(&dev_priv->drm, "\n");
4414

4415
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4416
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4417
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4418
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4419
	} else {
4420
		DP &= ~DP_LINK_TRAIN_MASK;
4421
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4422
	}
4423 4424
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4425

4426
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4427 4428
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4429 4430 4431 4432 4433 4434

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4435
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4436 4437 4438 4439 4440 4441 4442
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4443
		/* always enable with pattern 1 (as per spec) */
4444 4445 4446
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4447 4448
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4449 4450

		DP &= ~DP_PORT_EN;
4451 4452
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4453

4454
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4455 4456
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4457 4458
	}

4459
	msleep(intel_dp->panel_power_down_delay);
4460 4461

	intel_dp->DP = DP;
4462 4463

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4464 4465 4466 4467
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4468
	}
4469 4470
}

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4507
bool
4508
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4509
{
4510 4511
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4512
		return false; /* aux transfer failed */
4513

4514 4515
	intel_dp_extended_receiver_capabilities(intel_dp);

4516
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4517

4518 4519
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4520

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4531 4532 4533 4534 4535 4536 4537 4538
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4539 4540 4541
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4554

4555
		/* FEC is supported only on DP 1.4 */
4556 4557 4558 4559
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4560

4561
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4562 4563 4564
	}
}

4565 4566 4567 4568 4569
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4570

4571
	/* this function is meant to be called only once */
4572
	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4573

4574
	if (!intel_dp_read_dpcd(intel_dp))
4575 4576
		return false;

4577 4578
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4579

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4590 4591
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4592 4593 4594
		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
			    (int)sizeof(intel_dp->edp_dpcd),
			    intel_dp->edp_dpcd);
4595

4596 4597 4598 4599 4600 4601
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4602 4603
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4604
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4605 4606
		int i;

4607 4608
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4609

4610 4611
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4612 4613 4614 4615

			if (val == 0)
				break;

4616 4617 4618 4619 4620 4621
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4622
			intel_dp->sink_rates[i] = (val * 200) / 10;
4623
		}
4624
		intel_dp->num_sink_rates = i;
4625
	}
4626

4627 4628 4629 4630
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4631 4632 4633 4634 4635
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4636 4637
	intel_dp_set_common_rates(intel_dp);

4638 4639 4640 4641
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4652 4653 4654 4655
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4656
	if (!intel_dp_is_edp(intel_dp)) {
4657 4658 4659
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4660
		intel_dp_set_sink_rates(intel_dp);
4661 4662
		intel_dp_set_common_rates(intel_dp);
	}
4663

4664
	/*
4665 4666
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4667
	 */
4668
	if (!intel_dp_is_edp(intel_dp) &&
L
Lyude Paul 已提交
4669 4670
	    !drm_dp_has_quirk(&intel_dp->desc, 0,
			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4671 4672
		u8 count;
		ssize_t r;
4673

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4695

4696
	if (!drm_dp_is_branch(intel_dp->dpcd))
4697 4698 4699 4700 4701
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4702 4703 4704
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4705 4706 4707
		return false; /* downstream port status fetch failed */

	return true;
4708 4709
}

4710
static bool
4711
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4712
{
4713
	u8 mstm_cap;
4714 4715 4716 4717

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4718
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4719
		return false;
4720

4721
	return mstm_cap & DP_MST_CAP;
4722 4723
}

4724 4725 4726 4727 4728 4729 4730 4731
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4732 4733 4734
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4735 4736 4737 4738
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

4739
	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4740 4741 4742
		      encoder->base.base.id, encoder->base.name,
		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
		      yesno(i915_modparams.enable_dp_mst));
4743 4744 4745 4746

	if (!intel_dp->can_mst)
		return;

4747 4748
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4749 4750 4751

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4752 4753 4754 4755 4756
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4757 4758 4759
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4760 4761
}

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
{
	/*
	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
	 * of Color Encoding Format and Content Color Gamut], in order to
	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		return true;

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_SYCC_601:
	case DRM_MODE_COLORIMETRY_OPYCC_601:
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		return true;
	default:
		break;
	}

	return false;
}

4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
				     struct dp_sdp *sdp, size_t size)
{
	size_t length = sizeof(struct dp_sdp);

	if (size < length)
		return -ENOSPC;

	memset(sdp, 0, size);

	/*
	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
	 * VSC SDP Header Bytes
	 */
	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */

	/* VSC SDP Payload for DB16 through DB18 */
	/* Pixel Encoding and Colorimetry Formats  */
	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */

	switch (vsc->bpc) {
	case 6:
		/* 6bpc: 0x0 */
		break;
	case 8:
		sdp->db[17] = 0x1; /* DB17[3:0] */
		break;
	case 10:
		sdp->db[17] = 0x2;
		break;
	case 12:
		sdp->db[17] = 0x3;
		break;
	case 16:
		sdp->db[17] = 0x4;
		break;
	default:
		MISSING_CASE(vsc->bpc);
		break;
	}
	/* Dynamic Range and Component Bit Depth */
	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
		sdp->db[17] |= 0x80;  /* DB17[7] */

	/* Content Type */
	sdp->db[18] = vsc->content_type & 0x7;

	return length;
}

static ssize_t
intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
					 struct dp_sdp *sdp,
					 size_t size)
{
	size_t length = sizeof(struct dp_sdp);
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;

	if (size < length)
		return -ENOSPC;

	memset(sdp, 0, size);

	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
		return -ENOSPC;
	}

	if (len != infoframe_size) {
		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
		return -ENOSPC;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
	sdp->sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
	 * - 80h + Non-audio INFOFRAME Type value
	 * - InfoFrame Type: 0x07
	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
	 */
	sdp->sdp_header.HB1 = drm_infoframe->type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1
	 */
	sdp->sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	sdp->sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	sdp->db[0] = drm_infoframe->version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	sdp->db[1] = drm_infoframe->length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata consists of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
}

static void intel_write_dp_sdp(struct intel_encoder *encoder,
			       const struct intel_crtc_state *crtc_state,
			       unsigned int type)
{
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct dp_sdp sdp = {};
	ssize_t len;

	if ((crtc_state->infoframes.enable &
	     intel_hdmi_infoframe_enable(type)) == 0)
		return;

	switch (type) {
	case DP_SDP_VSC:
		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
					    sizeof(sdp));
		break;
	case HDMI_PACKET_TYPE_GAMUT_METADATA:
		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
							       &sdp, sizeof(sdp));
		break;
	default:
		MISSING_CASE(type);
4942
		return;
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
	}

	if (drm_WARN_ON(&dev_priv->drm, len < 0))
		return;

	intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
}

void intel_dp_set_infoframes(struct intel_encoder *encoder,
			     bool enable,
			     const struct intel_crtc_state *crtc_state,
			     const struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
	u32 val = intel_de_read(dev_priv, reg);

	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
	/* When PSR is enabled, this routine doesn't disable VSC DIP */
	if (intel_psr_enabled(intel_dp))
		val &= ~dip_enable;
	else
		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);

	if (!enable) {
		intel_de_write(dev_priv, reg, val);
		intel_de_posting_read(dev_priv, reg);
		return;
	}

	intel_de_write(dev_priv, reg, val);
	intel_de_posting_read(dev_priv, reg);

	/* When PSR is enabled, VSC SDP is handled by PSR routine */
	if (!intel_psr_enabled(intel_dp))
		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);

	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
}

4987
static void
4988 4989 4990
intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
		       const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		/* RGB: DB16[7:4] = 0h */
		break;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc_sdp.db[16] |= 0x1;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc_sdp.db[16] |= 0x2;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc_sdp.db[16] |= 0x3;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc_sdp.db[16] |= 0x4;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc_sdp.db[16] |= 0x5;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc_sdp.db[16] |= 0x6;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc_sdp.db[16] |= 0x7;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
		break;
	default:
		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */

		/* RGB->YCBCR color conversion uses the BT.709 color space. */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
		break;
	}
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
static void
intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					  const struct intel_crtc_state *crtc_state,
					  const struct drm_connector_state *conn_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp infoframe_sdp = {};
	struct hdmi_drm_infoframe drm_infoframe = {};
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;
	int ret;

	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
	if (ret) {
		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
		return;
	}

	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
		return;
	}

	if (len != infoframe_size) {
		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
		return;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Packet ID, 00h for non-Audio INFOFRAME */
	infoframe_sdp.sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
	 */
	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1,
	 */
	infoframe_sdp.sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	infoframe_sdp.db[0] = drm_infoframe.version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	infoframe_sdp.db[1] = drm_infoframe.length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
					HDMI_PACKET_TYPE_GAMUT_METADATA,
					&infoframe_sdp,
					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
}

5191 5192 5193
void intel_dp_vsc_enable(struct intel_dp *intel_dp,
			 const struct intel_crtc_state *crtc_state,
			 const struct drm_connector_state *conn_state)
5194
{
5195
	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
5196 5197
		return;

5198
	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
5199 5200
}

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	if (!conn_state->hdr_output_metadata)
		return;

	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
						  crtc_state,
						  conn_state);
}

5213
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5214
{
5215
	int status = 0;
5216
	int test_link_rate;
5217
	u8 test_lane_count, test_link_bw;
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5238 5239 5240 5241

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
5242 5243 5244 5245 5246 5247
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
5248 5249
}

5250
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5251
{
5252 5253
	u8 test_pattern;
	u8 test_misc;
5254 5255 5256 5257
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5258 5259
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

5281 5282
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
5306
	intel_dp->compliance.test_active = true;
5307 5308

	return DP_TEST_ACK;
5309 5310
}

5311
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5312
{
5313
	u8 test_result = DP_TEST_ACK;
5314 5315 5316 5317
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
5318
	    connector->edid_corrupt ||
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
5332
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5333
	} else {
5334 5335 5336 5337 5338 5339 5340
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

5341 5342
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
5343 5344 5345
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5346
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5347 5348 5349
	}

	/* Set test active flag here so userspace doesn't interrupt things */
5350
	intel_dp->compliance.test_active = true;
5351

5352 5353 5354
	return test_result;
}

5355
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5356
{
5357
	u8 test_result = DP_TEST_NAK;
5358 5359 5360 5361 5362
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
5363 5364
	u8 response = DP_TEST_NAK;
	u8 request = 0;
5365
	int status;
5366

5367
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5368 5369 5370 5371 5372
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

5373
	switch (request) {
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
5391
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5392 5393 5394
		break;
	}

5395 5396 5397
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

5398
update_status:
5399
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5400 5401
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
5402 5403
}

5404 5405 5406 5407 5408 5409
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
5410
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5411 5412 5413
		int ret = 0;
		int retry;
		bool handled;
5414 5415

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5416 5417 5418 5419 5420
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
5421
			if (intel_dp->active_mst_links > 0 &&
5422
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5423 5424 5425 5426 5427
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

5428
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
5444
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5445 5446 5447 5448 5449 5450 5451 5452 5453
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
5454 5455
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
5456 5457 5458 5459 5460
		}
	}
	return -EINVAL;
}

5461 5462 5463 5464 5465
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

5466
	if (!intel_dp->link_trained)
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
5478 5479 5480
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
5497 5498
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5499
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

5528
	drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state));
5529

5530
	if (!crtc_state->hw.active)
5531 5532 5533 5534 5535 5536 5537 5538
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
5539 5540 5541

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5542
	if (crtc_state->has_pch_encoder)
5543 5544 5545 5546 5547 5548 5549
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
5550
	intel_wait_for_vblank(dev_priv, crtc->pipe);
5551 5552

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5553
	if (crtc_state->has_pch_encoder)
5554 5555
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
5556 5557

	return 0;
5558 5559
}

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
5572 5573 5574 5575
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
		 struct intel_connector *connector,
		 bool irq_received)
5576
{
5577
	struct drm_modeset_acquire_ctx ctx;
5578
	enum intel_hotplug_state state;
5579
	int ret;
5580

5581
	state = intel_encoder_hotplug(encoder, connector, irq_received);
5582

5583
	drm_modeset_acquire_init(&ctx, 0);
5584

5585 5586
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
5587

5588 5589 5590 5591
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
5592

5593 5594
		break;
	}
5595

5596 5597
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
5598 5599
	drm_WARN(encoder->base.dev, ret,
		 "Acquiring modeset locks failed with %i\n", ret);
5600

5601 5602 5603 5604 5605 5606 5607
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
		state = INTEL_HOTPLUG_RETRY;

5608
	return state;
5609 5610
}

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

5627
	if (val & DP_CP_IRQ)
5628
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5629 5630 5631

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5632 5633
}

5634 5635 5636 5637 5638 5639 5640
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
5641 5642 5643 5644 5645
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
5646
 */
5647
static bool
5648
intel_dp_short_pulse(struct intel_dp *intel_dp)
5649
{
5650
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5651 5652
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
5653

5654 5655 5656 5657
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
5658
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5659

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
5671 5672
	}

5673
	intel_dp_check_service_irq(intel_dp);
5674

5675 5676 5677
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

5678 5679 5680
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
5681

5682 5683
	intel_psr_short_pulse(intel_dp);

5684
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5685 5686
		drm_dbg_kms(&dev_priv->drm,
			    "Link Training Compliance Test requested\n");
5687
		/* Send a Hotplug Uevent to userspace to start modeset */
5688
		drm_kms_helper_hotplug_event(&dev_priv->drm);
5689
	}
5690 5691

	return true;
5692 5693
}

5694
/* XXX this is probably wrong for multiple downstream ports */
5695
static enum drm_connector_status
5696
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5697
{
5698
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5699 5700
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
5701

5702 5703 5704
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

5705 5706 5707
	if (lspcon->active)
		lspcon_resume(lspcon);

5708 5709 5710 5711
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5712
	if (!drm_dp_is_branch(dpcd))
5713
		return connector_status_connected;
5714 5715

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5716 5717
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5718

5719 5720
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5721 5722
	}

5723 5724 5725
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5726
	/* If no HPD, poke DDC gently */
5727
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5728
		return connector_status_connected;
5729 5730

	/* Well we tried, say unknown for unreliable port types */
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5743 5744 5745

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5746
	return connector_status_disconnected;
5747 5748
}

5749 5750 5751
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5752
	return connector_status_connected;
5753 5754
}

5755
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5756
{
5757
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5758
	u32 bit;
5759

5760 5761
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5762 5763
		bit = SDE_PORTB_HOTPLUG;
		break;
5764
	case HPD_PORT_C:
5765 5766
		bit = SDE_PORTC_HOTPLUG;
		break;
5767
	case HPD_PORT_D:
5768 5769 5770
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
5771
		MISSING_CASE(encoder->hpd_pin);
5772 5773 5774
		return false;
	}

5775
	return intel_de_read(dev_priv, SDEISR) & bit;
5776 5777
}

5778
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5779
{
5780
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5781 5782
	u32 bit;

5783 5784
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5785 5786
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
5787
	case HPD_PORT_C:
5788 5789
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
5790
	case HPD_PORT_D:
5791 5792
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
5793
	default:
5794
		MISSING_CASE(encoder->hpd_pin);
5795 5796 5797
		return false;
	}

5798
	return intel_de_read(dev_priv, SDEISR) & bit;
5799 5800
}

5801
static bool spt_digital_port_connected(struct intel_encoder *encoder)
5802
{
5803
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5804 5805
	u32 bit;

5806 5807
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5808 5809
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
5810
	case HPD_PORT_E:
5811 5812
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
5813
	default:
5814
		return cpt_digital_port_connected(encoder);
5815
	}
5816

5817
	return intel_de_read(dev_priv, SDEISR) & bit;
5818 5819
}

5820
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5821
{
5822
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5823
	u32 bit;
5824

5825 5826
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5827 5828
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
5829
	case HPD_PORT_C:
5830 5831
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5832
	case HPD_PORT_D:
5833 5834 5835
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5836
		MISSING_CASE(encoder->hpd_pin);
5837 5838 5839
		return false;
	}

5840
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5841 5842
}

5843
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5844
{
5845
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5846 5847
	u32 bit;

5848 5849
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5850
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5851
		break;
5852
	case HPD_PORT_C:
5853
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5854
		break;
5855
	case HPD_PORT_D:
5856
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5857 5858
		break;
	default:
5859
		MISSING_CASE(encoder->hpd_pin);
5860
		return false;
5861 5862
	}

5863
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5864 5865
}

5866
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5867
{
5868 5869 5870
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5871
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5872
	else
5873
		return ibx_digital_port_connected(encoder);
5874 5875
}

5876
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5877
{
5878 5879 5880
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5881
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5882
	else
5883
		return cpt_digital_port_connected(encoder);
5884 5885
}

5886
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5887
{
5888 5889 5890
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5891
		return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5892
	else
5893
		return cpt_digital_port_connected(encoder);
5894 5895
}

5896
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5897
{
5898 5899 5900
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5901
		return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5902
	else
5903
		return cpt_digital_port_connected(encoder);
5904 5905
}

5906
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5907
{
5908
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5909 5910
	u32 bit;

5911 5912
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5913 5914
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5915
	case HPD_PORT_B:
5916 5917
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5918
	case HPD_PORT_C:
5919 5920 5921
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5922
		MISSING_CASE(encoder->hpd_pin);
5923 5924 5925
		return false;
	}

5926
	return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5927 5928
}

5929 5930
static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
				      enum phy phy)
5931
{
5932
	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5933
		return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5934

5935
	return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5936 5937
}

5938
static bool icp_digital_port_connected(struct intel_encoder *encoder)
5939 5940
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5941
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5942
	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5943

5944
	if (intel_phy_is_combo(dev_priv, phy))
5945
		return intel_combo_phy_connected(dev_priv, phy);
5946
	else if (intel_phy_is_tc(dev_priv, phy))
5947
		return intel_tc_port_connected(dig_port);
5948
	else
5949
		MISSING_CASE(encoder->hpd_pin);
5950 5951

	return false;
5952 5953
}

5954 5955
/*
 * intel_digital_port_connected - is the specified port connected?
5956
 * @encoder: intel_encoder
5957
 *
5958 5959 5960 5961 5962
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5963
 * Return %true if port is connected, %false otherwise.
5964
 */
5965
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5966
{
5967 5968
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5969
	if (HAS_GMCH(dev_priv)) {
5970
		if (IS_GM45(dev_priv))
5971
			return gm45_digital_port_connected(encoder);
5972
		else
5973
			return g4x_digital_port_connected(encoder);
5974 5975
	}

5976 5977 5978
	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
		return icp_digital_port_connected(encoder);
	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5979
		return spt_digital_port_connected(encoder);
5980
	else if (IS_GEN9_LP(dev_priv))
5981
		return bxt_digital_port_connected(encoder);
5982
	else if (IS_GEN(dev_priv, 8))
5983
		return bdw_digital_port_connected(encoder);
5984
	else if (IS_GEN(dev_priv, 7))
5985
		return ivb_digital_port_connected(encoder);
5986
	else if (IS_GEN(dev_priv, 6))
5987
		return snb_digital_port_connected(encoder);
5988
	else if (IS_GEN(dev_priv, 5))
5989 5990 5991 5992
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5993 5994
}

5995 5996 5997
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5998
	bool is_connected = false;
5999 6000 6001 6002 6003 6004 6005 6006
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

6007
static struct edid *
6008
intel_dp_get_edid(struct intel_dp *intel_dp)
6009
{
6010
	struct intel_connector *intel_connector = intel_dp->attached_connector;
6011

6012 6013 6014 6015
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
6016 6017
			return NULL;

J
Jani Nikula 已提交
6018
		return drm_edid_duplicate(intel_connector->edid);
6019 6020 6021 6022
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
6023

6024 6025 6026 6027 6028
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
6029

6030
	intel_dp_unset_edid(intel_dp);
6031 6032 6033
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

6034
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
6035
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
L
Lyude Paul 已提交
6036
	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6037 6038
}

6039 6040
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
6041
{
6042
	struct intel_connector *intel_connector = intel_dp->attached_connector;
6043

6044
	drm_dp_cec_unset_edid(&intel_dp->aux);
6045 6046
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
6047

6048
	intel_dp->has_audio = false;
L
Lyude Paul 已提交
6049
	intel_dp->edid_quirks = 0;
6050
}
6051

6052
static int
6053 6054 6055
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
6056
{
6057
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6058
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6059 6060
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
6061 6062
	enum drm_connector_status status;

6063 6064
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
6065 6066
	drm_WARN_ON(&dev_priv->drm,
		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6067

6068
	/* Can't disconnect eDP */
6069
	if (intel_dp_is_edp(intel_dp))
6070
		status = edp_detect(intel_dp);
6071
	else if (intel_digital_port_connected(encoder))
6072
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
6073
	else
6074 6075
		status = connector_status_disconnected;

6076
	if (status == connector_status_disconnected) {
6077
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6078
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6079

6080
		if (intel_dp->is_mst) {
6081 6082 6083 6084
			drm_dbg_kms(&dev_priv->drm,
				    "MST device may have disappeared %d vs %d\n",
				    intel_dp->is_mst,
				    intel_dp->mst_mgr.mst_state);
6085 6086 6087 6088 6089
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

6090
		goto out;
6091
	}
Z
Zhenyu Wang 已提交
6092

6093
	if (intel_dp->reset_link_params) {
6094 6095
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6096

6097 6098
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6099 6100 6101

		intel_dp->reset_link_params = false;
	}
6102

6103 6104
	intel_dp_print_rates(intel_dp);

6105 6106 6107 6108
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

6109 6110 6111
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
6112 6113 6114 6115 6116
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
6117 6118
		status = connector_status_disconnected;
		goto out;
6119 6120 6121 6122 6123 6124
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
6125 6126 6127 6128
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
6129
		if (ret)
6130 6131
			return ret;
	}
6132

6133 6134 6135 6136 6137 6138 6139 6140
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

6141
	intel_dp_set_edid(intel_dp);
6142 6143
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
6144
		status = connector_status_connected;
6145

6146
	intel_dp_check_service_irq(intel_dp);
6147

6148
out:
6149
	if (status != connector_status_connected && !intel_dp->is_mst)
6150
		intel_dp_unset_edid(intel_dp);
6151

6152 6153 6154 6155 6156 6157
	/*
	 * Make sure the refs for power wells enabled during detect are
	 * dropped to avoid a new detect cycle triggered by HPD polling.
	 */
	intel_display_power_flush_work(dev_priv);

6158
	return status;
6159 6160
}

6161 6162
static void
intel_dp_force(struct drm_connector *connector)
6163
{
6164
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6165 6166
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
6167
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6168 6169
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
6170
	intel_wakeref_t wakeref;
6171

6172 6173
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
6174
	intel_dp_unset_edid(intel_dp);
6175

6176 6177
	if (connector->status != connector_status_connected)
		return;
6178

6179
	wakeref = intel_display_power_get(dev_priv, aux_domain);
6180 6181 6182

	intel_dp_set_edid(intel_dp);

6183
	intel_display_power_put(dev_priv, aux_domain, wakeref);
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
6197

6198
	/* if eDP has no EDID, fall back to fixed mode */
6199
	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6200
	    intel_connector->panel.fixed_mode) {
6201
		struct drm_display_mode *mode;
6202 6203

		mode = drm_mode_duplicate(connector->dev,
6204
					  intel_connector->panel.fixed_mode);
6205
		if (mode) {
6206 6207 6208 6209
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
6210

6211
	return 0;
6212 6213
}

6214 6215 6216
static int
intel_dp_connector_register(struct drm_connector *connector)
{
6217
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6218 6219 6220 6221 6222
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
6223

6224
	intel_connector_debugfs_add(connector);
6225 6226 6227 6228 6229

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
6230 6231
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
6232
		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6233
	return ret;
6234 6235
}

6236 6237 6238
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
6239
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6240 6241 6242

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
6243 6244 6245
	intel_connector_unregister(connector);
}

6246
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6247
{
6248
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6249
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6250

6251
	intel_dp_mst_encoder_cleanup(intel_dig_port);
6252
	if (intel_dp_is_edp(intel_dp)) {
6253 6254
		intel_wakeref_t wakeref;

6255
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6256 6257 6258 6259
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
6260 6261
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
6262

6263 6264 6265 6266
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
6267
	}
6268 6269

	intel_dp_aux_fini(intel_dp);
6270 6271 6272 6273 6274
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
6275

6276
	drm_encoder_cleanup(encoder);
6277
	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6278 6279
}

6280
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6281
{
6282
	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6283
	intel_wakeref_t wakeref;
6284

6285
	if (!intel_dp_is_edp(intel_dp))
6286 6287
		return;

6288 6289 6290 6291
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
6292
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6293 6294
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
6295 6296
}

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

6309 6310 6311 6312
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
6313
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6314 6315 6316 6317 6318
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
6319
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6320 6321 6322 6323 6324 6325 6326
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
6327 6328
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
6329 6330 6331 6332 6333 6334 6335 6336 6337
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
6338
	intel_dp_aux_header(txbuf, &msg);
6339

6340
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6341 6342
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6343
	if (ret < 0) {
6344
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
6345 6346
		return ret;
	} else if (ret == 0) {
6347
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
6348 6349 6350 6351
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6352 6353 6354 6355 6356 6357
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
6358 6359 6360 6361 6362 6363 6364 6365 6366
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
6367
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
6385
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6386 6387 6388 6389 6390 6391
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
6392 6393
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
6394 6395
{
	ssize_t ret;
6396

6397
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6398
			       bcaps, 1);
6399
	if (ret != 1) {
6400
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6401 6402
		return ret >= 0 ? -EIO : ret;
	}
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
6430
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6445
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
6467 6468
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6488
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
6507

6508 6509 6510
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6511
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6512
		return false;
6513
	}
6514

6515 6516 6517
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

6533 6534 6535 6536 6537
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

6538
struct hdcp2_dp_msg_data {
6539 6540 6541 6542 6543
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
6544 6545
};

6546
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6575 6576
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6577 6578 6579 6580
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6634
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
6655 6656 6657 6658 6659 6660 6661
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

6673
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6674 6675 6676
{
	int i;

6677 6678 6679
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
6680 6681 6682 6683 6684 6685 6686 6687

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6688 6689
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6690 6691 6692
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
6693
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6705 6706
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6757
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
6805
	int ret;
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

6821
	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6822
					sizeof(stream_type_msg));
6823 6824 6825

	return ret < 0 ? ret : 0;

6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6880
	.hdcp_capable = intel_dp_hdcp_capable,
6881 6882 6883 6884 6885 6886
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6887 6888
};

6889 6890
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6891
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6892
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
6905 6906
	drm_dbg_kms(&dev_priv->drm,
		    "VDD left on by BIOS, adjusting state tracking\n");
6907
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6908 6909 6910 6911

	edp_panel_vdd_schedule_off(intel_dp);
}

6912 6913
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6914
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6915 6916
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6917

6918 6919 6920
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6921

6922
	return INVALID_PIPE;
6923 6924
}

6925
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6926
{
6927
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6928
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6929
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6930
	intel_wakeref_t wakeref;
6931 6932

	if (!HAS_DDI(dev_priv))
6933
		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6934

6935
	if (lspcon->active)
6936 6937
		lspcon_resume(lspcon);

6938 6939
	intel_dp->reset_link_params = true;

6940 6941 6942 6943
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6944 6945 6946
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6947

6948 6949 6950 6951 6952 6953 6954 6955
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6956
	}
6957 6958
}

6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
static int intel_modeset_tile_group(struct intel_atomic_state *state,
				    int tile_group_id)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *connector;
	int ret = 0;

	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct drm_connector_state *conn_state;
		struct intel_crtc_state *crtc_state;
		struct intel_crtc *crtc;

		if (!connector->has_tile ||
		    connector->tile_group->id != tile_group_id)
			continue;

		conn_state = drm_atomic_get_connector_state(&state->base,
							    connector);
		if (IS_ERR(conn_state)) {
			ret = PTR_ERR(conn_state);
			break;
		}

		crtc = to_intel_crtc(conn_state->crtc);

		if (!crtc)
			continue;

		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			break;
	}
6996
	drm_connector_list_iter_end(&conn_iter);
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035

	return ret;
}

static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	if (transcoders == 0)
		return 0;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;
		int ret;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);

		if (!crtc_state->hw.enable)
			continue;

		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
			continue;

		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
		if (ret)
			return ret;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			return ret;

		transcoders &= ~BIT(crtc_state->cpu_transcoder);
	}

7036
	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077

	return 0;
}

static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
				      struct drm_connector *connector)
{
	const struct drm_connector_state *old_conn_state =
		drm_atomic_get_old_connector_state(&state->base, connector);
	const struct intel_crtc_state *old_crtc_state;
	struct intel_crtc *crtc;
	u8 transcoders;

	crtc = to_intel_crtc(old_conn_state->crtc);
	if (!crtc)
		return 0;

	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);

	if (!old_crtc_state->hw.active)
		return 0;

	transcoders = old_crtc_state->sync_mode_slaves_mask;
	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
		transcoders |= BIT(old_crtc_state->master_transcoder);

	return intel_modeset_affected_transcoders(state,
						  transcoders);
}

static int intel_dp_connector_atomic_check(struct drm_connector *conn,
					   struct drm_atomic_state *_state)
{
	struct drm_i915_private *dev_priv = to_i915(conn->dev);
	struct intel_atomic_state *state = to_intel_atomic_state(_state);
	int ret;

	ret = intel_digital_connector_atomic_check(conn, &state->base);
	if (ret)
		return ret;

7078 7079 7080 7081 7082
	/*
	 * We don't enable port sync on BDW due to missing w/as and
	 * due to not having adjusted the modeset sequence appropriately.
	 */
	if (INTEL_GEN(dev_priv) < 9)
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
		return 0;

	if (!intel_connector_needs_modeset(state, conn))
		return 0;

	if (conn->has_tile) {
		ret = intel_modeset_tile_group(state, conn->tile_group->id);
		if (ret)
			return ret;
	}

	return intel_modeset_synced_crtcs(state, conn);
}

7097
static const struct drm_connector_funcs intel_dp_connector_funcs = {
7098
	.force = intel_dp_force,
7099
	.fill_modes = drm_helper_probe_single_connector_modes,
7100 7101
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
7102
	.late_register = intel_dp_connector_register,
7103
	.early_unregister = intel_dp_connector_unregister,
7104
	.destroy = intel_connector_destroy,
7105
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7106
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
7107 7108 7109
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7110
	.detect_ctx = intel_dp_detect,
7111 7112
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
7113
	.atomic_check = intel_dp_connector_atomic_check,
7114 7115 7116
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7117
	.reset = intel_dp_encoder_reset,
7118
	.destroy = intel_dp_encoder_destroy,
7119 7120
};

7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
static bool intel_edp_have_power(struct intel_dp *intel_dp)
{
	intel_wakeref_t wakeref;
	bool have_power = false;

	with_pps_lock(intel_dp, wakeref) {
		have_power = edp_have_panel_power(intel_dp) &&
						  edp_have_panel_vdd(intel_dp);
	}

	return have_power;
}

7134
enum irqreturn
7135 7136 7137
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
7138

7139 7140
	if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
	    (long_hpd || !intel_edp_have_power(intel_dp))) {
7141
		/*
7142
		 * vdd off can generate a long/short pulse on eDP which
7143 7144
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
7145
		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7146
		 */
7147 7148
		DRM_DEBUG_KMS("ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
			      long_hpd ? "long" : "short",
7149 7150
			      intel_dig_port->base.base.base.id,
			      intel_dig_port->base.base.name);
7151
		return IRQ_HANDLED;
7152 7153
	}

7154 7155 7156
	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
		      intel_dig_port->base.base.base.id,
		      intel_dig_port->base.base.name,
7157
		      long_hpd ? "long" : "short");
7158

7159
	if (long_hpd) {
7160
		intel_dp->reset_link_params = true;
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
7175 7176

			return IRQ_NONE;
7177
		}
7178
	}
7179

7180
	if (!intel_dp->is_mst) {
7181
		bool handled;
7182 7183 7184

		handled = intel_dp_short_pulse(intel_dp);

7185
		if (!handled)
7186
			return IRQ_NONE;
7187
	}
7188

7189
	return IRQ_HANDLED;
7190 7191
}

7192
/* check the VBT to see whether the eDP is on another port */
7193
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7194
{
7195 7196 7197 7198
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
7199
	if (INTEL_GEN(dev_priv) < 5)
7200 7201
		return false;

7202
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7203 7204
		return true;

7205
	return intel_bios_is_port_edp(dev_priv, port);
7206 7207
}

7208
static void
7209 7210
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
7211
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7212 7213 7214 7215
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
7216

7217
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
7218
	if (HAS_GMCH(dev_priv))
7219 7220 7221
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
7222

7223 7224
	intel_attach_colorspace_property(connector);

7225 7226 7227 7228 7229
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
		drm_object_attach_property(&connector->base,
					   connector->dev->mode_config.hdr_output_metadata_property,
					   0);

7230
	if (intel_dp_is_edp(intel_dp)) {
7231 7232 7233
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
7234
		if (!HAS_GMCH(dev_priv))
7235 7236 7237 7238
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

7239
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7240

7241
	}
7242 7243
}

7244 7245
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
7246
	intel_dp->panel_power_off_time = ktime_get_boottime();
7247 7248 7249 7250
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

7251
static void
7252
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7253
{
7254
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7255
	u32 pp_on, pp_off, pp_ctl;
7256
	struct pps_registers regs;
7257

7258
	intel_pps_get_registers(intel_dp, &regs);
7259

7260
	pp_ctl = ilk_get_pp_control(intel_dp);
7261

7262 7263
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
7264
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7265

7266 7267
	pp_on = intel_de_read(dev_priv, regs.pp_on);
	pp_off = intel_de_read(dev_priv, regs.pp_off);
7268 7269

	/* Pull timing values out of registers */
7270 7271 7272 7273
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7274

7275 7276 7277
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

7278
		pp_div = intel_de_read(dev_priv, regs.pp_div);
7279

7280
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7281
	} else {
7282
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7283
	}
7284 7285
}

I
Imre Deak 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
7295
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
7296 7297 7298 7299
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

7300
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

7310
static void
7311
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7312
{
7313
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7314 7315 7316 7317 7318 7319 7320 7321 7322
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

7323
	intel_pps_readout_hw_state(intel_dp, &cur);
7324

I
Imre Deak 已提交
7325
	intel_pps_dump_state("cur", &cur);
7326

7327
	vbt = dev_priv->vbt.edp.pps;
7328 7329 7330 7331 7332 7333
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7334
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7335 7336 7337
		drm_dbg_kms(&dev_priv->drm,
			    "Increasing T12 panel delay as per the quirk to %d\n",
			    vbt.t11_t12);
7338
	}
7339 7340 7341 7342 7343
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
7357
	intel_pps_dump_state("vbt", &vbt);
7358 7359 7360

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
7361
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7362 7363 7364 7365 7366 7367 7368 7369 7370
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

7371
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7372 7373 7374 7375 7376 7377 7378
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

7379 7380 7381 7382 7383
	drm_dbg_kms(&dev_priv->drm,
		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
		    intel_dp->panel_power_up_delay,
		    intel_dp->panel_power_down_delay,
		    intel_dp->panel_power_cycle_delay);
7384

7385 7386 7387
	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
		    intel_dp->backlight_on_delay,
		    intel_dp->backlight_off_delay);
I
Imre Deak 已提交
7388 7389 7390 7391 7392 7393 7394 7395 7396 7397

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
7398 7399 7400 7401 7402 7403

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7404 7405 7406
}

static void
7407
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7408
					      bool force_disable_vdd)
7409
{
7410
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7411
	u32 pp_on, pp_off, port_sel = 0;
7412
	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7413
	struct pps_registers regs;
7414
	enum port port = dp_to_dig_port(intel_dp)->base.port;
7415
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7416

V
Ville Syrjälä 已提交
7417
	lockdep_assert_held(&dev_priv->pps_mutex);
7418

7419
	intel_pps_get_registers(intel_dp, &regs);
7420

7421 7422
	/*
	 * On some VLV machines the BIOS can leave the VDD
7423
	 * enabled even on power sequencers which aren't
7424 7425 7426 7427 7428 7429 7430
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
7431
	 * soon as the new power sequencer gets initialized.
7432 7433
	 */
	if (force_disable_vdd) {
7434
		u32 pp = ilk_get_pp_control(intel_dp);
7435

7436 7437
		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
			 "Panel power already on\n");
7438 7439

		if (pp & EDP_FORCE_VDD)
7440 7441
			drm_dbg_kms(&dev_priv->drm,
				    "VDD already on, disabling first\n");
7442 7443 7444

		pp &= ~EDP_FORCE_VDD;

7445
		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7446 7447
	}

7448 7449 7450 7451
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7452 7453 7454

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
7455
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7456
		port_sel = PANEL_PORT_SELECT_VLV(port);
7457
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7458 7459
		switch (port) {
		case PORT_A:
7460
			port_sel = PANEL_PORT_SELECT_DPA;
7461 7462 7463 7464 7465
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
7466
			port_sel = PANEL_PORT_SELECT_DPD;
7467 7468 7469 7470 7471
			break;
		default:
			MISSING_CASE(port);
			break;
		}
7472 7473
	}

7474 7475
	pp_on |= port_sel;

7476 7477
	intel_de_write(dev_priv, regs.pp_on, pp_on);
	intel_de_write(dev_priv, regs.pp_off, pp_off);
7478 7479 7480 7481 7482

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
7483 7484
		intel_de_write(dev_priv, regs.pp_div,
			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7485 7486 7487
	} else {
		u32 pp_ctl;

7488
		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7489
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7490
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7491
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7492
	}
7493

7494 7495
	drm_dbg_kms(&dev_priv->drm,
		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7496 7497
		    intel_de_read(dev_priv, regs.pp_on),
		    intel_de_read(dev_priv, regs.pp_off),
7498
		    i915_mmio_reg_valid(regs.pp_div) ?
7499 7500
		    intel_de_read(dev_priv, regs.pp_div) :
		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7501 7502
}

7503
static void intel_dp_pps_init(struct intel_dp *intel_dp)
7504
{
7505
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7506 7507

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7508 7509
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
7510 7511
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7512 7513 7514
	}
}

7515 7516
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7517
 * @dev_priv: i915 device
7518
 * @crtc_state: a pointer to the active intel_crtc_state
7519 7520 7521 7522 7523 7524 7525 7526 7527
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
7528
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7529
				    const struct intel_crtc_state *crtc_state,
7530
				    int refresh_rate)
7531
{
7532
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7533
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7534
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7535 7536

	if (refresh_rate <= 0) {
7537 7538
		drm_dbg_kms(&dev_priv->drm,
			    "Refresh rate should be positive non-zero.\n");
7539 7540 7541
		return;
	}

7542
	if (intel_dp == NULL) {
7543
		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7544 7545 7546 7547
		return;
	}

	if (!intel_crtc) {
7548 7549
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS: intel_crtc not initialized\n");
7550 7551 7552
		return;
	}

7553
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7554
		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7555 7556 7557
		return;
	}

7558 7559
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
7560 7561
		index = DRRS_LOW_RR;

7562
	if (index == dev_priv->drrs.refresh_rate_type) {
7563 7564
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS requested for previously set RR...ignoring\n");
7565 7566 7567
		return;
	}

7568
	if (!crtc_state->hw.active) {
7569 7570
		drm_dbg_kms(&dev_priv->drm,
			    "eDP encoder disabled. CRTC not Active\n");
7571 7572 7573
		return;
	}

7574
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7575 7576
		switch (index) {
		case DRRS_HIGH_RR:
7577
			intel_dp_set_m_n(crtc_state, M1_N1);
7578 7579
			break;
		case DRRS_LOW_RR:
7580
			intel_dp_set_m_n(crtc_state, M2_N2);
7581 7582 7583
			break;
		case DRRS_MAX_RR:
		default:
7584 7585
			drm_err(&dev_priv->drm,
				"Unsupported refreshrate type\n");
7586
		}
7587 7588
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7589
		u32 val;
7590

7591
		val = intel_de_read(dev_priv, reg);
7592
		if (index > DRRS_HIGH_RR) {
7593
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7594 7595 7596
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7597
		} else {
7598
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7599 7600 7601
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7602
		}
7603
		intel_de_write(dev_priv, reg, val);
7604 7605
	}

7606 7607
	dev_priv->drrs.refresh_rate_type = index;

7608 7609
	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
		    refresh_rate);
7610 7611
}

7612 7613 7614
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
7615
 * @crtc_state: A pointer to the active crtc state.
7616 7617 7618
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
7619
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7620
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
7621
{
7622
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7623

7624
	if (!crtc_state->has_drrs) {
7625
		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
V
Vandana Kannan 已提交
7626 7627 7628
		return;
	}

7629
	if (dev_priv->psr.enabled) {
7630 7631
		drm_dbg_kms(&dev_priv->drm,
			    "PSR enabled. Not enabling DRRS.\n");
7632 7633 7634
		return;
	}

V
Vandana Kannan 已提交
7635
	mutex_lock(&dev_priv->drrs.mutex);
7636
	if (dev_priv->drrs.dp) {
7637
		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
V
Vandana Kannan 已提交
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

7649 7650 7651
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
7652
 * @old_crtc_state: Pointer to old crtc_state.
7653 7654
 *
 */
7655
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7656
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
7657
{
7658
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7659

7660
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
7661 7662 7663 7664 7665 7666 7667 7668 7669
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7670 7671
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
7672 7673 7674 7675 7676 7677 7678

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

7692
	/*
7693 7694
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
7695 7696
	 */

7697 7698
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
7699

7700 7701 7702 7703 7704 7705
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
7706

7707 7708
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
7709 7710
}

7711
/**
7712
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7713
 * @dev_priv: i915 device
7714 7715
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7716 7717
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7718 7719 7720
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7721 7722
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
7723 7724 7725 7726
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7727
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7728 7729
		return;

7730
	cancel_delayed_work(&dev_priv->drrs.work);
7731

7732
	mutex_lock(&dev_priv->drrs.mutex);
7733 7734 7735 7736 7737
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7738 7739 7740
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

7741 7742 7743
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

7744
	/* invalidate means busy screen hence upclock */
7745
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7746 7747
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7748 7749 7750 7751

	mutex_unlock(&dev_priv->drrs.mutex);
}

7752
/**
7753
 * intel_edp_drrs_flush - Restart Idleness DRRS
7754
 * @dev_priv: i915 device
7755 7756
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7757 7758 7759 7760
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
7761 7762 7763
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7764 7765
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
7766 7767 7768 7769
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7770
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7771 7772
		return;

7773
	cancel_delayed_work(&dev_priv->drrs.work);
7774

7775
	mutex_lock(&dev_priv->drrs.mutex);
7776 7777 7778 7779 7780
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7781 7782
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
7783 7784

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7785 7786
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

7787
	/* flush means busy screen hence upclock */
7788
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7789 7790
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7791 7792 7793 7794 7795 7796

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
7797 7798 7799 7800 7801
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7825 7826 7827 7828 7829 7830 7831 7832
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7833 7834 7835 7836 7837 7838 7839 7840
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7841
 * @connector: eDP connector
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7852
static struct drm_display_mode *
7853 7854
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7855
{
7856
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7857 7858
	struct drm_display_mode *downclock_mode = NULL;

7859 7860 7861
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7862
	if (INTEL_GEN(dev_priv) <= 6) {
7863 7864
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS supported for Gen7 and above\n");
7865 7866 7867 7868
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7869
		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7870 7871 7872
		return NULL;
	}

7873
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7874
	if (!downclock_mode) {
7875 7876
		drm_dbg_kms(&dev_priv->drm,
			    "Downclock mode is not found. DRRS not supported\n");
7877 7878 7879
		return NULL;
	}

7880
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7881

7882
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7883 7884
	drm_dbg_kms(&dev_priv->drm,
		    "seamless DRRS supported for eDP panel.\n");
7885 7886 7887
	return downclock_mode;
}

7888
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7889
				     struct intel_connector *intel_connector)
7890
{
7891 7892
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7893
	struct drm_connector *connector = &intel_connector->base;
7894
	struct drm_display_mode *fixed_mode = NULL;
7895
	struct drm_display_mode *downclock_mode = NULL;
7896
	bool has_dpcd;
7897
	enum pipe pipe = INVALID_PIPE;
7898 7899
	intel_wakeref_t wakeref;
	struct edid *edid;
7900

7901
	if (!intel_dp_is_edp(intel_dp))
7902 7903
		return true;

7904 7905
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7906 7907 7908 7909 7910 7911
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7912
	if (intel_get_lvds_encoder(dev_priv)) {
7913 7914
		drm_WARN_ON(dev,
			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7915 7916
		drm_info(&dev_priv->drm,
			 "LVDS was detected, not registering eDP\n");
7917 7918 7919 7920

		return false;
	}

7921 7922 7923 7924 7925
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7926

7927
	/* Cache DPCD and EDID for edp. */
7928
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7929

7930
	if (!has_dpcd) {
7931
		/* if this fails, presume the device is a ghost */
7932 7933
		drm_info(&dev_priv->drm,
			 "failed to retrieve link info, disabling eDP\n");
7934
		goto out_vdd_off;
7935 7936
	}

7937
	mutex_lock(&dev->mode_config.mutex);
7938
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7939 7940
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
L
Lyude Paul 已提交
7941 7942
			drm_connector_update_edid_property(connector, edid);
			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7943 7944 7945 7946 7947 7948 7949 7950 7951
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7952 7953 7954
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7955 7956

	/* fallback to VBT if available for eDP */
7957 7958
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7959
	mutex_unlock(&dev->mode_config.mutex);
7960

7961
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7962 7963
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7964 7965 7966 7967 7968 7969

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7970
		pipe = vlv_active_pipe(intel_dp);
7971 7972 7973 7974 7975 7976 7977

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

7978 7979 7980
		drm_dbg_kms(&dev_priv->drm,
			    "using pipe %c for initial backlight setup\n",
			    pipe_name(pipe));
7981 7982
	}

7983
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7984
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7985
	intel_panel_setup_backlight(connector, pipe);
7986

7987 7988
	if (fixed_mode) {
		drm_connector_set_panel_orientation_with_quirk(connector,
7989
				dev_priv->vbt.orientation,
7990 7991
				fixed_mode->hdisplay, fixed_mode->vdisplay);
	}
7992

7993
	return true;
7994 7995 7996 7997 7998 7999 8000

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
8001 8002
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
8003 8004

	return false;
8005 8006
}

8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
8023 8024
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
8025 8026 8027 8028 8029
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

8030
bool
8031 8032
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
8033
{
8034 8035 8036 8037
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
8038
	struct drm_i915_private *dev_priv = to_i915(dev);
8039
	enum port port = intel_encoder->port;
8040
	enum phy phy = intel_port_to_phy(dev_priv, port);
8041
	int type;
8042

8043 8044 8045 8046
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

8047 8048 8049 8050
	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
		     intel_encoder->base.name))
8051 8052
		return false;

8053 8054
	intel_dp_set_source_rates(intel_dp);

8055
	intel_dp->reset_link_params = true;
8056
	intel_dp->pps_pipe = INVALID_PIPE;
8057
	intel_dp->active_pipe = INVALID_PIPE;
8058

8059
	/* Preserve the current hw state. */
8060
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8061
	intel_dp->attached_connector = intel_connector;
8062

8063 8064 8065 8066 8067
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
8068
		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8069
		type = DRM_MODE_CONNECTOR_eDP;
8070
	} else {
8071
		type = DRM_MODE_CONNECTOR_DisplayPort;
8072
	}
8073

8074 8075 8076
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

8077 8078 8079 8080 8081 8082 8083 8084
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

8085
	/* eDP only on port B and/or C on vlv/chv */
8086 8087 8088 8089
	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
			      IS_CHERRYVIEW(dev_priv)) &&
			intel_dp_is_edp(intel_dp) &&
			port != PORT_B && port != PORT_C))
8090 8091
		return false;

8092 8093 8094 8095
	drm_dbg_kms(&dev_priv->drm,
		    "Adding %s connector on [ENCODER:%d:%s]\n",
		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
		    intel_encoder->base.base.id, intel_encoder->base.name);
8096

8097
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8098 8099
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
8100
	if (!HAS_GMCH(dev_priv))
8101
		connector->interlace_allowed = true;
8102 8103
	connector->doublescan_allowed = 0;

8104 8105 8106
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

8107
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8108
	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8109

8110
	intel_dp_aux_init(intel_dp);
8111

8112
	intel_connector_attach_encoder(intel_connector, intel_encoder);
8113

8114
	if (HAS_DDI(dev_priv))
8115 8116 8117 8118
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

8119
	/* init MST on ports that can support it */
8120 8121
	intel_dp_mst_encoder_init(intel_dig_port,
				  intel_connector->base.base.id);
8122

8123
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8124 8125 8126
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
8127
	}
8128

8129
	intel_dp_add_properties(intel_dp, connector);
8130

8131
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8132 8133
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
8134 8135
			drm_dbg_kms(&dev_priv->drm,
				    "HDCP init failed, skipping.\n");
8136
	}
8137

8138 8139 8140 8141
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
8142
	if (IS_G45(dev_priv)) {
8143 8144 8145
		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
			       (temp & ~0xf) | 0xd);
8146
	}
8147 8148

	return true;
8149 8150 8151 8152 8153

fail:
	drm_connector_cleanup(connector);

	return false;
8154
}
8155

8156
bool intel_dp_init(struct drm_i915_private *dev_priv,
8157 8158
		   i915_reg_t output_reg,
		   enum port port)
8159 8160 8161 8162 8163 8164
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

8165
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8166
	if (!intel_dig_port)
8167
		return false;
8168

8169
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
8170 8171
	if (!intel_connector)
		goto err_connector_alloc;
8172 8173 8174 8175

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

8176 8177 8178
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
8179
		goto err_encoder_init;
8180

8181
	intel_encoder->hotplug = intel_dp_hotplug;
8182
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
8183
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
8184
	intel_encoder->get_config = intel_dp_get_config;
8185
	intel_encoder->update_pipe = intel_panel_update_backlight;
8186
	intel_encoder->suspend = intel_dp_encoder_suspend;
8187
	if (IS_CHERRYVIEW(dev_priv)) {
8188
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8189 8190
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
8191
		intel_encoder->disable = vlv_disable_dp;
8192
		intel_encoder->post_disable = chv_post_disable_dp;
8193
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8194
	} else if (IS_VALLEYVIEW(dev_priv)) {
8195
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8196 8197
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
8198
		intel_encoder->disable = vlv_disable_dp;
8199
		intel_encoder->post_disable = vlv_post_disable_dp;
8200
	} else {
8201 8202
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
8203
		intel_encoder->disable = g4x_disable_dp;
8204
		intel_encoder->post_disable = g4x_post_disable_dp;
8205
	}
8206 8207

	intel_dig_port->dp.output_reg = output_reg;
8208
	intel_dig_port->max_lanes = 4;
8209

8210
	intel_encoder->type = INTEL_OUTPUT_DP;
8211
	intel_encoder->power_domain = intel_port_to_power_domain(port);
8212
	if (IS_CHERRYVIEW(dev_priv)) {
8213
		if (port == PORT_D)
V
Ville Syrjälä 已提交
8214
			intel_encoder->pipe_mask = BIT(PIPE_C);
8215
		else
V
Ville Syrjälä 已提交
8216
			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8217
	} else {
8218
		intel_encoder->pipe_mask = ~0;
8219
	}
8220
	intel_encoder->cloneable = 0;
8221
	intel_encoder->port = port;
8222

8223 8224
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

8225 8226 8227
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

8228
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
8229 8230 8231
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

8232
	return true;
S
Sudip Mukherjee 已提交
8233 8234 8235

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
8236
err_encoder_init:
S
Sudip Mukherjee 已提交
8237 8238 8239
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
8240
	return false;
8241
}
8242

8243
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8244
{
8245 8246 8247 8248
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8249

8250 8251
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
8252

8253
		intel_dp = enc_to_intel_dp(encoder);
8254

8255
		if (!intel_dp->can_mst)
8256 8257
			continue;

8258 8259
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8260 8261 8262
	}
}

8263
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8264
{
8265
	struct intel_encoder *encoder;
8266

8267 8268
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8269
		int ret;
8270

8271 8272 8273
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

8274
		intel_dp = enc_to_intel_dp(encoder);
8275 8276

		if (!intel_dp->can_mst)
8277
			continue;
8278

8279 8280
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
						     true);
8281 8282 8283 8284 8285
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
8286 8287
	}
}