kvm-s390.c 66.3 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30 31
#include <asm/lowcore.h>
#include <asm/pgtable.h>
32
#include <asm/nmi.h>
33
#include <asm/switch_to.h>
34
#include <asm/isc.h>
35
#include <asm/sclp.h>
36
#include "kvm-s390.h"
37 38
#include "gaccess.h"

39 40 41 42
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

43 44
#define CREATE_TRACE_POINTS
#include "trace.h"
45
#include "trace-s390.h"
46

47
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
48 49 50
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
51

52 53 54 55
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
56
	{ "exit_null", VCPU_STAT(exit_null) },
57 58 59 60
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
61 62 63
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
64
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
65
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
66
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
67
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
68 69
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
70
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
71
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
72 73 74 75 76 77 78
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
79
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
80 81 82 83 84
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
85
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
86 87
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
88
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
89 90
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
91
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
92
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
93
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
94
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
95
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
96 97
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
98
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
99 100
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
101
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
102 103 104
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
105 106 107
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
108
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
109
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
110
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
111 112 113
	{ NULL }
};

114 115
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
116
	0xffe6fffbfcfdfc40UL,
117
	0x005e800000000000UL,
118
};
119

120
unsigned long kvm_s390_fac_list_mask_size(void)
121
{
122 123
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
124 125
}

126 127
static struct gmap_notifier gmap_notifier;

128
/* Section: not file related */
129
int kvm_arch_hardware_enable(void)
130 131
{
	/* every s390 is virtualization enabled ;-) */
132
	return 0;
133 134
}

135 136
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

137 138
int kvm_arch_hardware_setup(void)
{
139 140
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
141 142 143 144 145
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
146
	gmap_unregister_ipte_notifier(&gmap_notifier);
147 148 149 150
}

int kvm_arch_init(void *opaque)
{
151 152
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
153 154 155 156 157 158 159 160 161 162 163
}

/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

164
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
165
{
166 167
	int r;

168
	switch (ext) {
169
	case KVM_CAP_S390_PSW:
170
	case KVM_CAP_S390_GMAP:
171
	case KVM_CAP_SYNC_MMU:
172 173 174
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
175
	case KVM_CAP_ASYNC_PF:
176
	case KVM_CAP_SYNC_REGS:
177
	case KVM_CAP_ONE_REG:
178
	case KVM_CAP_ENABLE_CAP:
179
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
180
	case KVM_CAP_IOEVENTFD:
181
	case KVM_CAP_DEVICE_CTRL:
182
	case KVM_CAP_ENABLE_CAP_VM:
183
	case KVM_CAP_S390_IRQCHIP:
184
	case KVM_CAP_VM_ATTRIBUTES:
185
	case KVM_CAP_MP_STATE:
186
	case KVM_CAP_S390_INJECT_IRQ:
187
	case KVM_CAP_S390_USER_SIGP:
188
	case KVM_CAP_S390_USER_STSI:
189
	case KVM_CAP_S390_SKEYS:
190
	case KVM_CAP_S390_IRQ_STATE:
191 192
		r = 1;
		break;
193 194 195
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
196 197 198 199
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
200 201 202
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
203
	case KVM_CAP_S390_COW:
204
		r = MACHINE_HAS_ESOP;
205
		break;
206 207 208
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
209
	default:
210
		r = 0;
211
	}
212
	return r;
213 214
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

234 235 236 237 238 239 240
/* Section: vm related */
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
241 242
	int r;
	unsigned long n;
243
	struct kvm_memslots *slots;
244 245 246 247 248 249 250 251 252
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

253 254
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
273 274
}

275 276 277 278 279 280 281 282
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
283 284 285 286
	case KVM_CAP_S390_IRQCHIP:
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
287 288 289 290
	case KVM_CAP_S390_USER_SIGP:
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
291
	case KVM_CAP_S390_VECTOR_REGISTERS:
292 293 294 295 296 297
		if (MACHINE_HAS_VX) {
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
298
		break;
299 300 301 302
	case KVM_CAP_S390_USER_STSI:
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
303 304 305 306 307 308 309
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
328 329 330 331 332
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
333 334 335 336 337
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

338 339 340 341 342 343 344 345 346
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
347 348 349 350
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

351 352
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
353
		s390_reset_cmma(kvm->arch.gmap->mm);
354 355 356 357
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
		break;
	}
388 389 390 391 392 393 394
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

395 396 397 398 399 400 401
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

402
	if (!test_kvm_facility(kvm, 76))
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *cur_vcpu;
	unsigned int vcpu_idx;
	u64 host_tod, gtod;
	int r;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	mutex_lock(&kvm->lock);
	kvm->arch.epoch = gtod - host_tod;
472 473
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(vcpu_idx, cur_vcpu, kvm)
474
		cur_vcpu->arch.sie_block->epoch = kvm->arch.epoch;
475
	kvm_s390_vcpu_unblock_all(kvm);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u64 host_tod, gtod;
	int r;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	gtod = host_tod + kvm->arch.epoch;
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
569
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
603
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
622
	mach->ibc = sclp.ibc;
623 624
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
625
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
626
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

649 650 651 652 653
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
654
	case KVM_S390_VM_MEM_CTRL:
655
		ret = kvm_s390_set_mem_control(kvm, attr);
656
		break;
657 658 659
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
660 661 662
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
663 664 665
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
666 667 668 669 670 671 672 673 674 675
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
676 677 678 679 680 681
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
682 683 684
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
685 686 687
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
688 689 690 691 692 693
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
694 695 696 697 698 699 700
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
701 702 703 704
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
705
		case KVM_S390_VM_MEM_LIMIT_SIZE:
706 707 708 709 710 711 712
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
713 714 715 716 717 718 719 720 721 722 723
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
724 725 726 727 728 729 730 731 732 733 734
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
735 736 737 738 739 740 741 742 743 744 745 746 747
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
748 749 750 751 752 753 754 755
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
833 834 835
	r = s390_enable_skey();
	if (r)
		goto out;
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

860 861 862 863 864
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
865
	struct kvm_device_attr attr;
866 867 868
	int r;

	switch (ioctl) {
869 870 871 872 873 874 875 876 877
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
878 879 880 881 882 883 884 885
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
886 887 888 889 890 891 892 893 894 895 896 897
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
			kvm_set_irq_routing(kvm, &routing, 0, 0);
			r = 0;
		}
		break;
	}
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
939
	default:
940
		r = -ENOTTY;
941 942 943 944 945
	}

	return r;
}

946 947 948
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
949
	u32 cc = 0;
950

951
	memset(config, 0, 128);
952 953 954 955
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
956
		"0: ipm %0\n"
957
		"srl %0,28\n"
958 959 960
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

995 996 997 998 999 1000
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1001 1002
static int kvm_s390_crypto_init(struct kvm *kvm)
{
1003
	if (!test_kvm_facility(kvm, 76))
1004 1005 1006 1007 1008 1009 1010
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1011
	kvm_s390_set_crycb_format(kvm);
1012

1013 1014 1015 1016 1017 1018 1019
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1020

1021 1022 1023
	return 0;
}

1024
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1025
{
1026
	int i, rc;
1027
	char debug_name[16];
1028
	static unsigned long sca_offset;
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1041 1042
	rc = s390_enable_sie();
	if (rc)
1043
		goto out_err;
1044

1045 1046
	rc = -ENOMEM;

1047 1048
	kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
	if (!kvm->arch.sca)
1049
		goto out_err;
1050 1051 1052 1053
	spin_lock(&kvm_lock);
	sca_offset = (sca_offset + 16) & 0x7f0;
	kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
	spin_unlock(&kvm_lock);
1054 1055 1056 1057 1058

	sprintf(debug_name, "kvm-%u", current->pid);

	kvm->arch.dbf = debug_register(debug_name, 8, 2, 8 * sizeof(long));
	if (!kvm->arch.dbf)
1059
		goto out_err;
1060

1061 1062 1063
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1064 1065
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1066 1067 1068
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1069
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1070
	if (!kvm->arch.model.fac)
1071
		goto out_err;
1072

1073
	/* Populate the facility mask initially. */
1074
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1075
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1076 1077
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1078
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1079
		else
1080
			kvm->arch.model.fac->mask[i] = 0UL;
1081 1082
	}

1083 1084 1085 1086
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1087
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1088
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1089

1090
	if (kvm_s390_crypto_init(kvm) < 0)
1091
		goto out_err;
1092

1093
	spin_lock_init(&kvm->arch.float_int.lock);
1094 1095
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1096
	init_waitqueue_head(&kvm->arch.ipte_wq);
1097
	mutex_init(&kvm->arch.ipte_mutex);
1098

1099 1100 1101
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
	VM_EVENT(kvm, 3, "%s", "vm created");

1102 1103 1104
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
1105
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1106
		if (!kvm->arch.gmap)
1107
			goto out_err;
1108
		kvm->arch.gmap->private = kvm;
1109
		kvm->arch.gmap->pfault_enabled = 0;
1110
	}
1111 1112

	kvm->arch.css_support = 0;
1113
	kvm->arch.use_irqchip = 0;
1114
	kvm->arch.epoch = 0;
1115

1116 1117
	spin_lock_init(&kvm->arch.start_stop_lock);

1118
	return 0;
1119
out_err:
1120
	kfree(kvm->arch.crypto.crycb);
1121
	free_page((unsigned long)kvm->arch.model.fac);
1122
	debug_unregister(kvm->arch.dbf);
1123
	free_page((unsigned long)(kvm->arch.sca));
1124
	return rc;
1125 1126
}

1127 1128 1129
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1130
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1131
	kvm_s390_clear_local_irqs(vcpu);
1132
	kvm_clear_async_pf_completion_queue(vcpu);
C
Carsten Otte 已提交
1133 1134 1135 1136 1137 1138 1139
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		clear_bit(63 - vcpu->vcpu_id,
			  (unsigned long *) &vcpu->kvm->arch.sca->mcn);
		if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
		    (__u64) vcpu->arch.sie_block)
			vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
	}
1140
	smp_mb();
1141 1142 1143 1144

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1145
	if (vcpu->kvm->arch.use_cmma)
1146
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1147
	free_page((unsigned long)(vcpu->arch.sie_block));
1148

1149
	kvm_vcpu_uninit(vcpu);
1150
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1151 1152 1153 1154 1155
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1156
	struct kvm_vcpu *vcpu;
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1167 1168
}

1169 1170
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1171
	kvm_free_vcpus(kvm);
1172
	free_page((unsigned long)kvm->arch.model.fac);
1173
	free_page((unsigned long)(kvm->arch.sca));
1174
	debug_unregister(kvm->arch.dbf);
1175
	kfree(kvm->arch.crypto.crycb);
1176 1177
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1178
	kvm_s390_destroy_adapters(kvm);
1179
	kvm_s390_clear_float_irqs(kvm);
1180 1181 1182
}

/* Section: vcpu related */
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1193 1194
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1195 1196
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1197 1198
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1199
				    KVM_SYNC_ACRS |
1200 1201 1202
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1203 1204
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1205 1206 1207 1208

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1209 1210 1211 1212 1213
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1214
	save_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1215
	if (test_kvm_facility(vcpu->kvm, 129))
1216 1217 1218
		save_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		save_fp_regs(vcpu->arch.host_fpregs.fprs);
1219
	save_access_regs(vcpu->arch.host_acrs);
1220
	if (test_kvm_facility(vcpu->kvm, 129)) {
1221 1222 1223 1224 1225 1226
		restore_fp_ctl(&vcpu->run->s.regs.fpc);
		restore_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1227
	restore_access_regs(vcpu->run->s.regs.acrs);
1228
	gmap_enable(vcpu->arch.gmap);
1229
	atomic_set_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1230 1231 1232 1233
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1234
	atomic_clear_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1235
	gmap_disable(vcpu->arch.gmap);
1236
	if (test_kvm_facility(vcpu->kvm, 129)) {
1237 1238 1239 1240 1241 1242
		save_fp_ctl(&vcpu->run->s.regs.fpc);
		save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1243
	save_access_regs(vcpu->run->s.regs.acrs);
1244
	restore_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1245
	if (test_kvm_facility(vcpu->kvm, 129))
1246 1247 1248
		restore_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		restore_fp_regs(vcpu->arch.host_fpregs.fprs);
1249 1250 1251 1252 1253 1254 1255 1256
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1257
	kvm_s390_set_prefix(vcpu, 0);
1258 1259 1260 1261 1262 1263 1264 1265 1266
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1267
	vcpu->arch.sie_block->pp = 0;
1268 1269
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1270 1271
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1272
	kvm_s390_clear_local_irqs(vcpu);
1273 1274
}

1275
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1276
{
1277 1278 1279
	mutex_lock(&vcpu->kvm->lock);
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
	mutex_unlock(&vcpu->kvm->lock);
1280 1281
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1282 1283
}

1284 1285
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1286
	if (!test_kvm_facility(vcpu->kvm, 76))
1287 1288
		return;

1289 1290 1291 1292 1293 1294 1295
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1296 1297 1298
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1316 1317 1318 1319 1320 1321 1322 1323 1324
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1325 1326
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1327
	int rc = 0;
1328

1329 1330
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1331 1332
						    CPUSTAT_STOPPED);

1333 1334 1335
	if (test_kvm_facility(vcpu->kvm, 78))
		atomic_set_mask(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
	else if (test_kvm_facility(vcpu->kvm, 8))
1336 1337
		atomic_set_mask(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);

1338 1339
	kvm_s390_vcpu_setup_model(vcpu);

1340
	vcpu->arch.sie_block->ecb   = 6;
1341
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1342 1343
		vcpu->arch.sie_block->ecb |= 0x10;

1344
	vcpu->arch.sie_block->ecb2  = 8;
1345
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1346
	if (sclp.has_siif)
1347
		vcpu->arch.sie_block->eca |= 1;
1348
	if (sclp.has_sigpif)
1349
		vcpu->arch.sie_block->eca |= 0x10000000U;
1350
	if (test_kvm_facility(vcpu->kvm, 129)) {
1351 1352 1353
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1354
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1355

1356
	if (vcpu->kvm->arch.use_cmma) {
1357 1358 1359
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1360
	}
1361
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1362
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1363

1364 1365
	kvm_s390_vcpu_crypto_setup(vcpu);

1366
	return rc;
1367 1368 1369 1370 1371
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1372
	struct kvm_vcpu *vcpu;
1373
	struct sie_page *sie_page;
1374 1375 1376 1377 1378 1379
	int rc = -EINVAL;

	if (id >= KVM_MAX_VCPUS)
		goto out;

	rc = -ENOMEM;
1380

1381
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1382
	if (!vcpu)
1383
		goto out;
1384

1385 1386
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1387 1388
		goto out_free_cpu;

1389 1390
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1391
	vcpu->arch.host_vregs = &sie_page->vregs;
1392

1393
	vcpu->arch.sie_block->icpua = id;
C
Carsten Otte 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (!kvm_is_ucontrol(kvm)) {
		if (!kvm->arch.sca) {
			WARN_ON_ONCE(1);
			goto out_free_cpu;
		}
		if (!kvm->arch.sca->cpu[id].sda)
			kvm->arch.sca->cpu[id].sda =
				(__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh =
			(__u32)(((__u64)kvm->arch.sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
		set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
	}
1407

1408 1409
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1410
	vcpu->arch.local_int.wq = &vcpu->wq;
1411
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1412

1413 1414
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1415
		goto out_free_sie_block;
1416 1417
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1418
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1419 1420

	return vcpu;
1421 1422
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1423
out_free_cpu:
1424
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1425
out:
1426 1427 1428 1429 1430
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1431
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1432 1433
}

1434
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1435 1436
{
	atomic_set_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1437
	exit_sie(vcpu);
1438 1439
}

1440
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1441 1442 1443 1444
{
	atomic_clear_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

1445 1446 1447
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1448
	exit_sie(vcpu);
1449 1450 1451 1452 1453 1454 1455
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
	atomic_clear_mask(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1467 1468
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1469
{
1470 1471
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1472 1473
}

1474 1475 1476 1477 1478 1479 1480 1481
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1482
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1483
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1484
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1485 1486 1487 1488
		}
	}
}

1489 1490 1491 1492 1493 1494 1495
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1496 1497 1498 1499 1500 1501
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1502 1503 1504 1505 1506 1507 1508 1509
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1510 1511 1512 1513 1514 1515 1516 1517
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1530 1531 1532 1533
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1534 1535 1536 1537
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1551 1552 1553 1554 1555 1556 1557 1558
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1559 1560 1561 1562 1563 1564 1565 1566
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1567 1568 1569
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1570 1571
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1572 1573 1574 1575 1576 1577 1578 1579 1580
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1581 1582 1583 1584
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1585 1586 1587 1588
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1589 1590 1591 1592 1593 1594
	default:
		break;
	}

	return r;
}
1595

1596 1597 1598 1599 1600 1601 1602 1603
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1604
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1605 1606 1607 1608 1609
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1610
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1611 1612 1613 1614 1615 1616
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1617
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1618
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1619
	restore_access_regs(vcpu->run->s.regs.acrs);
1620 1621 1622 1623 1624 1625
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1626
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1627 1628 1629 1630 1631 1632
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1633 1634
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1635
	memcpy(&vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1636 1637 1638
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
	restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	memcpy(&fpu->fprs, &vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1653
	if (!is_vcpu_stopped(vcpu))
1654
		rc = -EBUSY;
1655 1656 1657 1658
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1659 1660 1661 1662 1663 1664 1665 1666 1667
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1668 1669 1670 1671
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1672 1673
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1674
{
1675 1676 1677 1678 1679
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1680
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
		atomic_set_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
	}

	return rc;
1702 1703
}

1704 1705 1706
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1707 1708 1709
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1710 1711 1712 1713 1714
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1735 1736
}

1737 1738 1739 1740 1741
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1742 1743
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1744 1745
	if (!vcpu->requests)
		return 0;
1746
retry:
1747
	kvm_s390_vcpu_request_handled(vcpu);
1748 1749 1750 1751 1752 1753 1754
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1755
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1756 1757
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1758
				      kvm_s390_get_prefix(vcpu),
1759 1760 1761
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1762
		goto retry;
1763
	}
1764

1765 1766 1767 1768 1769
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1770 1771 1772 1773 1774 1775 1776
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
			atomic_set_mask(CPUSTAT_IBS,
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1777
	}
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
			atomic_clear_mask(CPUSTAT_IBS,
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

1788 1789 1790
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

1791 1792 1793
	return 0;
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1805
{
1806 1807
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
1808 1809
}

1810 1811 1812 1813
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
1814
	struct kvm_s390_irq irq;
1815 1816

	if (start_token) {
1817 1818 1819
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1820 1821
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
1822
		inti.parm64 = token;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
1869
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
1870 1871 1872 1873 1874 1875
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
1876 1877 1878
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
1879 1880 1881 1882 1883 1884
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

1885
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
1886
{
1887
	int rc, cpuflags;
1888

1889 1890 1891 1892 1893 1894 1895
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

1896
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
1897 1898 1899 1900

	if (need_resched())
		schedule();

1901
	if (test_cpu_flag(CIF_MCCK_PENDING))
1902 1903
		s390_handle_mcck();

1904 1905 1906 1907 1908
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
1909

1910 1911 1912 1913
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

1914 1915 1916 1917 1918
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

1919
	vcpu->arch.sie_block->icptcode = 0;
1920 1921 1922
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
1923

1924 1925 1926
	return 0;
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
1944
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
1945 1946 1947 1948 1949 1950 1951
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

1952 1953
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
1954
	int rc = -1;
1955 1956 1957 1958 1959

	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

1960 1961 1962
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

1963
	if (exit_reason >= 0) {
1964
		rc = 0;
1965 1966 1967 1968 1969 1970
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
		rc = -EREMOTE;
1971 1972

	} else if (current->thread.gmap_pfault) {
1973
		trace_kvm_s390_major_guest_pfault(vcpu);
1974
		current->thread.gmap_pfault = 0;
1975
		if (kvm_arch_setup_async_pf(vcpu)) {
1976
			rc = 0;
1977 1978 1979 1980
		} else {
			gpa_t gpa = current->thread.gmap_addr;
			rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
		}
1981 1982
	}

1983 1984
	if (rc == -1)
		rc = vcpu_post_run_fault_in_sie(vcpu);
1985

1986
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
1987

1988 1989
	if (rc == 0) {
		if (kvm_is_ucontrol(vcpu->kvm))
1990 1991
			/* Don't exit for host interrupts. */
			rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
1992 1993 1994 1995
		else
			rc = kvm_handle_sie_intercept(vcpu);
	}

1996 1997 1998 1999 2000 2001 2002
	return rc;
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2003 2004 2005 2006 2007 2008
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2009 2010 2011 2012
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2013

2014
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2015 2016 2017 2018
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2019 2020 2021
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2022 2023
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2024 2025 2026
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2027
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2028 2029

		rc = vcpu_post_run(vcpu, exit_reason);
2030
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2031

2032
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2033
	return rc;
2034 2035
}

2036 2037 2038 2039 2040 2041 2042 2043
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2044 2045
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2058 2059
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2080 2081
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2082
	int rc;
2083 2084
	sigset_t sigsaved;

2085 2086 2087 2088 2089
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2090 2091 2092
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2093 2094 2095
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2096
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2097 2098 2099
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2100

2101
	sync_regs(vcpu, kvm_run);
2102

2103
	might_fault();
2104
	rc = __vcpu_run(vcpu);
2105

2106 2107
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2108
		rc = -EINTR;
2109
	}
2110

2111 2112 2113 2114 2115
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2116
	if (rc == -EOPNOTSUPP) {
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		/* intercept cannot be handled in-kernel, prepare kvm-run */
		kvm_run->exit_reason         = KVM_EXIT_S390_SIEIC;
		kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		kvm_run->s390_sieic.ipa      = vcpu->arch.sie_block->ipa;
		kvm_run->s390_sieic.ipb      = vcpu->arch.sie_block->ipb;
		rc = 0;
	}

	if (rc == -EREMOTE) {
		/* intercept was handled, but userspace support is needed
		 * kvm_run has been prepared by the handler */
		rc = 0;
	}
2130

2131
	store_regs(vcpu, kvm_run);
2132

2133 2134 2135 2136
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2137
	return rc;
2138 2139 2140 2141 2142 2143 2144 2145
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2146
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2147
{
2148
	unsigned char archmode = 1;
2149
	unsigned int px;
2150
	u64 clkcomp;
2151
	int rc;
2152

2153 2154
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2155
			return -EFAULT;
2156 2157 2158
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2159
			return -EFAULT;
2160 2161 2162 2163 2164 2165 2166 2167
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2168
	px = kvm_s390_get_prefix(vcpu);
2169
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2170
			      &px, 4);
2171 2172 2173 2174 2175 2176 2177
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2178
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2179 2180 2181 2182 2183 2184 2185
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2186 2187
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
	save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
	 * copying in vcpu load/put. Let's update our copies before we save
	 * it into the save area.
	 */
	save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2231 2232 2233
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2234
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2250
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2251 2252
}

2253 2254
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2255 2256 2257 2258 2259
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2260
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2261
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2262
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2282
	atomic_clear_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2283 2284 2285 2286
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2287
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2288
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2289
	return;
2290 2291 2292 2293
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2294 2295 2296 2297 2298 2299
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2300
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2301
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2302
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2303 2304
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2305
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2306
	kvm_s390_clear_stop_irq(vcpu);
2307

2308
	atomic_set_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2326
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2327
	return;
2328 2329
}

2330 2331 2332 2333 2334 2335 2336 2337 2338
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2339 2340 2341 2342 2343 2344 2345
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2346 2347 2348 2349 2350 2351 2352
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2412 2413 2414 2415 2416
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2417
	int idx;
2418
	long r;
2419

2420
	switch (ioctl) {
2421 2422 2423 2424 2425 2426 2427 2428 2429
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2430
	case KVM_S390_INTERRUPT: {
2431
		struct kvm_s390_interrupt s390int;
2432
		struct kvm_s390_irq s390irq;
2433

2434
		r = -EFAULT;
2435
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2436
			break;
2437 2438 2439
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2440
		break;
2441
	}
2442
	case KVM_S390_STORE_STATUS:
2443
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2444
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2445
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2446
		break;
2447 2448 2449
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2450
		r = -EFAULT;
2451
		if (copy_from_user(&psw, argp, sizeof(psw)))
2452 2453 2454
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2455 2456
	}
	case KVM_S390_INITIAL_RESET:
2457 2458
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2507
	case KVM_S390_VCPU_FAULT: {
2508
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2509 2510
		break;
	}
2511 2512 2513 2514 2515 2516 2517 2518 2519
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2520 2521 2522 2523 2524 2525 2526 2527 2528
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2561
	default:
2562
		r = -ENOTTY;
2563
	}
2564
	return r;
2565 2566
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2580 2581
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2582 2583 2584 2585
{
	return 0;
}

2586
/* Section: memory related */
2587 2588
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2589
				   const struct kvm_userspace_memory_region *mem,
2590
				   enum kvm_mr_change change)
2591
{
2592 2593 2594 2595
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2596

2597
	if (mem->userspace_addr & 0xffffful)
2598 2599
		return -EINVAL;

2600
	if (mem->memory_size & 0xffffful)
2601 2602
		return -EINVAL;

2603 2604 2605 2606
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2607
				const struct kvm_userspace_memory_region *mem,
2608
				const struct kvm_memory_slot *old,
2609
				const struct kvm_memory_slot *new,
2610
				enum kvm_mr_change change)
2611
{
2612
	int rc;
2613

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2624 2625 2626 2627

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2628
		pr_warn("failed to commit memory region\n");
2629
	return;
2630 2631 2632 2633
}

static int __init kvm_s390_init(void)
{
2634
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2635 2636 2637 2638 2639 2640 2641 2642 2643
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2644 2645 2646 2647 2648 2649 2650 2651 2652

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");