memory-failure.c 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched/signal.h>
44
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
45
#include <linux/ksm.h>
46
#include <linux/rmap.h>
47
#include <linux/export.h>
48 49 50
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
51 52 53
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
54
#include <linux/slab.h>
55
#include <linux/swapops.h>
56
#include <linux/hugetlb.h>
57
#include <linux/memory_hotplug.h>
58
#include <linux/mm_inline.h>
59
#include <linux/kfifo.h>
60
#include <linux/ratelimit.h>
61
#include "internal.h"
62
#include "ras/ras_event.h"
63 64 65 66 67

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

68
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69

70 71
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

72
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
73 74
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
75 76
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
77
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
80 81
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
82 83 84 85 86 87 88 89 90 91 92

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
93
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
113 114 115 116 117 118 119 120 121 122 123 124
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
125 126 127 128 129 130 131 132 133 134
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
135
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
136 137 138 139 140 141 142
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

143
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
144 145 146 147 148 149 150 151
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
152 153
int hwpoison_filter(struct page *p)
{
154 155 156
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
157 158 159
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
160 161 162
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
163 164 165
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
166 167
	return 0;
}
168 169 170 171 172 173 174
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
175 176
EXPORT_SYMBOL_GPL(hwpoison_filter);

177
/*
178 179 180
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
181
 */
182 183
static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
			unsigned long pfn, struct page *page, int flags)
184 185 186 187
{
	struct siginfo si;
	int ret;

188 189
	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
		pfn, t->comm, t->pid);
190 191 192 193 194 195
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_addr = (void *)addr;
#ifdef __ARCH_SI_TRAPNO
	si.si_trapno = trapno;
#endif
196
	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197

198
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199
		si.si_code = BUS_MCEERR_AR;
200
		ret = force_sig_info(SIGBUS, &si, current);
201 202 203 204 205 206 207 208 209 210
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
		si.si_code = BUS_MCEERR_AO;
		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
	}
211
	if (ret < 0)
212
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
213
			t->comm, t->pid, ret);
214 215 216
	return ret;
}

217 218 219 220
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
221
void shake_page(struct page *p, int access)
222
{
223 224 225
	if (PageHuge(p))
		return;

226 227 228 229
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
230
		drain_all_pages(page_zone(p));
231 232 233
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
234

235
	/*
236 237
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
238
	 */
239 240
	if (access)
		drop_slab_node(page_to_nid(p));
241 242 243
}
EXPORT_SYMBOL_GPL(shake_page);

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
270
	char addr_valid;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
296
			pr_err("Memory failure: Out of memory while machine check handling\n");
297 298 299 300 301 302 303 304 305 306 307 308 309
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
310
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
327
static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
M
Minchan Kim 已提交
328
			  bool fail, struct page *page, unsigned long pfn,
329
			  int flags)
330 331 332 333
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
334
		if (forcekill) {
335
			/*
336
			 * In case something went wrong with munmapping
337 338 339 340
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
341
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
342
				       pfn, tk->tsk->comm, tk->tsk->pid);
343 344 345 346 347 348 349 350 351
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
352 353
			else if (kill_proc(tk->tsk, tk->addr, trapno,
					      pfn, page, flags) < 0)
354
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
355
				       pfn, tk->tsk->comm, tk->tsk->pid);
356 357 358 359 360 361
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

362 363 364 365 366 367 368 369 370
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371
{
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
390
	if (!tsk->mm)
391
		return NULL;
392
	if (force_early)
393 394 395 396 397 398 399
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
400 401 402 403 404 405
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406
			      struct to_kill **tkc, int force_early)
407 408 409 410
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
411
	pgoff_t pgoff;
412

413
	av = page_lock_anon_vma_read(page);
414
	if (av == NULL)	/* Not actually mapped anymore */
415 416
		return;

417
	pgoff = page_to_pgoff(page);
418
	read_lock(&tasklist_lock);
419
	for_each_process (tsk) {
420
		struct anon_vma_chain *vmac;
421
		struct task_struct *t = task_early_kill(tsk, force_early);
422

423
		if (!t)
424
			continue;
425 426
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
427
			vma = vmac->vma;
428 429
			if (!page_mapped_in_vma(page, vma))
				continue;
430 431
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
432 433 434
		}
	}
	read_unlock(&tasklist_lock);
435
	page_unlock_anon_vma_read(av);
436 437 438 439 440 441
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
442
			      struct to_kill **tkc, int force_early)
443 444 445 446 447
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

448
	i_mmap_lock_read(mapping);
449
	read_lock(&tasklist_lock);
450
	for_each_process(tsk) {
451
		pgoff_t pgoff = page_to_pgoff(page);
452
		struct task_struct *t = task_early_kill(tsk, force_early);
453

454
		if (!t)
455
			continue;
456
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 458 459 460 461 462 463 464
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
465 466
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
467 468 469
		}
	}
	read_unlock(&tasklist_lock);
470
	i_mmap_unlock_read(mapping);
471 472 473 474 475 476 477 478
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
479 480
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
481 482 483 484 485 486 487 488 489 490
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
491
		collect_procs_anon(page, tokill, &tk, force_early);
492
	else
493
		collect_procs_file(page, tokill, &tk, force_early);
494 495 496 497
	kfree(tk);
}

static const char *action_name[] = {
498 499 500 501
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
502 503 504
};

static const char * const action_page_types[] = {
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
	[MF_MSG_UNKNOWN]		= "unknown page",
525 526
};

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
542 543 544 545 546 547 548

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

549 550 551
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
552
		put_page(p);
553 554 555 556 557
		return 0;
	}
	return -EIO;
}

558 559 560 561 562 563 564
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
565
	return MF_IGNORED;
566 567 568 569 570 571 572
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
573
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
574
	return MF_FAILED;
575 576 577 578 579 580 581 582
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	int err;
583
	int ret = MF_FAILED;
584 585
	struct address_space *mapping;

586 587
	delete_from_lru_cache(p);

588 589 590 591 592
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
593
		return MF_RECOVERED;
594 595 596 597 598 599 600 601 602 603 604 605 606

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
607
		return MF_FAILED;
608 609 610 611 612 613 614 615 616 617
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
	if (mapping->a_ops->error_remove_page) {
		err = mapping->a_ops->error_remove_page(mapping, p);
		if (err != 0) {
618
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
619
				pfn, err);
620 621
		} else if (page_has_private(p) &&
				!try_to_release_page(p, GFP_NOIO)) {
622 623
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
624
		} else {
625
			ret = MF_RECOVERED;
626 627 628 629 630 631 632
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
633
			ret = MF_RECOVERED;
634
		else
635 636
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
637 638 639 640 641
	}
	return ret;
}

/*
642
 * Dirty pagecache page
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
675
		 * and the page is dropped between then the error
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
		mapping_set_error(mapping, EIO);
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

718
	if (!delete_from_lru_cache(p))
719
		return MF_DELAYED;
720
	else
721
		return MF_FAILED;
722 723 724 725 726
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
727

728
	if (!delete_from_lru_cache(p))
729
		return MF_RECOVERED;
730
	else
731
		return MF_FAILED;
732 733 734 735 736
}

/*
 * Huge pages. Needs work.
 * Issues:
737 738
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
739 740 741
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
742
	int res = 0;
743
	struct page *hpage = compound_head(p);
744 745 746 747

	if (!PageHuge(hpage))
		return MF_DELAYED;

748 749 750 751 752 753 754 755 756
	/*
	 * We can safely recover from error on free or reserved (i.e.
	 * not in-use) hugepage by dequeuing it from freelist.
	 * To check whether a hugepage is in-use or not, we can't use
	 * page->lru because it can be used in other hugepage operations,
	 * such as __unmap_hugepage_range() and gather_surplus_pages().
	 * So instead we use page_mapping() and PageAnon().
	 */
	if (!(page_mapping(hpage) || PageAnon(hpage))) {
757 758
		res = dequeue_hwpoisoned_huge_page(hpage);
		if (!res)
759
			return MF_RECOVERED;
760
	}
761
	return MF_DELAYED;
762 763 764 765 766 767 768 769 770
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
771
 * in its live cycle, so all accesses have to be extremely careful.
772 773 774 775 776 777
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
778
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
779 780 781 782 783 784 785 786 787 788 789
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
790
	enum mf_action_page_type type;
791 792
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
793
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
794 795 796 797
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
798 799 800 801 802 803

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
804
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
805

806
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
807

808 809
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
810

811 812
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
813

814 815
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
816

817 818
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
819 820 821 822

	/*
	 * Catchall entry: must be at end.
	 */
823
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
824 825
};

826 827 828 829 830 831 832 833 834 835
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

836 837 838 839
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
840 841
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
842
{
843 844
	trace_memory_failure_event(pfn, type, result);

845
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
846
		pfn, action_page_types[type], action_name[result]);
847 848 849
}

static int page_action(struct page_state *ps, struct page *p,
850
			unsigned long pfn)
851 852
{
	int result;
853
	int count;
854 855

	result = ps->action(p, pfn);
856

857
	count = page_count(p) - 1;
858
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
859 860
		count--;
	if (count != 0) {
861
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
862
		       pfn, action_page_types[ps->type], count);
863
		result = MF_FAILED;
864
	}
865
	action_result(pfn, ps->type, result);
866 867 868 869 870 871

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

872
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
873 874
}

875 876 877 878 879 880 881 882 883 884 885
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

886
	if (!PageHuge(head) && PageTransHuge(head)) {
887 888 889 890 891 892 893
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
894
			pr_err("Memory failure: %#lx: non anonymous thp\n",
895 896 897
				page_to_pfn(page));
			return 0;
		}
898 899
	}

900 901 902 903
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

904 905
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
906 907 908 909
		put_page(head);
	}

	return 0;
910 911 912
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

913 914 915 916
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
917
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
918
				  int trapno, int flags, struct page **hpagep)
919
{
S
Shaohua Li 已提交
920
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
921 922
	struct address_space *mapping;
	LIST_HEAD(tokill);
M
Minchan Kim 已提交
923
	bool unmap_success;
924
	int kill = 1, forcekill;
925
	struct page *hpage = *hpagep;
926
	bool mlocked = PageMlocked(hpage);
927

928 929 930 931 932
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
933
		return true;
934
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
935
		return true;
936 937 938 939 940

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
941
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
942
		return true;
W
Wu Fengguang 已提交
943

944
	if (PageKsm(p)) {
945
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
946
		return false;
947
	}
948 949

	if (PageSwapCache(p)) {
950 951
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
952 953 954 955 956 957
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
958 959
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
960
	 */
961
	mapping = page_mapping(hpage);
962
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
963 964 965
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
966 967 968
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
969
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
970 971 972 973 974 975 976 977 978 979 980 981 982
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
983
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
984

M
Minchan Kim 已提交
985 986
	unmap_success = try_to_unmap(hpage, ttu);
	if (!unmap_success)
987
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
988
		       pfn, page_mapcount(hpage));
989

990 991 992 993 994 995 996
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

997 998 999 1000
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1001 1002
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1003 1004 1005 1006
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1007
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
M
Minchan Kim 已提交
1008
	kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
W
Wu Fengguang 已提交
1009

M
Minchan Kim 已提交
1010
	return unmap_success;
1011 1012
}

1013 1014 1015
static void set_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1016
	int nr_pages = 1 << compound_order(hpage);
1017 1018 1019 1020 1021 1022 1023
	for (i = 0; i < nr_pages; i++)
		SetPageHWPoison(hpage + i);
}

static void clear_page_hwpoison_huge_page(struct page *hpage)
{
	int i;
1024
	int nr_pages = 1 << compound_order(hpage);
1025 1026 1027 1028
	for (i = 0; i < nr_pages; i++)
		ClearPageHWPoison(hpage + i);
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
int memory_failure(unsigned long pfn, int trapno, int flags)
1048 1049 1050
{
	struct page_state *ps;
	struct page *p;
1051
	struct page *hpage;
1052
	struct page *orig_head;
1053
	int res;
1054
	unsigned int nr_pages;
1055
	unsigned long page_flags;
1056 1057 1058 1059 1060

	if (!sysctl_memory_failure_recovery)
		panic("Memory failure from trap %d on page %lx", trapno, pfn);

	if (!pfn_valid(pfn)) {
1061 1062
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1063
		return -ENXIO;
1064 1065 1066
	}

	p = pfn_to_page(pfn);
1067
	orig_head = hpage = compound_head(p);
1068
	if (TestSetPageHWPoison(p)) {
1069 1070
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1071 1072 1073
		return 0;
	}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * Currently errors on hugetlbfs pages are measured in hugepage units,
	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
	 * transparent hugepages, they are supposed to be split and error
	 * measurement is done in normal page units.  So nr_pages should be one
	 * in this case.
	 */
	if (PageHuge(p))
		nr_pages = 1 << compound_order(hpage);
	else /* normal page or thp */
		nr_pages = 1;
1085
	num_poisoned_pages_add(nr_pages);
1086 1087 1088 1089 1090

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1091 1092 1093 1094
	 * 2) it's a free hugepage, which is also safe:
	 *    an affected hugepage will be dequeued from hugepage freelist,
	 *    so there's no concern about reusing it ever after.
	 * 3) it's part of a non-compound high order page.
1095 1096 1097 1098 1099 1100
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1101
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1102
		if (is_free_buddy_page(p)) {
1103
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1104
			return 0;
1105 1106
		} else if (PageHuge(hpage)) {
			/*
1107
			 * Check "filter hit" and "race with other subpage."
1108
			 */
J
Jens Axboe 已提交
1109
			lock_page(hpage);
1110 1111 1112
			if (PageHWPoison(hpage)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1113
					num_poisoned_pages_sub(nr_pages);
1114 1115 1116
					unlock_page(hpage);
					return 0;
				}
1117 1118 1119
			}
			set_page_hwpoison_huge_page(hpage);
			res = dequeue_hwpoisoned_huge_page(hpage);
1120 1121
			action_result(pfn, MF_MSG_FREE_HUGE,
				      res ? MF_IGNORED : MF_DELAYED);
1122 1123
			unlock_page(hpage);
			return res;
1124
		} else {
1125
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1126 1127
			return -EBUSY;
		}
1128 1129
	}

1130
	if (!PageHuge(p) && PageTransHuge(hpage)) {
1131 1132 1133 1134
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1135 1136
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1137
			else
1138 1139
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1140
			if (TestClearPageHWPoison(p))
1141
				num_poisoned_pages_sub(nr_pages);
1142
			put_hwpoison_page(p);
1143 1144
			return -EBUSY;
		}
1145
		unlock_page(p);
1146 1147 1148 1149
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1150 1151 1152
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1153
	 * - to avoid races with __SetPageLocked()
1154 1155 1156 1157
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1158 1159 1160 1161 1162 1163 1164 1165
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1166 1167
	}

J
Jens Axboe 已提交
1168
	lock_page(hpage);
W
Wu Fengguang 已提交
1169

1170 1171 1172 1173
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1174
	if (PageCompound(p) && compound_head(p) != orig_head) {
1175
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1176 1177 1178 1179
		res = -EBUSY;
		goto out;
	}

1180 1181 1182 1183 1184 1185 1186
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1187 1188 1189 1190
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1191

W
Wu Fengguang 已提交
1192 1193 1194 1195
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1196
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1197
		num_poisoned_pages_sub(nr_pages);
1198
		unlock_page(hpage);
1199
		put_hwpoison_page(hpage);
1200
		return 0;
W
Wu Fengguang 已提交
1201
	}
W
Wu Fengguang 已提交
1202 1203
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1204
			num_poisoned_pages_sub(nr_pages);
1205
		unlock_page(hpage);
1206
		put_hwpoison_page(hpage);
W
Wu Fengguang 已提交
1207 1208
		return 0;
	}
W
Wu Fengguang 已提交
1209

1210 1211 1212
	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
		goto identify_page_state;

1213 1214 1215 1216
	/*
	 * For error on the tail page, we should set PG_hwpoison
	 * on the head page to show that the hugepage is hwpoisoned
	 */
1217
	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1218
		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1219
		unlock_page(hpage);
1220
		put_hwpoison_page(hpage);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		return 0;
	}
	/*
	 * Set PG_hwpoison on all pages in an error hugepage,
	 * because containment is done in hugepage unit for now.
	 * Since we have done TestSetPageHWPoison() for the head page with
	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
	 */
	if (PageHuge(p))
		set_page_hwpoison_huge_page(hpage);

1232 1233 1234 1235
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1236 1237 1238 1239
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1240
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1241 1242 1243
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1244
	 */
M
Minchan Kim 已提交
1245
	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1246
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1247 1248 1249
		res = -EBUSY;
		goto out;
	}
1250 1251 1252 1253

	/*
	 * Torn down by someone else?
	 */
1254
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1255
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1256
		res = -EBUSY;
1257 1258 1259
		goto out;
	}

1260
identify_page_state:
1261
	res = -EBUSY;
1262 1263 1264 1265 1266 1267 1268
	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flagss is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
1269
			break;
1270 1271 1272

	page_flags |= (p->flags & (1UL << PG_dirty));

1273 1274 1275 1276 1277
	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	res = page_action(ps, p, pfn);
1278
out:
1279
	unlock_page(hpage);
1280 1281
	return res;
}
1282
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int trapno;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
void memory_failure_queue(unsigned long pfn, int trapno, int flags)
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.trapno =	trapno,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1331
	if (kfifo_put(&mf_cpu->fifo, entry))
1332 1333
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1334
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1348
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1349 1350 1351 1352 1353 1354
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1355 1356 1357 1358
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
			memory_failure(entry.pfn, entry.trapno, entry.flags);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1378 1379 1380 1381 1382 1383
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1401
	unsigned int nr_pages;
1402 1403
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1404 1405 1406 1407 1408 1409 1410 1411

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1412
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1413
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1414 1415 1416
		return 0;
	}

1417
	if (page_count(page) > 1) {
1418
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1419
				 pfn, &unpoison_rs);
1420 1421 1422 1423
		return 0;
	}

	if (page_mapped(page)) {
1424
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1425
				 pfn, &unpoison_rs);
1426 1427 1428 1429
		return 0;
	}

	if (page_mapping(page)) {
1430
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1431
				 pfn, &unpoison_rs);
1432 1433 1434
		return 0;
	}

1435 1436 1437 1438 1439
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1440
	if (!PageHuge(page) && PageTransHuge(page)) {
1441
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1442
				 pfn, &unpoison_rs);
1443
		return 0;
1444 1445
	}

1446
	nr_pages = 1 << compound_order(page);
1447

1448
	if (!get_hwpoison_page(p)) {
1449 1450 1451 1452 1453 1454 1455
		/*
		 * Since HWPoisoned hugepage should have non-zero refcount,
		 * race between memory failure and unpoison seems to happen.
		 * In such case unpoison fails and memory failure runs
		 * to the end.
		 */
		if (PageHuge(page)) {
1456
			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1457
					 pfn, &unpoison_rs);
1458 1459
			return 0;
		}
W
Wu Fengguang 已提交
1460
		if (TestClearPageHWPoison(p))
1461
			num_poisoned_pages_dec();
1462
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1464 1465 1466
		return 0;
	}

J
Jens Axboe 已提交
1467
	lock_page(page);
W
Wu Fengguang 已提交
1468 1469 1470 1471 1472 1473
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1474
	if (TestClearPageHWPoison(page)) {
1475
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476
				 pfn, &unpoison_rs);
1477
		num_poisoned_pages_sub(nr_pages);
W
Wu Fengguang 已提交
1478
		freeit = 1;
1479 1480
		if (PageHuge(page))
			clear_page_hwpoison_huge_page(page);
W
Wu Fengguang 已提交
1481 1482 1483
	}
	unlock_page(page);

1484
	put_hwpoison_page(page);
1485
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1486
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1487 1488 1489 1490

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1491 1492 1493

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1494
	int nid = page_to_nid(p);
1495 1496 1497 1498
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
						   nid);
	else
1499
		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1500 1501 1502 1503 1504 1505 1506 1507
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1508
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1509 1510 1511 1512 1513 1514
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1515 1516 1517 1518
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1519
	if (!get_hwpoison_page(p)) {
1520
		if (PageHuge(p)) {
1521
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1522
			ret = 0;
1523
		} else if (is_free_buddy_page(p)) {
1524
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1525 1526
			ret = 0;
		} else {
1527 1528
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1529 1530 1531 1532 1533 1534 1535 1536 1537
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1538 1539 1540 1541
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1542 1543
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1544 1545 1546
		/*
		 * Try to free it.
		 */
1547
		put_hwpoison_page(page);
1548 1549 1550 1551 1552 1553
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1554
		if (ret == 1 && !PageLRU(page)) {
1555
			/* Drop page reference which is from __get_any_page() */
1556
			put_hwpoison_page(page);
1557 1558
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1559 1560 1561 1562 1563 1564
			return -EIO;
		}
	}
	return ret;
}

1565 1566 1567 1568 1569
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1570
	LIST_HEAD(pagelist);
1571

1572 1573 1574 1575 1576
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1577
	if (PageHWPoison(hpage)) {
1578
		unlock_page(hpage);
1579
		put_hwpoison_page(hpage);
1580
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1581
		return -EBUSY;
1582
	}
1583
	unlock_page(hpage);
1584

1585
	ret = isolate_huge_page(hpage, &pagelist);
1586 1587 1588 1589
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1590
	put_hwpoison_page(hpage);
1591
	if (!ret) {
1592 1593 1594 1595
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1596
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1597
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1598
	if (ret) {
1599 1600
		pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
			pfn, ret, page->flags, &page->flags);
1601 1602
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1603 1604
		if (ret > 0)
			ret = -EIO;
1605
	} else {
1606 1607 1608 1609
		/* overcommit hugetlb page will be freed to buddy */
		if (PageHuge(page)) {
			set_page_hwpoison_huge_page(hpage);
			dequeue_hwpoisoned_huge_page(hpage);
1610
			num_poisoned_pages_add(1 << compound_order(hpage));
1611 1612
		} else {
			SetPageHWPoison(page);
1613
			num_poisoned_pages_inc();
1614
		}
1615 1616 1617 1618
	}
	return ret;
}

1619 1620 1621 1622
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1623 1624

	/*
1625 1626 1627 1628
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1629
	 */
1630 1631
	lock_page(page);
	wait_on_page_writeback(page);
1632 1633
	if (PageHWPoison(page)) {
		unlock_page(page);
1634
		put_hwpoison_page(page);
1635 1636 1637
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1649
		put_hwpoison_page(page);
1650
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1651
		SetPageHWPoison(page);
1652
		num_poisoned_pages_inc();
1653
		return 0;
1654 1655 1656 1657 1658 1659 1660
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1661 1662 1663 1664
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1665 1666 1667 1668
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1669
	put_hwpoison_page(page);
1670 1671
	if (!ret) {
		LIST_HEAD(pagelist);
1672 1673 1674 1675 1676 1677 1678 1679
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1680
		list_add(&page->lru, &pagelist);
1681
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1682
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1683
		if (ret) {
1684 1685
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1686

1687 1688
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1689 1690 1691 1692
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1693 1694
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1695 1696 1697
	}
	return ret;
}
1698

1699 1700 1701 1702 1703 1704 1705
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
		lock_page(hpage);
1706 1707 1708 1709 1710 1711 1712
		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
			unlock_page(hpage);
			if (!PageAnon(hpage))
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
			put_hwpoison_page(hpage);
1713 1714
			return -EBUSY;
		}
1715
		unlock_page(hpage);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		get_hwpoison_page(page);
		put_hwpoison_page(hpage);
	}

	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);

	return ret;
}

static void soft_offline_free_page(struct page *page)
{
	if (PageHuge(page)) {
		struct page *hpage = compound_head(page);

		set_page_hwpoison_huge_page(hpage);
		if (!dequeue_hwpoisoned_huge_page(hpage))
			num_poisoned_pages_add(1 << compound_order(hpage));
	} else {
		if (!TestSetPageHWPoison(page))
			num_poisoned_pages_inc();
	}
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1771
		if (flags & MF_COUNT_INCREASED)
1772
			put_hwpoison_page(page);
1773 1774 1775
		return -EBUSY;
	}

1776
	get_online_mems();
1777
	ret = get_any_page(page, pfn, flags);
1778
	put_online_mems();
1779

1780 1781 1782 1783
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
		soft_offline_free_page(page);
1784

1785 1786
	return ret;
}