bmc150-accel-core.c 48.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3 4 5 6 7
 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
 *  - BMC150
 *  - BMI055
 *  - BMA255
 *  - BMA250E
8
 *  - BMA222
9 10 11
 *  - BMA222E
 *  - BMA280
 *
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * Copyright (c) 2014, Intel Corporation.
 */

#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
M
Markus Pargmann 已提交
30
#include <linux/regmap.h>
31
#include <linux/regulator/consumer.h>
32

33 34
#include "bmc150-accel.h"

35 36 37 38 39 40 41
#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"

#define BMC150_ACCEL_REG_CHIP_ID		0x00

#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
42 43 44
#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)

#define BMC150_ACCEL_REG_PMU_LPW		0x11
#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT		5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1

#define BMC150_ACCEL_REG_PMU_RANGE		0x0F

#define BMC150_ACCEL_DEF_RANGE_2G		0x03
#define BMC150_ACCEL_DEF_RANGE_4G		0x05
#define BMC150_ACCEL_DEF_RANGE_8G		0x08
#define BMC150_ACCEL_DEF_RANGE_16G		0x0C

/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW		0x10
#define BMC150_ACCEL_DEF_BW			125

64 65 66
#define BMC150_ACCEL_REG_RESET			0x14
#define BMC150_ACCEL_RESET_VAL			0xB6

67 68 69 70
#define BMC150_ACCEL_REG_INT_MAP_0		0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)

#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
71 72 73
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
74 75 76 77 78 79 80 81 82 83 84 85

#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00

#define BMC150_ACCEL_REG_INT_EN_0		0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)

#define BMC150_ACCEL_REG_INT_EN_1		0x17
86 87 88
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
89 90 91 92 93 94 95 96 97 98 99

#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)

#define BMC150_ACCEL_REG_INT_5			0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03

#define BMC150_ACCEL_REG_INT_6			0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF

/* Slope duration in terms of number of samples */
100
#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
101
/* in terms of multiples of g's/LSB, based on range */
102
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

#define BMC150_ACCEL_REG_XOUT_L		0x02

#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100

/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
#define BMC150_ACCEL_SLEEP_1_MS		0x06
#define BMC150_ACCEL_SLEEP_2_MS		0x07
#define BMC150_ACCEL_SLEEP_4_MS		0x08
#define BMC150_ACCEL_SLEEP_6_MS		0x09
#define BMC150_ACCEL_SLEEP_10_MS		0x0A
#define BMC150_ACCEL_SLEEP_25_MS		0x0B
#define BMC150_ACCEL_SLEEP_50_MS		0x0C
#define BMC150_ACCEL_SLEEP_100_MS		0x0D
#define BMC150_ACCEL_SLEEP_500_MS		0x0E
#define BMC150_ACCEL_SLEEP_1_SEC		0x0F

#define BMC150_ACCEL_REG_TEMP			0x08
122
#define BMC150_ACCEL_TEMP_CENTER_VAL		23
123 124 125 126

#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS		2000

127 128 129 130 131 132
#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
#define BMC150_ACCEL_FIFO_LENGTH		32

133 134 135 136
enum bmc150_accel_axis {
	AXIS_X,
	AXIS_Y,
	AXIS_Z,
137
	AXIS_MAX,
138 139 140 141 142 143 144 145 146
};

enum bmc150_power_modes {
	BMC150_ACCEL_SLEEP_MODE_NORMAL,
	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
	BMC150_ACCEL_SLEEP_MODE_LPM,
	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};

147 148 149 150 151 152
struct bmc150_scale_info {
	int scale;
	u8 reg_range;
};

struct bmc150_accel_chip_info {
153
	const char *name;
154 155 156 157 158 159
	u8 chip_id;
	const struct iio_chan_spec *channels;
	int num_channels;
	const struct bmc150_scale_info scale_table[4];
};

160 161 162 163 164
struct bmc150_accel_interrupt {
	const struct bmc150_accel_interrupt_info *info;
	atomic_t users;
};

165 166 167 168 169 170 171 172
struct bmc150_accel_trigger {
	struct bmc150_accel_data *data;
	struct iio_trigger *indio_trig;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
	int intr;
	bool enabled;
};

173 174 175 176 177 178 179
enum bmc150_accel_interrupt_id {
	BMC150_ACCEL_INT_DATA_READY,
	BMC150_ACCEL_INT_ANY_MOTION,
	BMC150_ACCEL_INT_WATERMARK,
	BMC150_ACCEL_INTERRUPTS,
};

180 181 182 183 184 185
enum bmc150_accel_trigger_id {
	BMC150_ACCEL_TRIGGER_DATA_READY,
	BMC150_ACCEL_TRIGGER_ANY_MOTION,
	BMC150_ACCEL_TRIGGERS,
};

186
struct bmc150_accel_data {
M
Markus Pargmann 已提交
187
	struct regmap *regmap;
188
	struct regulator_bulk_data regulators[2];
189
	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
190
	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
191
	struct mutex mutex;
192
	u8 fifo_mode, watermark;
193
	s16 buffer[8];
194 195 196 197 198 199 200 201
	/*
	 * Ensure there is sufficient space and correct alignment for
	 * the timestamp if enabled
	 */
	struct {
		__le16 channels[3];
		s64 ts __aligned(8);
	} scan;
202 203 204 205 206
	u8 bw_bits;
	u32 slope_dur;
	u32 slope_thres;
	u32 range;
	int ev_enable_state;
207
	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
208
	const struct bmc150_accel_chip_info *chip_info;
209
	struct i2c_client *second_device;
210
	struct iio_mount_matrix orientation;
211 212 213 214 215 216
};

static const struct {
	int val;
	int val2;
	u8 bw_bits;
217 218 219 220 221 222 223 224
} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
				     {31, 260000, 0x09},
				     {62, 500000, 0x0A},
				     {125, 0, 0x0B},
				     {250, 0, 0x0C},
				     {500, 0, 0x0D},
				     {1000, 0, 0x0E},
				     {2000, 0, 0x0F} };
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

static const struct {
	int bw_bits;
	int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
				     {0x09, 32},
				     {0x0A, 16},
				     {0x0B, 8},
				     {0x0C, 4},
				     {0x0D, 2},
				     {0x0E, 1},
				     {0x0F, 1} };

static const struct {
	int sleep_dur;
240
	u8 reg_value;
241 242 243 244 245 246 247 248 249 250 251 252 253
} bmc150_accel_sleep_value_table[] = { {0, 0},
				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
				       {1000, BMC150_ACCEL_SLEEP_1_MS},
				       {2000, BMC150_ACCEL_SLEEP_2_MS},
				       {4000, BMC150_ACCEL_SLEEP_4_MS},
				       {6000, BMC150_ACCEL_SLEEP_6_MS},
				       {10000, BMC150_ACCEL_SLEEP_10_MS},
				       {25000, BMC150_ACCEL_SLEEP_25_MS},
				       {50000, BMC150_ACCEL_SLEEP_50_MS},
				       {100000, BMC150_ACCEL_SLEEP_100_MS},
				       {500000, BMC150_ACCEL_SLEEP_500_MS},
				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };

254
const struct regmap_config bmc150_regmap_conf = {
M
Markus Pargmann 已提交
255 256 257 258
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0x3f,
};
259
EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
M
Markus Pargmann 已提交
260

261 262 263 264
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
				 enum bmc150_power_modes mode,
				 int dur_us)
{
265
	struct device *dev = regmap_get_device(data->regmap);
266 267 268 269 270 271 272 273 274 275 276 277 278
	int i;
	int ret;
	u8 lpw_bits;
	int dur_val = -1;

	if (dur_us > 0) {
		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
									 ++i) {
			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
									dur_us)
				dur_val =
				bmc150_accel_sleep_value_table[i].reg_value;
		}
279
	} else {
280
		dur_val = 0;
281
	}
282 283 284 285 286 287 288

	if (dur_val < 0)
		return -EINVAL;

	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);

289
	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
290

M
Markus Pargmann 已提交
291
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
292
	if (ret < 0) {
293
		dev_err(dev, "Error writing reg_pmu_lpw\n");
294 295 296 297 298 299 300 301 302 303 304 305 306 307
		return ret;
	}

	return 0;
}

static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
			       int val2)
{
	int i;
	int ret;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].val == val &&
308
		    bmc150_accel_samp_freq_table[i].val2 == val2) {
M
Markus Pargmann 已提交
309
			ret = regmap_write(data->regmap,
310 311 312 313 314 315 316 317 318 319 320 321 322 323
				BMC150_ACCEL_REG_PMU_BW,
				bmc150_accel_samp_freq_table[i].bw_bits);
			if (ret < 0)
				return ret;

			data->bw_bits =
				bmc150_accel_samp_freq_table[i].bw_bits;
			return 0;
		}
	}

	return -EINVAL;
}

324 325
static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
{
326
	struct device *dev = regmap_get_device(data->regmap);
M
Markus Pargmann 已提交
327
	int ret;
328

M
Markus Pargmann 已提交
329
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
330 331
					data->slope_thres);
	if (ret < 0) {
332
		dev_err(dev, "Error writing reg_int_6\n");
333 334 335
		return ret;
	}

M
Markus Pargmann 已提交
336 337
	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
338
	if (ret < 0) {
339
		dev_err(dev, "Error updating reg_int_5\n");
340 341 342
		return ret;
	}

343
	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
344 345 346 347

	return ret;
}

348 349 350 351 352 353 354 355 356
static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
					 bool state)
{
	if (state)
		return bmc150_accel_update_slope(t->data);

	return 0;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
			       int *val2)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
			*val = bmc150_accel_samp_freq_table[i].val;
			*val2 = bmc150_accel_samp_freq_table[i].val2;
			return IIO_VAL_INT_PLUS_MICRO;
		}
	}

	return -EINVAL;
}

373
#ifdef CONFIG_PM
374 375 376 377 378 379 380 381 382 383 384 385 386 387
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
			return bmc150_accel_sample_upd_time[i].msec;
	}

	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}

static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
388
	struct device *dev = regmap_get_device(data->regmap);
389 390
	int ret;

391
	if (on) {
392
		ret = pm_runtime_get_sync(dev);
393
	} else {
394 395
		pm_runtime_mark_last_busy(dev);
		ret = pm_runtime_put_autosuspend(dev);
396
	}
397

398
	if (ret < 0) {
399
		dev_err(dev,
400
			"Failed: %s for %d\n", __func__, on);
401
		if (on)
402
			pm_runtime_put_noidle(dev);
403

404 405 406 407 408
		return ret;
	}

	return 0;
}
409 410 411 412 413 414
#else
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
	return 0;
}
#endif
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
#ifdef CONFIG_ACPI
/*
 * Support for getting accelerometer information from BOSC0200 ACPI nodes.
 *
 * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
 * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
 * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
 * contains the mount-matrix for the sensor in the display and ROMK contains
 * the mount-matrix for the sensor in the base. On devices using a single
 * sensor there is a ROTM ACPI object which contains the mount-matrix.
 *
 * Here is an incomplete list of devices known to use 1 of these setups:
 *
 * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
 * Lenovo Thinkpad Yoga 11e 3th gen
 * Lenovo Thinkpad Yoga 11e 4th gen
 *
 * Tablets using a single accelerometer using ROTM for the mount-matrix:
 * Chuwi Hi8 Pro (CWI513)
 * Chuwi Vi8 Plus (CWI519)
 * Chuwi Hi13
 * Irbis TW90
 * Jumper EZpad mini 3
 * Onda V80 plus
 * Predia Basic Tablet
 */
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
446
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
447
	struct acpi_device *adev = ACPI_COMPANION(dev);
448
	char *name, *alt_name, *label, *str;
449 450 451 452 453 454 455
	union acpi_object *obj, *elements;
	acpi_status status;
	int i, j, val[3];

	if (!adev || !acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
		return false;

456
	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
457
		alt_name = "ROMK";
458 459
		label = "accel-base";
	} else {
460
		alt_name = "ROMS";
461 462
		label = "accel-display";
	}
463

464
	if (acpi_has_method(adev->handle, "ROTM")) {
465
		name = "ROTM";
466
	} else if (acpi_has_method(adev->handle, alt_name)) {
467
		name = alt_name;
468 469
		indio_dev->label = label;
	} else {
470
		return false;
471
	}
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

	status = acpi_evaluate_object(adev->handle, name, NULL, &buffer);
	if (ACPI_FAILURE(status)) {
		dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status);
		return false;
	}

	obj = buffer.pointer;
	if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3)
		goto unknown_format;

	elements = obj->package.elements;
	for (i = 0; i < 3; i++) {
		if (elements[i].type != ACPI_TYPE_STRING)
			goto unknown_format;

		str = elements[i].string.pointer;
		if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3)
			goto unknown_format;

		for (j = 0; j < 3; j++) {
			switch (val[j]) {
			case -1: str = "-1"; break;
			case 0:  str = "0";  break;
			case 1:  str = "1";  break;
			default: goto unknown_format;
			}
			orientation->rotation[i * 3 + j] = str;
		}
	}

	kfree(buffer.pointer);
	return true;

unknown_format:
	dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n");
	kfree(buffer.pointer);
	return false;
}
#else
static bool bmc150_apply_acpi_orientation(struct device *dev,
					  struct iio_mount_matrix *orientation)
{
	return false;
}
#endif

519 520 521 522 523
static const struct bmc150_accel_interrupt_info {
	u8 map_reg;
	u8 map_bitmask;
	u8 en_reg;
	u8 en_bitmask;
524
} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
525 526 527 528 529 530 531 532 533 534 535 536 537 538
	{ /* data ready interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
	},
	{  /* motion interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
			BMC150_ACCEL_INT_EN_BIT_SLP_Z
	},
539 540 541 542 543 544
	{ /* fifo watermark interrupt */
		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
	},
545 546
};

547 548 549 550 551 552 553 554 555 556
static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
					  struct bmc150_accel_data *data)
{
	int i;

	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
		data->interrupts[i].info = &bmc150_accel_interrupts[i];
}

static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
557 558
				      bool state)
{
559
	struct device *dev = regmap_get_device(data->regmap);
560 561
	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
	const struct bmc150_accel_interrupt_info *info = intr->info;
562 563
	int ret;

564 565 566 567 568 569 570 571
	if (state) {
		if (atomic_inc_return(&intr->users) > 1)
			return 0;
	} else {
		if (atomic_dec_return(&intr->users) > 0)
			return 0;
	}

572
	/*
573 574 575 576 577 578 579
	 * We will expect the enable and disable to do operation in reverse
	 * order. This will happen here anyway, as our resume operation uses
	 * sync mode runtime pm calls. The suspend operation will be delayed
	 * by autosuspend delay.
	 * So the disable operation will still happen in reverse order of
	 * enable operation. When runtime pm is disabled the mode is always on,
	 * so sequence doesn't matter.
580 581 582 583 584 585
	 */
	ret = bmc150_accel_set_power_state(data, state);
	if (ret < 0)
		return ret;

	/* map the interrupt to the appropriate pins */
M
Markus Pargmann 已提交
586 587
	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
				 (state ? info->map_bitmask : 0));
588
	if (ret < 0) {
589
		dev_err(dev, "Error updating reg_int_map\n");
590 591 592 593
		goto out_fix_power_state;
	}

	/* enable/disable the interrupt */
M
Markus Pargmann 已提交
594 595
	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
				 (state ? info->en_bitmask : 0));
596
	if (ret < 0) {
597
		dev_err(dev, "Error updating reg_int_en\n");
598 599 600 601 602 603 604 605 606 607
		goto out_fix_power_state;
	}

	return 0;

out_fix_power_state:
	bmc150_accel_set_power_state(data, false);
	return ret;
}

608 609
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
610
	struct device *dev = regmap_get_device(data->regmap);
611 612
	int ret, i;

613 614
	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
		if (data->chip_info->scale_table[i].scale == val) {
M
Markus Pargmann 已提交
615
			ret = regmap_write(data->regmap,
616 617
				     BMC150_ACCEL_REG_PMU_RANGE,
				     data->chip_info->scale_table[i].reg_range);
618
			if (ret < 0) {
619
				dev_err(dev, "Error writing pmu_range\n");
620 621 622
				return ret;
			}

623
			data->range = data->chip_info->scale_table[i].reg_range;
624 625 626 627 628 629 630 631 632
			return 0;
		}
	}

	return -EINVAL;
}

static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
633
	struct device *dev = regmap_get_device(data->regmap);
634
	int ret;
M
Markus Pargmann 已提交
635
	unsigned int value;
636 637 638

	mutex_lock(&data->mutex);

M
Markus Pargmann 已提交
639
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
640
	if (ret < 0) {
641
		dev_err(dev, "Error reading reg_temp\n");
642 643 644
		mutex_unlock(&data->mutex);
		return ret;
	}
M
Markus Pargmann 已提交
645
	*val = sign_extend32(value, 7);
646 647 648 649 650 651

	mutex_unlock(&data->mutex);

	return IIO_VAL_INT;
}

652 653
static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
				 struct iio_chan_spec const *chan,
654 655
				 int *val)
{
656
	struct device *dev = regmap_get_device(data->regmap);
657
	int ret;
658
	int axis = chan->scan_index;
659
	__le16 raw_val;
660 661 662 663 664 665 666 667

	mutex_lock(&data->mutex);
	ret = bmc150_accel_set_power_state(data, true);
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

M
Markus Pargmann 已提交
668
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
669
			       &raw_val, sizeof(raw_val));
670
	if (ret < 0) {
671
		dev_err(dev, "Error reading axis %d\n", axis);
672 673 674 675
		bmc150_accel_set_power_state(data, false);
		mutex_unlock(&data->mutex);
		return ret;
	}
676
	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
677
			     chan->scan_type.realbits - 1);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	ret = bmc150_accel_set_power_state(data, false);
	mutex_unlock(&data->mutex);
	if (ret < 0)
		return ret;

	return IIO_VAL_INT;
}

static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
				 struct iio_chan_spec const *chan,
				 int *val, int *val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		switch (chan->type) {
		case IIO_TEMP:
			return bmc150_accel_get_temp(data, val);
		case IIO_ACCEL:
			if (iio_buffer_enabled(indio_dev))
				return -EBUSY;
			else
702
				return bmc150_accel_get_axis(data, chan, val);
703 704 705 706 707 708 709
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		if (chan->type == IIO_TEMP) {
			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
			return IIO_VAL_INT;
710
		} else {
711
			return -EINVAL;
712
		}
713 714 715 716 717 718 719 720 721
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		switch (chan->type) {
		case IIO_TEMP:
			*val2 = 500000;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_ACCEL:
		{
			int i;
722 723
			const struct bmc150_scale_info *si;
			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
724

725 726 727 728
			for (i = 0; i < st_size; ++i) {
				si = &data->chip_info->scale_table[i];
				if (si->reg_range == data->range) {
					*val2 = si->scale;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
					return IIO_VAL_INT_PLUS_MICRO;
				}
			}
			return -EINVAL;
		}
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_get_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan,
				  int val, int val2, long mask)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_bw(data, val, val2);
		mutex_unlock(&data->mutex);
		break;
	case IIO_CHAN_INFO_SCALE:
		if (val)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bmc150_accel_set_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int bmc150_accel_read_event(struct iio_dev *indio_dev,
				   const struct iio_chan_spec *chan,
				   enum iio_event_type type,
				   enum iio_event_direction dir,
				   enum iio_event_info info,
				   int *val, int *val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	*val2 = 0;
	switch (info) {
	case IIO_EV_INFO_VALUE:
		*val = data->slope_thres;
		break;
	case IIO_EV_INFO_PERIOD:
790
		*val = data->slope_dur;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		break;
	default:
		return -EINVAL;
	}

	return IIO_VAL_INT;
}

static int bmc150_accel_write_event(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int val, int val2)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (data->ev_enable_state)
		return -EBUSY;

	switch (info) {
	case IIO_EV_INFO_VALUE:
813
		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
814 815
		break;
	case IIO_EV_INFO_PERIOD:
816
		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
					  const struct iio_chan_spec *chan,
					  enum iio_event_type type,
					  enum iio_event_direction dir)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return data->ev_enable_state;
}

static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
					   const struct iio_chan_spec *chan,
					   enum iio_event_type type,
					   enum iio_event_direction dir,
					   int state)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

844
	if (state == data->ev_enable_state)
845 846 847 848
		return 0;

	mutex_lock(&data->mutex);

849 850
	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
					 state);
851 852 853 854 855 856 857 858 859 860 861 862
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}

	data->ev_enable_state = state;
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
863
					 struct iio_trigger *trig)
864 865
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
866
	int i;
867

868 869 870 871
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].indio_trig == trig)
			return 0;
	}
872

873
	return -EINVAL;
874 875
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int wm;

	mutex_lock(&data->mutex);
	wm = data->watermark;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", wm);
}

static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	bool state;

	mutex_lock(&data->mutex);
	state = data->fifo_mode;
	mutex_unlock(&data->mutex);

	return sprintf(buf, "%d\n", state);
}

906 907 908 909 910 911 912 913 914 915 916 917 918 919
static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
				const struct iio_chan_spec *chan)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
	{ }
};

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
		       bmc150_accel_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
		       bmc150_accel_get_fifo_watermark, NULL, 0);

static const struct attribute *bmc150_accel_fifo_attributes[] = {
	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
	NULL,
};

static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (val > BMC150_ACCEL_FIFO_LENGTH)
		val = BMC150_ACCEL_FIFO_LENGTH;

	mutex_lock(&data->mutex);
	data->watermark = val;
	mutex_unlock(&data->mutex);

	return 0;
}

/*
 * We must read at least one full frame in one burst, otherwise the rest of the
 * frame data is discarded.
 */
M
Markus Pargmann 已提交
954
static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
955 956
				      char *buffer, int samples)
{
957
	struct device *dev = regmap_get_device(data->regmap);
958
	int sample_length = 3 * 2;
M
Markus Pargmann 已提交
959 960
	int ret;
	int total_length = samples * sample_length;
961

962 963
	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
			      buffer, total_length);
964
	if (ret)
965
		dev_err(dev,
966
			"Error transferring data from fifo: %d\n", ret);
967 968 969 970 971 972 973 974

	return ret;
}

static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
				     unsigned samples, bool irq)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
975
	struct device *dev = regmap_get_device(data->regmap);
976 977 978 979 980
	int ret, i;
	u8 count;
	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
	int64_t tstamp;
	uint64_t sample_period;
M
Markus Pargmann 已提交
981
	unsigned int val;
982

M
Markus Pargmann 已提交
983
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
984
	if (ret < 0) {
985
		dev_err(dev, "Error reading reg_fifo_status\n");
986 987 988
		return ret;
	}

M
Markus Pargmann 已提交
989
	count = val & 0x7F;
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	if (!count)
		return 0;

	/*
	 * If we getting called from IRQ handler we know the stored timestamp is
	 * fairly accurate for the last stored sample. Otherwise, if we are
	 * called as a result of a read operation from userspace and hence
	 * before the watermark interrupt was triggered, take a timestamp
	 * now. We can fall anywhere in between two samples so the error in this
	 * case is at most one sample period.
	 */
	if (!irq) {
		data->old_timestamp = data->timestamp;
1004
		data->timestamp = iio_get_time_ns(indio_dev);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	}

	/*
	 * Approximate timestamps for each of the sample based on the sampling
	 * frequency, timestamp for last sample and number of samples.
	 *
	 * Note that we can't use the current bandwidth settings to compute the
	 * sample period because the sample rate varies with the device
	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
	 * small variation adds when we store a large number of samples and
	 * creates significant jitter between the last and first samples in
	 * different batches (e.g. 32ms vs 21ms).
	 *
	 * To avoid this issue we compute the actual sample period ourselves
	 * based on the timestamp delta between the last two flush operations.
	 */
	sample_period = (data->timestamp - data->old_timestamp);
	do_div(sample_period, count);
	tstamp = data->timestamp - (count - 1) * sample_period;

	if (samples && count > samples)
		count = samples;

M
Markus Pargmann 已提交
1028
	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (ret)
		return ret;

	/*
	 * Ideally we want the IIO core to handle the demux when running in fifo
	 * mode but not when running in triggered buffer mode. Unfortunately
	 * this does not seem to be possible, so stick with driver demux for
	 * now.
	 */
	for (i = 0; i < count; i++) {
		int j, bit;

		j = 0;
		for_each_set_bit(bit, indio_dev->active_scan_mask,
				 indio_dev->masklength)
1044 1045
			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
			       sizeof(data->scan.channels[0]));
1046

1047 1048
		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
						   tstamp);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

		tstamp += sample_period;
	}

	return count;
}

static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
	mutex_unlock(&data->mutex);

	return ret;
}

1068
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1069
		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

static struct attribute *bmc150_accel_attributes[] = {
	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group bmc150_accel_attrs_group = {
	.attrs = bmc150_accel_attributes,
};

static const struct iio_event_spec bmc150_accel_event = {
		.type = IIO_EV_TYPE_ROC,
1082
		.dir = IIO_EV_DIR_EITHER,
1083 1084 1085 1086 1087
		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
				 BIT(IIO_EV_INFO_ENABLE) |
				 BIT(IIO_EV_INFO_PERIOD)
};

1088
#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1089 1090 1091 1092 1093 1094 1095 1096 1097
	.type = IIO_ACCEL,						\
	.modified = 1,							\
	.channel2 = IIO_MOD_##_axis,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
	.scan_index = AXIS_##_axis,					\
	.scan_type = {							\
		.sign = 's',						\
1098
		.realbits = (bits),					\
1099
		.storagebits = 16,					\
1100
		.shift = 16 - (bits),					\
1101
		.endianness = IIO_LE,					\
1102
	},								\
1103
	.ext_info = bmc150_accel_ext_info,				\
1104 1105 1106 1107
	.event_spec = &bmc150_accel_event,				\
	.num_event_specs = 1						\
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
#define BMC150_ACCEL_CHANNELS(bits) {					\
	{								\
		.type = IIO_TEMP,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
				      BIT(IIO_CHAN_INFO_SCALE) |	\
				      BIT(IIO_CHAN_INFO_OFFSET),	\
		.scan_index = -1,					\
	},								\
	BMC150_ACCEL_CHANNEL(X, bits),					\
	BMC150_ACCEL_CHANNEL(Y, bits),					\
	BMC150_ACCEL_CHANNEL(Z, bits),					\
	IIO_CHAN_SOFT_TIMESTAMP(3),					\
}

static const struct iio_chan_spec bma222e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(8);
static const struct iio_chan_spec bma250e_accel_channels[] =
	BMC150_ACCEL_CHANNELS(10);
static const struct iio_chan_spec bmc150_accel_channels[] =
	BMC150_ACCEL_CHANNELS(12);
static const struct iio_chan_spec bma280_accel_channels[] =
	BMC150_ACCEL_CHANNELS(14);

static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
	[bmc150] = {
1133
		.name = "BMC150A",
1134 1135 1136 1137 1138 1139 1140 1141 1142
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bmi055] = {
1143
		.name = "BMI055A",
1144 1145 1146 1147 1148 1149 1150 1151 1152
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma255] = {
1153
		.name = "BMA0255",
1154 1155 1156 1157 1158 1159 1160 1161 1162
		.chip_id = 0xFA,
		.channels = bmc150_accel_channels,
		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma250e] = {
1163
		.name = "BMA250E",
1164 1165 1166 1167 1168 1169 1170 1171
		.chip_id = 0xF9,
		.channels = bma250e_accel_channels,
		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	[bma222] = {
		.name = "BMA222",
		.chip_id = 0x03,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		/*
		 * The datasheet page 17 says:
		 * 15.6, 31.3, 62.5 and 125 mg per LSB.
		 */
		.scale_table = { {156000, BMC150_ACCEL_DEF_RANGE_2G},
				 {313000, BMC150_ACCEL_DEF_RANGE_4G},
				 {625000, BMC150_ACCEL_DEF_RANGE_8G},
				 {1250000, BMC150_ACCEL_DEF_RANGE_16G} },
	},
1186
	[bma222e] = {
1187
		.name = "BMA222E",
1188 1189 1190 1191 1192 1193 1194 1195 1196
		.chip_id = 0xF8,
		.channels = bma222e_accel_channels,
		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
	},
	[bma280] = {
1197
		.name = "BMA0280",
1198 1199 1200 1201 1202 1203 1204
		.chip_id = 0xFB,
		.channels = bma280_accel_channels,
		.num_channels = ARRAY_SIZE(bma280_accel_channels),
		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	},
};

static const struct iio_info bmc150_accel_info = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
};

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static const struct iio_info bmc150_accel_info_fifo = {
	.attrs			= &bmc150_accel_attrs_group,
	.read_raw		= bmc150_accel_read_raw,
	.write_raw		= bmc150_accel_write_raw,
	.read_event_value	= bmc150_accel_read_event,
	.write_event_value	= bmc150_accel_write_event,
	.write_event_config	= bmc150_accel_write_event_config,
	.read_event_config	= bmc150_accel_read_event_config,
	.validate_trigger	= bmc150_accel_validate_trigger,
	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
};

1231 1232 1233 1234
static const unsigned long bmc150_accel_scan_masks[] = {
					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
					0};

1235 1236 1237 1238 1239
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1240
	int ret;
1241 1242

	mutex_lock(&data->mutex);
1243 1244
	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
			       data->buffer, AXIS_MAX * 2);
1245
	mutex_unlock(&data->mutex);
1246 1247
	if (ret < 0)
		goto err_read;
1248 1249

	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1250
					   pf->timestamp);
1251 1252 1253 1254 1255 1256
err_read:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

1257
static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1258
{
1259 1260
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1261
	struct device *dev = regmap_get_device(data->regmap);
1262 1263 1264
	int ret;

	/* new data interrupts don't need ack */
1265
	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1266
		return;
1267 1268 1269

	mutex_lock(&data->mutex);
	/* clear any latched interrupt */
M
Markus Pargmann 已提交
1270 1271 1272
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1273
	mutex_unlock(&data->mutex);
1274
	if (ret < 0)
1275
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1276 1277
}

1278
static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1279
					  bool state)
1280
{
1281 1282
	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
	struct bmc150_accel_data *data = t->data;
1283 1284 1285 1286
	int ret;

	mutex_lock(&data->mutex);

1287 1288 1289 1290 1291 1292 1293 1294
	if (t->enabled == state) {
		mutex_unlock(&data->mutex);
		return 0;
	}

	if (t->setup) {
		ret = t->setup(t, state);
		if (ret < 0) {
1295
			mutex_unlock(&data->mutex);
1296
			return ret;
1297 1298 1299
		}
	}

1300
	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1301 1302 1303 1304
	if (ret < 0) {
		mutex_unlock(&data->mutex);
		return ret;
	}
1305 1306

	t->enabled = state;
1307 1308 1309 1310 1311 1312 1313

	mutex_unlock(&data->mutex);

	return ret;
}

static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1314
	.set_trigger_state = bmc150_accel_trigger_set_state,
1315
	.reenable = bmc150_accel_trig_reen,
1316 1317
};

1318
static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1319 1320
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1321
	struct device *dev = regmap_get_device(data->regmap);
1322
	int dir;
1323
	int ret;
M
Markus Pargmann 已提交
1324
	unsigned int val;
1325

M
Markus Pargmann 已提交
1326
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1327
	if (ret < 0) {
1328
		dev_err(dev, "Error reading reg_int_status_2\n");
1329
		return ret;
1330 1331
	}

M
Markus Pargmann 已提交
1332
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1333 1334 1335 1336
		dir = IIO_EV_DIR_FALLING;
	else
		dir = IIO_EV_DIR_RISING;

M
Markus Pargmann 已提交
1337
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1338 1339 1340 1341 1342 1343 1344 1345
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1346
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1347 1348 1349 1350 1351 1352 1353 1354
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

M
Markus Pargmann 已提交
1355
	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1356 1357 1358 1359 1360 1361 1362 1363
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_ROC,
						  dir),
			       data->timestamp);

1364 1365 1366 1367 1368 1369 1370
	return ret;
}

static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1371
	struct device *dev = regmap_get_device(data->regmap);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	bool ack = false;
	int ret;

	mutex_lock(&data->mutex);

	if (data->fifo_mode) {
		ret = __bmc150_accel_fifo_flush(indio_dev,
						BMC150_ACCEL_FIFO_LENGTH, true);
		if (ret > 0)
			ack = true;
	}

	if (data->ev_enable_state) {
		ret = bmc150_accel_handle_roc_event(indio_dev);
		if (ret > 0)
			ack = true;
	}

	if (ack) {
M
Markus Pargmann 已提交
1391 1392 1393
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_INT |
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1394
		if (ret)
1395
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1396

1397 1398 1399 1400
		ret = IRQ_HANDLED;
	} else {
		ret = IRQ_NONE;
	}
1401

1402 1403 1404
	mutex_unlock(&data->mutex);

	return ret;
1405 1406
}

1407
static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1408 1409 1410
{
	struct iio_dev *indio_dev = private;
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1411
	bool ack = false;
1412
	int i;
1413

1414
	data->old_timestamp = data->timestamp;
1415
	data->timestamp = iio_get_time_ns(indio_dev);
1416

1417 1418 1419
	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		if (data->triggers[i].enabled) {
			iio_trigger_poll(data->triggers[i].indio_trig);
1420
			ack = true;
1421 1422 1423
			break;
		}
	}
1424

1425
	if (data->ev_enable_state || data->fifo_mode)
1426
		return IRQ_WAKE_THREAD;
1427 1428

	if (ack)
1429
		return IRQ_HANDLED;
1430 1431

	return IRQ_NONE;
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static const struct {
	int intr;
	const char *name;
	int (*setup)(struct bmc150_accel_trigger *t, bool state);
} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
	{
		.intr = 0,
		.name = "%s-dev%d",
	},
	{
		.intr = 1,
		.name = "%s-any-motion-dev%d",
		.setup = bmc150_accel_any_motion_setup,
	},
};

static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
					     int from)
{
	int i;

1455
	for (i = from; i >= 0; i--) {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		if (data->triggers[i].indio_trig) {
			iio_trigger_unregister(data->triggers[i].indio_trig);
			data->triggers[i].indio_trig = NULL;
		}
	}
}

static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
				       struct bmc150_accel_data *data)
{
1466
	struct device *dev = regmap_get_device(data->regmap);
1467 1468 1469 1470 1471
	int i, ret;

	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
		struct bmc150_accel_trigger *t = &data->triggers[i];

1472 1473
		t->indio_trig = devm_iio_trigger_alloc(dev,
					bmc150_accel_triggers[i].name,
1474 1475 1476 1477 1478 1479 1480
						       indio_dev->name,
						       indio_dev->id);
		if (!t->indio_trig) {
			ret = -ENOMEM;
			break;
		}

1481
		t->indio_trig->dev.parent = dev;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		t->indio_trig->ops = &bmc150_accel_trigger_ops;
		t->intr = bmc150_accel_triggers[i].intr;
		t->data = data;
		t->setup = bmc150_accel_triggers[i].setup;
		iio_trigger_set_drvdata(t->indio_trig, t);

		ret = iio_trigger_register(t->indio_trig);
		if (ret)
			break;
	}

	if (ret)
		bmc150_accel_unregister_triggers(data, i - 1);

	return ret;
}

1499 1500 1501 1502 1503 1504
#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00

static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
{
1505
	struct device *dev = regmap_get_device(data->regmap);
1506 1507 1508
	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
	int ret;

M
Markus Pargmann 已提交
1509
	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1510
	if (ret < 0) {
1511
		dev_err(dev, "Error writing reg_fifo_config1\n");
1512 1513 1514 1515 1516 1517
		return ret;
	}

	if (!data->fifo_mode)
		return 0;

M
Markus Pargmann 已提交
1518 1519
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
			   data->watermark);
1520
	if (ret < 0)
1521
		dev_err(dev, "Error writing reg_fifo_config0\n");
1522 1523 1524 1525

	return ret;
}

1526 1527 1528 1529 1530 1531 1532
static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, true);
}

1533 1534 1535 1536 1537 1538
static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret = 0;

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1539
		return 0;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

	mutex_lock(&data->mutex);

	if (!data->watermark)
		goto out;

	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					 true);
	if (ret)
		goto out;

	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;

	ret = bmc150_accel_fifo_set_mode(data);
	if (ret) {
		data->fifo_mode = 0;
		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
					   false);
	}

out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1571
		return 0;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

	mutex_lock(&data->mutex);

	if (!data->fifo_mode)
		goto out;

	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
	data->fifo_mode = 0;
	bmc150_accel_fifo_set_mode(data);

out:
	mutex_unlock(&data->mutex);

	return 0;
}

1589 1590 1591 1592 1593 1594 1595
static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	return bmc150_accel_set_power_state(data, false);
}

1596
static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1597
	.preenable = bmc150_accel_buffer_preenable,
1598 1599
	.postenable = bmc150_accel_buffer_postenable,
	.predisable = bmc150_accel_buffer_predisable,
1600
	.postdisable = bmc150_accel_buffer_postdisable,
1601 1602
};

1603 1604
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
1605
	struct device *dev = regmap_get_device(data->regmap);
1606
	int ret, i;
M
Markus Pargmann 已提交
1607
	unsigned int val;
1608

1609 1610 1611 1612 1613 1614 1615 1616
	/*
	 * Reset chip to get it in a known good state. A delay of 1.8ms after
	 * reset is required according to the data sheets of supported chips.
	 */
	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
		     BMC150_ACCEL_RESET_VAL);
	usleep_range(1800, 2500);

M
Markus Pargmann 已提交
1617
	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1618
	if (ret < 0) {
1619
		dev_err(dev, "Error: Reading chip id\n");
1620 1621 1622
		return ret;
	}

1623
	dev_dbg(dev, "Chip Id %x\n", val);
1624
	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
M
Markus Pargmann 已提交
1625
		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1626 1627 1628 1629 1630 1631
			data->chip_info = &bmc150_accel_chip_info_tbl[i];
			break;
		}
	}

	if (!data->chip_info) {
1632
		dev_err(dev, "Invalid chip %x\n", val);
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		return -ENODEV;
	}

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
	if (ret < 0)
		return ret;

	/* Set Bandwidth */
	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
	if (ret < 0)
		return ret;

	/* Set Default Range */
M
Markus Pargmann 已提交
1646 1647
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
			   BMC150_ACCEL_DEF_RANGE_4G);
1648
	if (ret < 0) {
1649
		dev_err(dev, "Error writing reg_pmu_range\n");
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
		return ret;
	}

	data->range = BMC150_ACCEL_DEF_RANGE_4G;

	/* Set default slope duration and thresholds */
	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
	ret = bmc150_accel_update_slope(data);
	if (ret < 0)
		return ret;

	/* Set default as latched interrupts */
M
Markus Pargmann 已提交
1663 1664 1665
	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
			   BMC150_ACCEL_INT_MODE_LATCH_INT |
			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1666
	if (ret < 0) {
1667
		dev_err(dev, "Error writing reg_int_rst_latch\n");
1668 1669 1670 1671 1672 1673
		return ret;
	}

	return 0;
}

1674 1675
int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
			    const char *name, bool block_supported)
1676
{
1677
	const struct attribute **fifo_attrs;
1678 1679 1680 1681
	struct bmc150_accel_data *data;
	struct iio_dev *indio_dev;
	int ret;

1682
	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1683 1684 1685 1686
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
1687
	dev_set_drvdata(dev, indio_dev);
1688

1689
	data->regmap = regmap;
1690

1691 1692 1693 1694 1695 1696 1697
	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
		ret = iio_read_mount_matrix(dev, "mount-matrix",
					     &data->orientation);
		if (ret)
			return ret;
	}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	/*
	 * VDD   is the analog and digital domain voltage supply
	 * VDDIO is the digital I/O voltage supply
	 */
	data->regulators[0].supply = "vdd";
	data->regulators[1].supply = "vddio";
	ret = devm_regulator_bulk_get(dev,
				      ARRAY_SIZE(data->regulators),
				      data->regulators);
	if (ret)
		return dev_err_probe(dev, ret, "failed to get regulators\n");

	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
				    data->regulators);
	if (ret) {
		dev_err(dev, "failed to enable regulators: %d\n", ret);
		return ret;
	}
	/*
	 * 2ms or 3ms power-on time according to datasheets, let's better
	 * be safe than sorry and set this delay to 5ms.
	 */
	msleep(5);
1721

1722 1723
	ret = bmc150_accel_chip_init(data);
	if (ret < 0)
1724
		goto err_disable_regulators;
1725 1726 1727

	mutex_init(&data->mutex);

1728 1729
	indio_dev->channels = data->chip_info->channels;
	indio_dev->num_channels = data->chip_info->num_channels;
1730
	indio_dev->name = name ? name : data->chip_info->name;
1731
	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1732 1733 1734
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &bmc150_accel_info;

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	if (block_supported) {
		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
		indio_dev->info = &bmc150_accel_info_fifo;
		fifo_attrs = bmc150_accel_fifo_attributes;
	} else {
		fifo_attrs = NULL;
	}

	ret = iio_triggered_buffer_setup_ext(indio_dev,
					     &iio_pollfunc_store_time,
					     bmc150_accel_trigger_handler,
					     &bmc150_accel_buffer_ops,
					     fifo_attrs);
1748
	if (ret < 0) {
1749
		dev_err(dev, "Failed: iio triggered buffer setup\n");
1750
		goto err_disable_regulators;
1751 1752
	}

1753 1754
	if (irq > 0) {
		ret = devm_request_threaded_irq(dev, irq,
1755 1756
						bmc150_accel_irq_handler,
						bmc150_accel_irq_thread_handler,
1757 1758 1759 1760
						IRQF_TRIGGER_RISING,
						BMC150_ACCEL_IRQ_NAME,
						indio_dev);
		if (ret)
1761
			goto err_buffer_cleanup;
1762

1763 1764 1765 1766 1767 1768
		/*
		 * Set latched mode interrupt. While certain interrupts are
		 * non-latched regardless of this settings (e.g. new data) we
		 * want to use latch mode when we can to prevent interrupt
		 * flooding.
		 */
M
Markus Pargmann 已提交
1769 1770
		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1771
		if (ret < 0) {
1772
			dev_err(dev, "Error writing reg_int_rst_latch\n");
1773
			goto err_buffer_cleanup;
1774 1775
		}

1776 1777
		bmc150_accel_interrupts_setup(indio_dev, data);

1778
		ret = bmc150_accel_triggers_setup(indio_dev, data);
1779
		if (ret)
1780
			goto err_buffer_cleanup;
1781 1782
	}

1783
	ret = pm_runtime_set_active(dev);
1784
	if (ret)
1785
		goto err_trigger_unregister;
1786

1787 1788 1789
	pm_runtime_enable(dev);
	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
	pm_runtime_use_autosuspend(dev);
1790

1791 1792 1793 1794 1795 1796
	ret = iio_device_register(indio_dev);
	if (ret < 0) {
		dev_err(dev, "Unable to register iio device\n");
		goto err_trigger_unregister;
	}

1797 1798 1799
	return 0;

err_trigger_unregister:
1800
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1801 1802
err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);
1803 1804 1805
err_disable_regulators:
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
1806 1807 1808

	return ret;
}
1809
EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
struct i2c_client *bmc150_get_second_device(struct i2c_client *client)
{
	struct bmc150_accel_data *data = i2c_get_clientdata(client);

	if (!data)
		return NULL;

	return data->second_device;
}
EXPORT_SYMBOL_GPL(bmc150_get_second_device);

void bmc150_set_second_device(struct i2c_client *client)
{
	struct bmc150_accel_data *data = i2c_get_clientdata(client);

	if (data)
		data->second_device = client;
}
EXPORT_SYMBOL_GPL(bmc150_set_second_device);

1831
int bmc150_accel_core_remove(struct device *dev)
1832
{
1833
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1834 1835
	struct bmc150_accel_data *data = iio_priv(indio_dev);

1836 1837
	iio_device_unregister(indio_dev);

1838 1839 1840
	pm_runtime_disable(dev);
	pm_runtime_set_suspended(dev);
	pm_runtime_put_noidle(dev);
1841

1842
	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1843

1844 1845
	iio_triggered_buffer_cleanup(indio_dev);

1846 1847 1848 1849
	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
	mutex_unlock(&data->mutex);

1850 1851 1852
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);

1853 1854
	return 0;
}
1855
EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1856 1857 1858 1859

#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
1860
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	mutex_unlock(&data->mutex);

	return 0;
}

static int bmc150_accel_resume(struct device *dev)
{
1872
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1873 1874 1875
	struct bmc150_accel_data *data = iio_priv(indio_dev);

	mutex_lock(&data->mutex);
1876
	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1877
	bmc150_accel_fifo_set_mode(data);
1878 1879 1880 1881 1882 1883
	mutex_unlock(&data->mutex);

	return 0;
}
#endif

1884
#ifdef CONFIG_PM
1885 1886
static int bmc150_accel_runtime_suspend(struct device *dev)
{
1887
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1888
	struct bmc150_accel_data *data = iio_priv(indio_dev);
1889
	int ret;
1890

1891 1892 1893
	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
	if (ret < 0)
		return -EAGAIN;
1894

1895
	return 0;
1896 1897 1898 1899
}

static int bmc150_accel_runtime_resume(struct device *dev)
{
1900
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1901 1902 1903 1904 1905
	struct bmc150_accel_data *data = iio_priv(indio_dev);
	int ret;
	int sleep_val;

	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1906 1907 1908
	if (ret < 0)
		return ret;
	ret = bmc150_accel_fifo_set_mode(data);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	if (ret < 0)
		return ret;

	sleep_val = bmc150_accel_get_startup_times(data);
	if (sleep_val < 20)
		usleep_range(sleep_val * 1000, 20000);
	else
		msleep_interruptible(sleep_val);

	return 0;
}
#endif

1922
const struct dev_pm_ops bmc150_accel_pm_ops = {
1923 1924 1925 1926
	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
			   bmc150_accel_runtime_resume, NULL)
};
1927
EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1928 1929 1930 1931

MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");