i915_request.c 47.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53 54
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59
{
60
	return dev_name(to_request(fence)->i915->drm.dev);
61 62
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	const struct i915_gem_context *ctx;

67 68
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
69 70 71 72 73 74 75 76 77 78
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

79
	ctx = i915_request_gem_context(to_request(fence));
80 81 82 83
	if (!ctx)
		return "[" DRIVER_NAME "]";

	return ctx->name;
84 85
}

86
static bool i915_fence_signaled(struct dma_fence *fence)
87
{
88
	return i915_request_completed(to_request(fence));
89 90
}

91
static bool i915_fence_enable_signaling(struct dma_fence *fence)
92
{
93
	return i915_request_enable_breadcrumb(to_request(fence));
94 95
}

96
static signed long i915_fence_wait(struct dma_fence *fence,
97
				   bool interruptible,
98
				   signed long timeout)
99
{
100 101 102
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
103 104
}

105
static void i915_fence_release(struct dma_fence *fence)
106
{
107
	struct i915_request *rq = to_request(fence);
108

109 110
	/*
	 * The request is put onto a RCU freelist (i.e. the address
111 112 113 114 115
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
116
	i915_sw_fence_fini(&rq->submit);
117
	i915_sw_fence_fini(&rq->semaphore);
118

119
	kmem_cache_free(global.slab_requests, rq);
120 121
}

122
const struct dma_fence_ops i915_fence_ops = {
123 124 125 126 127 128 129 130
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

175
static inline void
176
remove_from_client(struct i915_request *request)
177
{
178
	struct drm_i915_file_private *file_priv;
179

180
	if (!READ_ONCE(request->file_priv))
181 182
		return;

183 184 185 186
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
187
		list_del(&request->client_link);
188
		spin_unlock(&file_priv->mm.lock);
189
	}
190
	rcu_read_unlock();
191 192
}

193
static void free_capture_list(struct i915_request *request)
194
{
195
	struct i915_capture_list *capture;
196

197
	capture = fetch_and_zero(&request->capture_list);
198
	while (capture) {
199
		struct i915_capture_list *next = capture->next;
200 201 202 203 204 205

		kfree(capture);
		capture = next;
	}
}

206 207 208 209 210 211 212 213 214 215 216
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
217
	spin_lock_irq(&locked->active.lock);
218 219 220 221 222
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
223
	list_del_init(&rq->sched.link);
224 225
	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
226
	spin_unlock_irq(&locked->active.lock);
227 228
}

229
bool i915_request_retire(struct i915_request *rq)
230
{
231 232
	if (!i915_request_completed(rq))
		return false;
233

234
	RQ_TRACE(rq, "\n");
235

236 237
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
238

239 240 241 242 243 244 245 246 247
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
248 249
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
250
	rq->ring->head = rq->postfix;
251

252 253 254 255 256 257
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
258
	remove_from_engine(rq);
259

260
	spin_lock_irq(&rq->lock);
261 262 263 264 265
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
266
	if (i915_request_has_waitboost(rq)) {
267 268
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
269
	}
270 271 272 273 274
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
275
	spin_unlock_irq(&rq->lock);
276

277
	remove_from_client(rq);
278
	list_del(&rq->link);
279

280 281
	intel_context_exit(rq->context);
	intel_context_unpin(rq->context);
282

283 284 285 286 287
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
288 289
}

290
void i915_request_retire_upto(struct i915_request *rq)
291
{
292
	struct intel_timeline * const tl = i915_request_timeline(rq);
293
	struct i915_request *tmp;
294

295
	RQ_TRACE(rq, "\n");
296

297
	GEM_BUG_ON(!i915_request_completed(rq));
298

299
	do {
300
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
301
	} while (i915_request_retire(tmp) && tmp != rq);
302 303
}

304
static int
305 306 307 308 309
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
310 311 312
{
	struct execute_cb *cb;

313 314 315
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
316
		return 0;
317
	}
318 319 320 321 322 323 324 325 326

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

327 328 329 330 331 332
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

333 334
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
335 336 337 338
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
339 340 341 342 343 344 345
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

346 347
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
348 349 350
	return 0;
}

351
bool __i915_request_submit(struct i915_request *request)
352
{
353
	struct intel_engine_cs *engine = request->engine;
354
	bool result = false;
355

356
	RQ_TRACE(request, "\n");
357

358
	GEM_BUG_ON(!irqs_disabled());
359
	lockdep_assert_held(&engine->active.lock);
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

380
	if (intel_context_is_banned(request->context))
381 382
		i915_request_skip(request, -EIO);

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
401
		engine->saturated |= request->sched.semaphores;
402

403 404
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
405

406 407 408
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
409

410 411 412
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

413
	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
414
		list_move_tail(&request->sched.link, &engine->active.requests);
415 416
		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
	}
417

418
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
419
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
420
	    !i915_request_enable_breadcrumb(request))
421
		intel_engine_signal_breadcrumbs(engine);
422

423 424
	__notify_execute_cb(request);

425 426
	spin_unlock(&request->lock);

427
	return result;
428 429
}

430
void i915_request_submit(struct i915_request *request)
431 432 433
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
434

435
	/* Will be called from irq-context when using foreign fences. */
436
	spin_lock_irqsave(&engine->active.lock, flags);
437

438
	__i915_request_submit(request);
439

440
	spin_unlock_irqrestore(&engine->active.lock, flags);
441 442
}

443
void __i915_request_unsubmit(struct i915_request *request)
444
{
445
	struct intel_engine_cs *engine = request->engine;
446

447
	RQ_TRACE(request, "\n");
448

449
	GEM_BUG_ON(!irqs_disabled());
450
	lockdep_assert_held(&engine->active.lock);
451

452 453
	/*
	 * Only unwind in reverse order, required so that the per-context list
454 455
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
456

457 458
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
459

460
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
461
		i915_request_cancel_breadcrumb(request);
462

463 464
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
465

466 467
	spin_unlock(&request->lock);

468 469 470 471 472 473
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

474 475
	/*
	 * We don't need to wake_up any waiters on request->execute, they
476
	 * will get woken by any other event or us re-adding this request
477
	 * to the engine timeline (__i915_request_submit()). The waiters
478 479 480 481 482
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

483
void i915_request_unsubmit(struct i915_request *request)
484 485 486 487 488
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
489
	spin_lock_irqsave(&engine->active.lock, flags);
490

491
	__i915_request_unsubmit(request);
492

493
	spin_unlock_irqrestore(&engine->active.lock, flags);
494 495
}

496
static int __i915_sw_fence_call
497
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
498
{
499
	struct i915_request *request =
500 501 502 503
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
504
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
505 506 507 508

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

509
		/*
510 511 512 513 514 515
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
516 517
		 */
		rcu_read_lock();
518
		request->engine->submit_request(request);
519
		rcu_read_unlock();
520 521 522
		break;

	case FENCE_FREE:
523
		i915_request_put(request);
524 525 526
		break;
	}

527 528 529
	return NOTIFY_DONE;
}

530 531 532 533 534 535 536 537
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
538
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
539 540 541 542 543 544 545 546 547 548
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

549
static void retire_requests(struct intel_timeline *tl)
550 551 552
{
	struct i915_request *rq, *rn;

553
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
554
		if (!i915_request_retire(rq))
555 556 557 558
			break;
}

static noinline struct i915_request *
559
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
560 561 562
{
	struct i915_request *rq;

563
	if (list_empty(&tl->requests))
564 565
		goto out;

566 567 568
	if (!gfpflags_allow_blocking(gfp))
		goto out;

569
	/* Move our oldest request to the slab-cache (if not in use!) */
570
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
571 572 573 574 575 576 577
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

578
	/* Ratelimit ourselves to prevent oom from malicious clients */
579
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
580 581 582
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
583
	retire_requests(tl);
584 585

out:
586
	return kmem_cache_alloc(global.slab_requests, gfp);
587 588
}

589 590 591 592 593 594 595 596 597
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

598 599
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);

600 601 602 603 604 605
	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

606
struct i915_request *
607
__i915_request_create(struct intel_context *ce, gfp_t gfp)
608
{
609
	struct intel_timeline *tl = ce->timeline;
610 611
	struct i915_request *rq;
	u32 seqno;
612 613
	int ret;

614
	might_sleep_if(gfpflags_allow_blocking(gfp));
615

616 617
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
618

619 620
	/*
	 * Beware: Dragons be flying overhead.
621 622 623 624
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
625
	 * of being read by __i915_active_request_get_rcu(). As such,
626 627
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
628
	 * read the request->global_seqno and increment the reference count.
629 630 631 632
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
633 634
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
635 636 637 638 639 640 641 642 643 644 645 646 647
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
648
	rq = kmem_cache_alloc(global.slab_requests,
649
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
650
	if (unlikely(!rq)) {
651
		rq = request_alloc_slow(tl, gfp);
652
		if (!rq) {
653 654 655
			ret = -ENOMEM;
			goto err_unreserve;
		}
656
	}
657

658
	rq->i915 = ce->engine->i915;
659
	rq->context = ce;
660
	rq->engine = ce->engine;
661
	rq->ring = ce->ring;
662
	rq->execution_mask = ce->engine->mask;
663

664 665 666 667 668 669 670 671 672 673 674 675
	kref_init(&rq->fence.refcount);
	rq->fence.flags = 0;
	rq->fence.error = 0;
	INIT_LIST_HEAD(&rq->fence.cb_list);

	ret = intel_timeline_get_seqno(tl, rq, &seqno);
	if (ret)
		goto err_free;

	rq->fence.context = tl->fence_context;
	rq->fence.seqno = seqno;

676 677
	RCU_INIT_POINTER(rq->timeline, tl);
	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
678
	rq->hwsp_seqno = tl->hwsp_seqno;
679

680
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
681

682
	/* We bump the ref for the fence chain */
683 684
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
685

686
	i915_sched_node_reinit(&rq->sched);
687

688
	/* No zalloc, everything must be cleared after use */
689
	rq->batch = NULL;
690 691 692
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
693

694 695 696
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
697
	 * i915_request_add() call can't fail. Note that the reserve may need
698 699
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
700 701 702 703 704
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
705
	 */
706 707
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
708

709 710
	/*
	 * Record the position of the start of the request so that
711 712 713 714
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
715
	rq->head = rq->ring->emit;
716

717
	ret = rq->engine->request_alloc(rq);
718 719
	if (ret)
		goto err_unwind;
720

721 722
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

723
	intel_context_mark_active(ce);
724
	return rq;
725

726
err_unwind:
727
	ce->ring->emit = rq->head;
728

729
	/* Make sure we didn't add ourselves to external state before freeing */
730 731
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
732

733
err_free:
734
	kmem_cache_free(global.slab_requests, rq);
735
err_unreserve:
736
	intel_context_unpin(ce);
737
	return ERR_PTR(ret);
738 739
}

740 741 742 743
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
744
	struct intel_timeline *tl;
745

746 747 748
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
749 750

	/* Move our oldest request to the slab-cache (if not in use!) */
751 752
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
753 754 755 756 757 758 759 760 761
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
762
	rq->cookie = lockdep_pin_lock(&tl->mutex);
763 764 765 766

	return rq;

err_unlock:
767
	intel_context_timeline_unlock(tl);
768 769 770
	return rq;
}

771 772 773
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
774 775
	struct dma_fence *fence;
	int err;
776

777 778 779
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

780
	fence = NULL;
781
	rcu_read_lock();
782 783 784 785 786
	spin_lock_irq(&signal->lock);
	if (!i915_request_started(signal) &&
	    !list_is_first(&signal->link,
			   &rcu_dereference(signal->timeline)->requests)) {
		struct i915_request *prev = list_prev_entry(signal, link);
787

788 789 790 791 792 793 794 795 796 797 798
		/*
		 * Peek at the request before us in the timeline. That
		 * request will only be valid before it is retired, so
		 * after acquiring a reference to it, confirm that it is
		 * still part of the signaler's timeline.
		 */
		if (i915_request_get_rcu(prev)) {
			if (list_next_entry(prev, link) == signal)
				fence = &prev->fence;
			else
				i915_request_put(prev);
799 800
		}
	}
801 802 803 804
	spin_unlock_irq(&signal->lock);
	rcu_read_unlock();
	if (!fence)
		return 0;
805 806 807 808 809 810 811 812 813

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
814 815
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
831
	return rq->sched.semaphores | rq->engine->saturated;
832 833
}

834
static int
835 836 837
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
838
{
839
	const int has_token = INTEL_GEN(to->i915) >= 12;
840
	u32 hwsp_offset;
841
	int len, err;
842 843 844 845
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

846
	/* We need to pin the signaler's HWSP until we are finished reading. */
847 848 849
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
850

851 852 853 854 855
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
856 857 858 859 860 861 862 863 864 865 866
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
867 868 869 870 871
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
872
	*cs++ = seqno;
873 874
	*cs++ = hwsp_offset;
	*cs++ = 0;
875 876 877 878
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
879 880

	intel_ring_advance(to, cs);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

903 904
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
905
	return 0;
906 907 908 909 910

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
911 912
}

913
static int
914
i915_request_await_request(struct i915_request *to, struct i915_request *from)
915
{
916
	int ret;
917 918

	GEM_BUG_ON(to == from);
919
	GEM_BUG_ON(to->timeline == from->timeline);
920

921
	if (i915_request_completed(from))
922 923
		return 0;

924
	if (to->engine->schedule) {
925
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
926 927 928 929
		if (ret < 0)
			return ret;
	}

930
	if (to->engine == from->engine)
931 932
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
933
						       I915_FENCE_GFP);
934
	else if (intel_context_use_semaphores(to->context))
935
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
936
	else
937 938 939
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
940 941 942 943 944 945 946 947 948 949
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
950

951
	return 0;
952 953
}

954
int
955
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
956
{
957 958
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
959 960
	int ret;

961 962
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
963 964 965 966 967 968
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
969 970 971 972 973 974 975
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
976

977 978
	do {
		fence = *child++;
979 980
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
981
			continue;
982
		}
983

984 985
		/*
		 * Requests on the same timeline are explicitly ordered, along
986
		 * with their dependencies, by i915_request_add() which ensures
987 988
		 * that requests are submitted in-order through each ring.
		 */
989
		if (fence->context == rq->fence.context)
990 991
			continue;

992
		/* Squash repeated waits to the same timelines */
993
		if (fence->context &&
994 995
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
996 997
			continue;

998
		if (dma_fence_is_i915(fence))
999
			ret = i915_request_await_request(rq, to_request(fence));
1000
		else
1001
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1002
							    fence->context ? I915_FENCE_TIMEOUT : 0,
1003
							    I915_FENCE_GFP);
1004 1005
		if (ret < 0)
			return ret;
1006 1007

		/* Record the latest fence used against each timeline */
1008
		if (fence->context)
1009 1010
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1011
	} while (--nchild);
1012 1013 1014 1015

	return 0;
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

	/* Ensure both start together [after all semaphores in signal] */
	if (intel_engine_has_semaphores(to->engine))
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
	else
		err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1089 1090
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1091
			continue;
1092
		}
1093 1094 1095 1096 1097 1098 1099 1100 1101

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1102
							     hook);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1114
/**
1115
 * i915_request_await_object - set this request to (async) wait upon a bo
1116 1117
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1118
 * @write: whether the wait is on behalf of a writer
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1135 1136 1137
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1138
{
1139 1140
	struct dma_fence *excl;
	int ret = 0;
1141 1142

	if (write) {
1143 1144 1145
		struct dma_fence **shared;
		unsigned int count, i;

1146
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1147 1148 1149 1150 1151
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1152
			ret = i915_request_await_dma_fence(to, shared[i]);
1153 1154 1155 1156 1157 1158 1159 1160 1161
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1162
	} else {
1163
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1164 1165
	}

1166 1167
	if (excl) {
		if (ret == 0)
1168
			ret = i915_request_await_dma_fence(to, excl);
1169

1170
		dma_fence_put(excl);
1171 1172
	}

1173
	return ret;
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1184 1185 1186
	if (rq->infix == rq->postfix)
		return;

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1198
	rq->infix = rq->postfix;
1199 1200
}

1201 1202 1203
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1204
	struct intel_timeline *timeline = i915_request_timeline(rq);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1227 1228
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1247 1248 1249 1250 1251
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1252 1253 1254 1255 1256
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1257 1258 1259 1260 1261
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1262
struct i915_request *__i915_request_commit(struct i915_request *rq)
1263
{
1264 1265
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1266
	u32 *cs;
1267

1268
	RQ_TRACE(rq, "\n");
1269

1270 1271 1272 1273 1274
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1275 1276
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1277
	rq->emitted_jiffies = jiffies;
1278

1279 1280
	/*
	 * Record the position of the start of the breadcrumb so that
1281 1282
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1283
	 * position of the ring's HEAD.
1284
	 */
1285
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1286
	GEM_BUG_ON(IS_ERR(cs));
1287
	rq->postfix = intel_ring_offset(rq, cs);
1288

1289
	return __i915_request_add_to_timeline(rq);
1290 1291 1292 1293 1294
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1295 1296
	/*
	 * Let the backend know a new request has arrived that may need
1297 1298 1299 1300 1301 1302 1303 1304 1305
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1306
	i915_sw_fence_commit(&rq->semaphore);
1307 1308
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1309 1310 1311 1312 1313
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1314
	struct intel_timeline * const tl = i915_request_timeline(rq);
1315
	struct i915_sched_attr attr = {};
1316 1317
	struct i915_request *prev;

1318 1319
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1320 1321 1322 1323 1324

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1325 1326
	if (rcu_access_pointer(rq->context->gem_context))
		attr = i915_request_gem_context(rq)->sched;
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1352
	local_bh_disable();
1353
	__i915_request_queue(rq, &attr);
1354
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1373 1374 1375
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1376
		i915_request_retire_upto(prev);
1377

1378
	mutex_unlock(&tl->mutex);
1379 1380 1381 1382 1383 1384
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1385 1386
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1414 1415
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1416
{
1417
	unsigned int cpu;
1418 1419 1420 1421 1422 1423 1424

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1425 1426 1427 1428
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1429
	 */
1430
	if (!i915_request_is_running(rq))
1431 1432
		return false;

1433 1434
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1446 1447
		if (i915_request_completed(rq))
			return true;
1448

1449 1450 1451 1452 1453 1454
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1455
		cpu_relax();
1456 1457 1458 1459 1460
	} while (!need_resched());

	return false;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1473
/**
1474
 * i915_request_wait - wait until execution of request has finished
1475
 * @rq: the request to wait upon
1476
 * @flags: how to wait
1477 1478
 * @timeout: how long to wait in jiffies
 *
1479
 * i915_request_wait() waits for the request to be completed, for a
1480 1481
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1482
 *
1483 1484 1485 1486
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1487
 */
1488
long i915_request_wait(struct i915_request *rq,
1489 1490
		       unsigned int flags,
		       long timeout)
1491
{
1492 1493
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1494
	struct request_wait wait;
1495 1496

	might_sleep();
1497
	GEM_BUG_ON(timeout < 0);
1498

1499
	if (dma_fence_is_signaled(&rq->fence))
1500
		return timeout;
1501

1502 1503
	if (!timeout)
		return -ETIME;
1504

1505
	trace_i915_request_wait_begin(rq, flags);
1506 1507 1508 1509 1510 1511 1512

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1513
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1538
	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1539 1540
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1541
		goto out;
1542
	}
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1558
			intel_rps_boost(rq);
1559
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1560
	}
1561

1562 1563 1564
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1565

1566 1567
	for (;;) {
		set_current_state(state);
1568

1569 1570
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1571
			break;
1572
		}
1573

1574 1575
		intel_engine_flush_submission(rq->engine);

1576
		if (signal_pending_state(state, current)) {
1577
			timeout = -ERESTARTSYS;
1578 1579 1580
			break;
		}

1581 1582
		if (!timeout) {
			timeout = -ETIME;
1583 1584 1585
			break;
		}

1586
		timeout = io_schedule_timeout(timeout);
1587
	}
1588
	__set_current_state(TASK_RUNNING);
1589

1590 1591 1592
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1593
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1594
	trace_i915_request_wait_end(rq);
1595
	return timeout;
1596
}
1597

1598 1599
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1600
#include "selftests/i915_request.c"
1601
#endif
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1622 1623
int __init i915_global_request_init(void)
{
1624 1625 1626 1627 1628 1629 1630 1631
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1632 1633 1634
	if (!global.slab_requests)
		return -ENOMEM;

1635 1636 1637 1638 1639 1640 1641
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1642 1643 1644 1645
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1646
		goto err_execute_cbs;
1647

1648
	i915_global_register(&global.base);
1649 1650
	return 0;

1651 1652
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1653 1654 1655 1656
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}