regmap.c 78.9 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
//
// Register map access API
//
// Copyright 2011 Wolfson Microelectronics plc
//
// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8

9
#include <linux/device.h>
10
#include <linux/slab.h>
11
#include <linux/export.h>
12 13
#include <linux/mutex.h>
#include <linux/err.h>
14
#include <linux/property.h>
15
#include <linux/rbtree.h>
16
#include <linux/sched.h>
17
#include <linux/delay.h>
18
#include <linux/log2.h>
19
#include <linux/hwspinlock.h>
20
#include <asm/unaligned.h>
21

M
Mark Brown 已提交
22
#define CREATE_TRACE_POINTS
23
#include "trace.h"
M
Mark Brown 已提交
24

25
#include "internal.h"
26

27 28 29 30 31 32 33 34
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

B
Ben Dooks 已提交
35 36 37 38 39 40 41 42 43 44
#ifdef LOG_DEVICE
static inline bool regmap_should_log(struct regmap *map)
{
	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
}
#else
static inline bool regmap_should_log(struct regmap *map) { return false; }
#endif


45 46
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
47
			       bool *change, bool force_write);
48

49 50
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
51 52
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
53 54
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
55 56
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
57 58
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

74 75
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
76 77 78 79 80 81 82 83 84 85 86 87
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
88
EXPORT_SYMBOL_GPL(regmap_check_range_table);
89

90 91 92 93 94 95 96 97
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

98
	if (map->wr_table)
99
		return regmap_check_range_table(map, reg, map->wr_table);
100

101 102 103
	return true;
}

104 105 106 107 108
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

109
	if (map->cache_type == REGCACHE_NONE)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

127 128
bool regmap_readable(struct regmap *map, unsigned int reg)
{
129 130 131
	if (!map->reg_read)
		return false;

132 133 134
	if (map->max_register && reg > map->max_register)
		return false;

135 136 137
	if (map->format.format_write)
		return false;

138 139 140
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

141
	if (map->rd_table)
142
		return regmap_check_range_table(map, reg, map->rd_table);
143

144 145 146 147 148
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
149
	if (!map->format.format_write && !regmap_readable(map, reg))
150 151 152 153 154
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

155
	if (map->volatile_table)
156
		return regmap_check_range_table(map, reg, map->volatile_table);
157

158 159 160 161
	if (map->cache_ops)
		return false;
	else
		return true;
162 163 164 165
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
166
	if (!regmap_readable(map, reg))
167 168 169 170 171
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

172
	if (map->precious_table)
173
		return regmap_check_range_table(map, reg, map->precious_table);
174

175 176 177
	return false;
}

B
Ben Whitten 已提交
178 179 180 181 182 183 184 185 186 187 188
bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->writeable_noinc_reg)
		return map->writeable_noinc_reg(map->dev, reg);

	if (map->wr_noinc_table)
		return regmap_check_range_table(map, reg, map->wr_noinc_table);

	return true;
}

189 190 191 192 193 194 195 196 197 198 199
bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
{
	if (map->readable_noinc_reg)
		return map->readable_noinc_reg(map->dev, reg);

	if (map->rd_noinc_table)
		return regmap_check_range_table(map, reg, map->rd_noinc_table);

	return true;
}

200
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
201
	size_t num)
202 203 204 205
{
	unsigned int i;

	for (i = 0; i < num; i++)
206
		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 208 209 210 211
			return false;

	return true;
}

212 213 214 215 216 217 218 219 220 221 222 223
static void regmap_format_12_20_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[0] = reg >> 4;
	out[1] = (reg << 4) | (val >> 16);
	out[2] = val >> 8;
	out[3] = val;
}


224 225 226 227 228 229 230 231
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

246 247 248 249 250 251 252 253 254 255
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

256
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 258 259
{
	u8 *b = buf;

260
	b[0] = val << shift;
261 262
}

263
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264
{
265
	put_unaligned_be16(val << shift, buf);
266 267
}

268 269
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
270
	put_unaligned_le16(val << shift, buf);
271 272
}

273 274 275
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
276 277 278
	u16 v = val << shift;

	memcpy(buf, &v, sizeof(v));
279 280
}

281
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 283 284
{
	u8 *b = buf;

285 286
	val <<= shift;

287 288 289 290 291
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

292
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293
{
294
	put_unaligned_be32(val << shift, buf);
295 296
}

297 298
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
299
	put_unaligned_le32(val << shift, buf);
300 301
}

302 303 304
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
305 306 307
	u32 v = val << shift;

	memcpy(buf, &v, sizeof(v));
308 309
}

X
Xiubo Li 已提交
310 311 312
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
313
	put_unaligned_be64((u64) val << shift, buf);
X
Xiubo Li 已提交
314 315 316 317
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
318
	put_unaligned_le64((u64) val << shift, buf);
X
Xiubo Li 已提交
319 320 321 322 323
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
324 325 326
	u64 v = (u64) val << shift;

	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
327 328 329
}
#endif

330
static void regmap_parse_inplace_noop(void *buf)
331
{
332 333 334 335 336
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
337 338 339 340

	return b[0];
}

341 342
static unsigned int regmap_parse_16_be(const void *buf)
{
343
	return get_unaligned_be16(buf);
344 345
}

346 347
static unsigned int regmap_parse_16_le(const void *buf)
{
348
	return get_unaligned_le16(buf);
349 350
}

351
static void regmap_parse_16_be_inplace(void *buf)
352
{
353
	u16 v = get_unaligned_be16(buf);
354

355
	memcpy(buf, &v, sizeof(v));
356 357
}

358 359
static void regmap_parse_16_le_inplace(void *buf)
{
360
	u16 v = get_unaligned_le16(buf);
361

362
	memcpy(buf, &v, sizeof(v));
363 364
}

365
static unsigned int regmap_parse_16_native(const void *buf)
366
{
367 368 369 370
	u16 v;

	memcpy(&v, buf, sizeof(v));
	return v;
371 372
}

373
static unsigned int regmap_parse_24(const void *buf)
374
{
375
	const u8 *b = buf;
376 377 378 379 380 381 382
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

383 384
static unsigned int regmap_parse_32_be(const void *buf)
{
385
	return get_unaligned_be32(buf);
386 387
}

388 389
static unsigned int regmap_parse_32_le(const void *buf)
{
390
	return get_unaligned_le32(buf);
391 392
}

393
static void regmap_parse_32_be_inplace(void *buf)
394
{
395
	u32 v = get_unaligned_be32(buf);
396

397
	memcpy(buf, &v, sizeof(v));
398 399
}

400 401
static void regmap_parse_32_le_inplace(void *buf)
{
402
	u32 v = get_unaligned_le32(buf);
403

404
	memcpy(buf, &v, sizeof(v));
405 406
}

407
static unsigned int regmap_parse_32_native(const void *buf)
408
{
409 410 411 412
	u32 v;

	memcpy(&v, buf, sizeof(v));
	return v;
413 414
}

X
Xiubo Li 已提交
415 416 417
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
418
	return get_unaligned_be64(buf);
X
Xiubo Li 已提交
419 420 421 422
}

static unsigned int regmap_parse_64_le(const void *buf)
{
423
	return get_unaligned_le64(buf);
X
Xiubo Li 已提交
424 425 426 427
}

static void regmap_parse_64_be_inplace(void *buf)
{
428
	u64 v =  get_unaligned_be64(buf);
X
Xiubo Li 已提交
429

430
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
431 432 433 434
}

static void regmap_parse_64_le_inplace(void *buf)
{
435
	u64 v = get_unaligned_le64(buf);
X
Xiubo Li 已提交
436

437
	memcpy(buf, &v, sizeof(v));
X
Xiubo Li 已提交
438 439 440 441
}

static unsigned int regmap_parse_64_native(const void *buf)
{
442 443 444 445
	u64 v;

	memcpy(&v, buf, sizeof(v));
	return v;
X
Xiubo Li 已提交
446 447 448
}
#endif

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}

492
static void regmap_lock_unlock_none(void *__map)
493 494 495
{

}
496

497
static void regmap_lock_mutex(void *__map)
498
{
499
	struct regmap *map = __map;
500 501 502
	mutex_lock(&map->mutex);
}

503
static void regmap_unlock_mutex(void *__map)
504
{
505
	struct regmap *map = __map;
506 507 508
	mutex_unlock(&map->mutex);
}

509
static void regmap_lock_spinlock(void *__map)
510
__acquires(&map->spinlock)
511
{
512
	struct regmap *map = __map;
513 514 515 516
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
517 518
}

519
static void regmap_unlock_spinlock(void *__map)
520
__releases(&map->spinlock)
521
{
522
	struct regmap *map = __map;
523
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 525
}

M
Mark Brown 已提交
526 527 528 529 530 531 532 533 534
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

535 536 537 538 539 540 541 542
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
543
			rb_entry(*new, struct regmap_range_node, node);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
567
			rb_entry(node, struct regmap_range_node, node);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
{
	if (config->name) {
		const char *name = kstrdup_const(config->name, GFP_KERNEL);

		if (!name)
			return -ENOMEM;

		kfree_const(map->name);
		map->name = name;
	}

	return 0;
}

611 612 613 614
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;
615
	int ret;
616 617 618

	map->dev = dev;

619 620 621 622 623
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

	regmap_debugfs_init(map);
624 625 626 627 628 629 630 631 632 633 634 635 636 637

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
653

654 655 656 657 658 659 660 661
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

662 663 664
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
665
{
666
	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
667
	enum regmap_endian endian;
668

669
	/* Retrieve the endianness specification from the regmap config */
670
	endian = config->val_format_endian;
671

672
	/* If the regmap config specified a non-default value, use that */
673 674
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
675

676 677 678 679 680 681 682 683 684 685 686
	/* If the firmware node exist try to get endianness from it */
	if (fwnode_property_read_bool(fwnode, "big-endian"))
		endian = REGMAP_ENDIAN_BIG;
	else if (fwnode_property_read_bool(fwnode, "little-endian"))
		endian = REGMAP_ENDIAN_LITTLE;
	else if (fwnode_property_read_bool(fwnode, "native-endian"))
		endian = REGMAP_ENDIAN_NATIVE;

	/* If the endianness was specified in fwnode, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
687 688

	/* Retrieve the endianness specification from the bus config */
689 690
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
691

692
	/* If the bus specified a non-default value, use that */
693 694
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
695 696

	/* Use this if no other value was found */
697
	return REGMAP_ENDIAN_BIG;
698
}
699
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
700

701 702 703 704 705 706
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
707
{
708
	struct regmap *map;
709
	int ret = -EINVAL;
710
	enum regmap_endian reg_endian, val_endian;
711
	int i, j;
712

713
	if (!config)
714
		goto err;
715 716 717 718 719 720 721

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

722 723 724
	ret = regmap_set_name(map, config);
	if (ret)
		goto err_map;
725

726 727
	ret = -EINVAL; /* Later error paths rely on this */

728
	if (config->disable_locking) {
729
		map->lock = map->unlock = regmap_lock_unlock_none;
730
		map->can_sleep = config->can_sleep;
731
		regmap_debugfs_disable(map);
732
	} else if (config->lock && config->unlock) {
733 734 735
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
736
		map->can_sleep = config->can_sleep;
737
	} else if (config->use_hwlock) {
738 739 740
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
741
			goto err_name;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
760
	} else {
761 762
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
763 764 765
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
766 767
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
768 769 770 771
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
772
			map->can_sleep = true;
773 774
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
775 776
		}
		map->lock_arg = map;
777
	}
778 779 780 781 782 783 784 785 786 787

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

788
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
789
	map->format.pad_bytes = config->pad_bits / 8;
790
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
791 792
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
793
	map->reg_shift = config->pad_bits % 8;
794 795 796 797
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
798 799 800 801
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
802 803
	map->use_single_read = config->use_single_read || !bus || !bus->read;
	map->use_single_write = config->use_single_write || !bus || !bus->write;
804
	map->can_multi_write = config->can_multi_write && bus && bus->write;
805 806 807 808
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
809 810
	map->dev = dev;
	map->bus = bus;
811
	map->bus_context = bus_context;
812
	map->max_register = config->max_register;
813 814 815 816
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
B
Ben Whitten 已提交
817
	map->wr_noinc_table = config->wr_noinc_table;
818
	map->rd_noinc_table = config->rd_noinc_table;
819 820 821
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
822
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
823
	map->writeable_noinc_reg = config->writeable_noinc_reg;
824
	map->readable_noinc_reg = config->readable_noinc_reg;
825
	map->cache_type = config->cache_type;
826

827 828
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
829
	INIT_LIST_HEAD(&map->async_free);
830 831
	init_waitqueue_head(&map->async_waitq);

832 833 834
	if (config->read_flag_mask ||
	    config->write_flag_mask ||
	    config->zero_flag_mask) {
835 836
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
837
	} else if (bus) {
838 839 840
		map->read_flag_mask = bus->read_flag_mask;
	}

841 842 843 844
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

845 846 847 848 849
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;
850
		map->reg_update_bits = bus->reg_update_bits;
851

852 853 854 855
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
856
		map->reg_update_bits = bus->reg_update_bits;
857
	}
858

859 860
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
861

862
	switch (config->reg_bits + map->reg_shift) {
863 864 865 866 867 868
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
869
			goto err_hwlock;
870 871 872
		}
		break;

873 874 875 876 877 878
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
879
			goto err_hwlock;
880 881 882 883 884 885 886 887 888
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
889
			goto err_hwlock;
890 891 892
		}
		break;

893 894 895 896 897 898
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
899
			goto err_hwlock;
900 901 902
		}
		break;

903 904 905 906 907 908 909 910 911 912
	case 12:
		switch (config->val_bits) {
		case 20:
			map->format.format_write = regmap_format_12_20_write;
			break;
		default:
			goto err_hwlock;
		}
		break;

913 914 915 916 917
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
918 919 920 921
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
922 923 924
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
925 926 927 928
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
929
			goto err_hwlock;
930
		}
931 932
		break;

933 934
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
935
			goto err_hwlock;
936 937 938
		map->format.format_reg = regmap_format_24;
		break;

939
	case 32:
940 941 942 943
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
944 945 946
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
947 948 949 950
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
951
			goto err_hwlock;
952
		}
953 954
		break;

X
Xiubo Li 已提交
955 956 957 958 959 960
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
961 962 963
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
X
Xiubo Li 已提交
964 965 966 967
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
968
			goto err_hwlock;
X
Xiubo Li 已提交
969 970 971 972
		}
		break;
#endif

973
	default:
974
		goto err_hwlock;
975 976
	}

977 978 979
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

980 981 982 983
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
984
		map->format.parse_inplace = regmap_parse_inplace_noop;
985 986
		break;
	case 16:
987 988 989 990
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
991
			map->format.parse_inplace = regmap_parse_16_be_inplace;
992
			break;
993 994 995 996 997
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
998 999 1000 1001 1002
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
1003
			goto err_hwlock;
1004
		}
1005
		break;
1006
	case 24:
1007
		if (val_endian != REGMAP_ENDIAN_BIG)
1008
			goto err_hwlock;
1009 1010 1011
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
1012
	case 32:
1013 1014 1015 1016
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
1017
			map->format.parse_inplace = regmap_parse_32_be_inplace;
1018
			break;
1019 1020 1021 1022 1023
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
1024 1025 1026 1027 1028
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
1029
			goto err_hwlock;
1030
		}
1031
		break;
X
Xiubo Li 已提交
1032
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
1033
	case 64:
X
Xiubo Li 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
1050
			goto err_hwlock;
X
Xiubo Li 已提交
1051 1052 1053
		}
		break;
#endif
1054 1055
	}

1056 1057 1058
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
1059
			goto err_hwlock;
1060
		map->use_single_write = true;
1061
	}
1062

1063 1064
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
1065
		goto err_hwlock;
1066

1067
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1068 1069
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
1070
		goto err_hwlock;
1071 1072
	}

1073 1074
	if (map->format.format_write) {
		map->defer_caching = false;
1075
		map->reg_write = _regmap_bus_formatted_write;
1076 1077
	} else if (map->format.format_val) {
		map->defer_caching = true;
1078
		map->reg_write = _regmap_bus_raw_write;
1079 1080 1081
	}

skip_format_initialization:
1082

1083
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
1084
	for (i = 0; i < config->num_ranges; i++) {
1085 1086 1087 1088
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1089 1090 1091
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1092
			goto err_range;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1112 1113 1114

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
1115
		for (j = 0; j < config->num_ranges; j++) {
1116 1117 1118 1119 1120
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

1121 1122 1123 1124
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1125 1126
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1127 1128 1129
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1130 1131 1132 1133 1134
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1135 1136 1137
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1148
		new->map = map;
M
Mark Brown 已提交
1149
		new->name = range_cfg->name;
1150 1151 1152 1153 1154 1155 1156 1157
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
1158
		if (!_regmap_range_add(map, new)) {
1159
			dev_err(map->dev, "Failed to add range %d\n", i);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1173

1174
	ret = regcache_init(map, config);
1175
	if (ret != 0)
1176 1177
		goto err_range;

1178
	if (dev) {
1179 1180 1181
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1182
	} else {
1183
		regmap_debugfs_init(map);
1184
	}
M
Mark Brown 已提交
1185

1186 1187
	return map;

1188
err_regcache:
M
Mark Brown 已提交
1189
	regcache_exit(map);
1190 1191
err_range:
	regmap_range_exit(map);
1192
	kfree(map->work_buf);
1193
err_hwlock:
1194
	if (map->hwlock)
1195
		hwspin_lock_free(map->hwlock);
1196 1197
err_name:
	kfree_const(map->name);
1198 1199 1200 1201 1202
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1203
EXPORT_SYMBOL_GPL(__regmap_init);
1204

1205 1206 1207 1208 1209
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1210 1211 1212 1213 1214 1215
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1216 1217 1218 1219 1220 1221 1222
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1223 1224
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1225 1226 1227 1228 1229 1230 1231 1232 1233
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1234
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1235

1236 1237 1238 1239 1240 1241
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1242
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1243 1244
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1245 1246 1247
}

/**
1248
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

/**
 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
 *
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields should be freed by calling
 * regmap_field_bulk_free()
 */
int regmap_field_bulk_alloc(struct regmap *regmap,
			    struct regmap_field **rm_field,
			    struct reg_field *reg_field,
			    int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);

/**
 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
 * fields.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @rm_field: regmap register fields within the bank.
 * @reg_field: Register fields within the bank.
 * @num_fields: Number of register fields.
 *
 * The return value will be an -ENOMEM on error or zero for success.
 * Newly allocated regmap_fields will be automatically freed by the
 * device management code.
 */
int devm_regmap_field_bulk_alloc(struct device *dev,
				 struct regmap *regmap,
				 struct regmap_field **rm_field,
				 struct reg_field *reg_field,
				 int num_fields)
{
	struct regmap_field *rf;
	int i;

	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
	if (!rf)
		return -ENOMEM;

	for (i = 0; i < num_fields; i++) {
		regmap_field_init(&rf[i], regmap, reg_field[i]);
		rm_field[i] = &rf[i];
	}

	return 0;
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);

/**
 * regmap_field_bulk_free() - Free register field allocated using
 *                       regmap_field_bulk_alloc.
 *
 * @field: regmap fields which should be freed.
 */
void regmap_field_bulk_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_bulk_free);

/**
 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
 *                            devm_regmap_field_bulk_alloc.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 *
 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cycle.
 */
void devm_regmap_field_bulk_free(struct device *dev,
				 struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);

1373
/**
1374 1375
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1376 1377 1378
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1379 1380 1381 1382
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1383 1384 1385 1386 1387 1388 1389 1390 1391
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1392
 * regmap_field_alloc() - Allocate and initialise a register field.
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1416 1417
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1418 1419 1420 1421 1422 1423 1424 1425 1426
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1427
/**
1428
 * regmap_reinit_cache() - Reinitialise the current register cache
1429 1430 1431 1432 1433 1434 1435 1436
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1437 1438 1439
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1440 1441 1442
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
1443 1444
	int ret;

1445
	regcache_exit(map);
1446
	regmap_debugfs_exit(map);
1447 1448 1449 1450 1451 1452

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
B
Ben Whitten 已提交
1453
	map->writeable_noinc_reg = config->writeable_noinc_reg;
1454
	map->readable_noinc_reg = config->readable_noinc_reg;
1455 1456
	map->cache_type = config->cache_type;

1457 1458 1459 1460 1461
	ret = regmap_set_name(map, config);
	if (ret)
		return ret;

	regmap_debugfs_init(map);
1462

1463 1464 1465
	map->cache_bypass = false;
	map->cache_only = false;

1466
	return regcache_init(map, config);
1467
}
1468
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1469

1470
/**
1471 1472 1473
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1474 1475 1476
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1477 1478
	struct regmap_async *async;

1479
	regcache_exit(map);
1480
	regmap_debugfs_exit(map);
1481
	regmap_range_exit(map);
1482
	if (map->bus && map->bus->free_context)
1483
		map->bus->free_context(map->bus_context);
1484
	kfree(map->work_buf);
M
Mark Brown 已提交
1485 1486 1487 1488 1489 1490 1491 1492
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1493
	if (map->hwlock)
1494
		hwspin_lock_free(map->hwlock);
1495 1496
	if (map->lock == regmap_lock_mutex)
		mutex_destroy(&map->mutex);
1497
	kfree_const(map->name);
1498
	kfree(map->patch);
1499 1500 1501 1502
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
1513
		return !strcmp((*r)->name, data);
M
Mark Brown 已提交
1514 1515 1516 1517 1518
	else
		return 1;
}

/**
1519
 * dev_get_regmap() - Obtain the regmap (if any) for a device
M
Mark Brown 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1541
/**
1542
 * regmap_get_device() - Obtain the device from a regmap
T
Tuomas Tynkkynen 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1552
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1553

1554
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1555
			       struct regmap_range_node *range,
1556 1557 1558 1559 1560 1561 1562 1563
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1564 1565
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1566

1567 1568 1569 1570
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1571

1572 1573 1574 1575
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1576

1577 1578 1579 1580 1581 1582 1583 1584
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1585

1586 1587 1588
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1589
					  &page_chg, false);
1590

1591
		map->work_buf = orig_work_buf;
1592

1593
		if (ret != 0)
1594
			return ret;
1595 1596
	}

1597 1598
	*reg = range->window_start + win_offset;

1599 1600 1601
	return 0;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1617
static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1618
				  const void *val, size_t val_len, bool noinc)
1619
{
1620
	struct regmap_range_node *range;
1621 1622 1623
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1624 1625 1626
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1627 1628
	int i;

1629
	WARN_ON(!map->bus);
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	/* Check for unwritable or noinc registers in range
	 * before we start
	 */
	if (!regmap_writeable_noinc(map, reg)) {
		for (i = 0; i < val_len / map->format.val_bytes; i++) {
			unsigned int element =
				reg + regmap_get_offset(map, i);
			if (!regmap_writeable(map, element) ||
				regmap_writeable_noinc(map, element))
				return -EINVAL;
		}
	}
1643

1644 1645 1646 1647
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1648
			ival = map->format.parse_val(val + (i * val_bytes));
1649 1650
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1651
					     ival);
1652 1653
			if (ret) {
				dev_err(map->dev,
1654
					"Error in caching of register: %x ret: %d\n",
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1665 1666
	range = _regmap_range_lookup(map, reg);
	if (range) {
1667 1668 1669 1670 1671 1672
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1673
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1674
				win_residue, val_len / map->format.val_bytes);
1675 1676
			ret = _regmap_raw_write_impl(map, reg, val,
						     win_residue *
1677
						     map->format.val_bytes, noinc);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

1691
		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1692
		if (ret != 0)
1693 1694
			return ret;
	}
1695

1696
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1697 1698
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1710
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1711
		struct regmap_async *async;
1712

1713
		trace_regmap_async_write_start(map, reg, val_len);
1714

M
Mark Brown 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1758 1759 1760 1761 1762 1763

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1764
			list_move(&async->list, &map->async_free);
1765 1766
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1767 1768

		return ret;
1769 1770
	}

1771
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1772

1773 1774 1775 1776
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1777
	if (val == work_val)
1778
		ret = map->bus->write(map->bus_context, map->work_buf,
1779 1780 1781
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1782
	else if (map->bus->gather_write)
1783
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1784 1785
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1786
					     val, val_len);
1787 1788
	else
		ret = -ENOTSUPP;
1789

1790
	/* If that didn't work fall back on linearising by hand. */
1791
	if (ret == -ENOTSUPP) {
1792 1793
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1794 1795 1796 1797
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1798 1799
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1800
		ret = map->bus->write(map->bus_context, buf, len);
1801 1802

		kfree(buf);
1803
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1804 1805 1806 1807 1808
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1809 1810
	}

1811
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1812

1813 1814 1815
	return ret;
}

1816 1817 1818 1819 1820 1821 1822
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1823 1824
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1825 1826 1827
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1850 1851 1852 1853 1854 1855 1856
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1857
	WARN_ON(!map->bus || !map->format.format_write);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1868
	trace_regmap_hw_write_start(map, reg, 1);
1869 1870 1871 1872

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1873
	trace_regmap_hw_write_done(map, reg, 1);
1874 1875 1876 1877

	return ret;
}

1878 1879 1880 1881 1882 1883 1884 1885
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1886 1887 1888 1889 1890
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1891
	WARN_ON(!map->bus || !map->format.format_val);
1892 1893 1894

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
1895 1896 1897 1898
	return _regmap_raw_write_impl(map, reg,
				      map->work_buf +
				      map->format.reg_bytes +
				      map->format.pad_bytes,
1899 1900
				      map->format.val_bytes,
				      false);
1901 1902
}

1903 1904 1905 1906 1907
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1908 1909
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1910
{
M
Mark Brown 已提交
1911
	int ret;
1912
	void *context = _regmap_map_get_context(map);
1913

1914 1915 1916
	if (!regmap_writeable(map, reg))
		return -EIO;

1917
	if (!map->cache_bypass && !map->defer_caching) {
1918 1919 1920
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1921 1922
		if (map->cache_only) {
			map->cache_dirty = true;
1923
			return 0;
1924
		}
1925 1926
	}

B
Ben Dooks 已提交
1927
	if (regmap_should_log(map))
1928 1929
		dev_info(map->dev, "%x <= %x\n", reg, val);

1930
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1931

1932
	return map->reg_write(context, reg, val);
1933 1934 1935
}

/**
1936
 * regmap_write() - Write a value to a single register
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1949
	if (!IS_ALIGNED(reg, map->reg_stride))
1950 1951
		return -EINVAL;

1952
	map->lock(map->lock_arg);
1953 1954 1955

	ret = _regmap_write(map, reg, val);

1956
	map->unlock(map->lock_arg);
1957 1958 1959 1960 1961

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1962
/**
1963
 * regmap_write_async() - Write a value to a single register asynchronously
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1976
	if (!IS_ALIGNED(reg, map->reg_stride))
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1993
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1994
		      const void *val, size_t val_len, bool noinc)
1995 1996 1997
{
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
1998 1999
	size_t chunk_count, chunk_bytes;
	size_t chunk_regs = val_count;
2000 2001 2002 2003 2004
	int ret, i;

	if (!val_count)
		return -EINVAL;

2005 2006 2007 2008 2009 2010 2011
	if (map->use_single_write)
		chunk_regs = 1;
	else if (map->max_raw_write && val_len > map->max_raw_write)
		chunk_regs = map->max_raw_write / val_bytes;

	chunk_count = val_count / chunk_regs;
	chunk_bytes = chunk_regs * val_bytes;
2012 2013 2014

	/* Write as many bytes as possible with chunk_size */
	for (i = 0; i < chunk_count; i++) {
2015
		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2016 2017
		if (ret)
			return ret;
2018 2019 2020 2021

		reg += regmap_get_offset(map, chunk_regs);
		val += chunk_bytes;
		val_len -= chunk_bytes;
2022 2023 2024
	}

	/* Write remaining bytes */
2025
	if (val_len)
2026
		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2027 2028 2029 2030

	return ret;
}

2031
/**
2032
 * regmap_raw_write() - Write raw values to one or more registers
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

2052
	if (!regmap_can_raw_write(map))
2053
		return -EINVAL;
2054 2055 2056
	if (val_len % map->format.val_bytes)
		return -EINVAL;

2057
	map->lock(map->lock_arg);
2058

2059
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2060

2061
	map->unlock(map->lock_arg);
2062 2063 2064 2065 2066

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

B
Ben Whitten 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/**
 * regmap_noinc_write(): Write data from a register without incrementing the
 *			register number
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus write operations will write a
 * range of registers. Some devices have certain registers for which a write
 * operation can write to an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple writes as required to write val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len)
{
	size_t write_len;
	int ret;

	if (!map->bus)
		return -EINVAL;
	if (!map->bus->write)
		return -ENOTSUPP;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_write && map->max_raw_write < val_len)
			write_len = map->max_raw_write;
		else
			write_len = val_len;
2117
		ret = _regmap_raw_write(map, reg, val, write_len, true);
B
Ben Whitten 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + write_len;
		val_len -= write_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_write);

2130
/**
2131 2132
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
2133 2134 2135 2136
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
2137 2138 2139
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2140
 *
2141 2142 2143
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
2144 2145 2146
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2147 2148 2149
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
2150 2151 2152
{
	mask = (mask << field->shift) & field->mask;

2153 2154 2155
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
2156
}
2157
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2158

2159
/**
2160 2161
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
2162 2163 2164 2165 2166
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
2167 2168 2169
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2170 2171 2172 2173
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
B
Bartosz Golaszewski 已提交
2174
int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2175 2176
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
2177 2178 2179 2180 2181 2182
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

2183 2184 2185 2186
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
2187
}
2188
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2189

2190 2191
/**
 * regmap_bulk_write() - Write multiple registers to the device
2192 2193 2194 2195 2196 2197 2198
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
2199
 * data to the device either in single transfer or multiple transfer.
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

2210
	if (!IS_ALIGNED(reg, map->reg_stride))
2211
		return -EINVAL;
2212

2213
	/*
2214 2215
	 * Some devices don't support bulk write, for them we have a series of
	 * single write operations.
2216
	 */
2217
	if (!map->bus || !map->format.parse_inplace) {
2218
		map->lock(map->lock_arg);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
2241

2242 2243 2244
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
2245 2246 2247
			if (ret != 0)
				goto out;
		}
2248 2249
out:
		map->unlock(map->lock_arg);
2250
	} else {
2251 2252
		void *wval;

2253
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2254
		if (!wval)
2255
			return -ENOMEM;
2256

2257
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2258
			map->format.parse_inplace(wval + i);
2259

2260
		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2261 2262

		kfree(wval);
2263
	}
2264 2265 2266 2267
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2268 2269 2270 2271 2272
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
2273
 * relative. The page register has been written if that was necessary.
2274 2275
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2276
				       const struct reg_sequence *regs,
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2289 2290 2291
	if (!len)
		return -EINVAL;

2292 2293 2294 2295 2296 2297 2298 2299 2300
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2301 2302
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2303
		trace_regmap_hw_write_start(map, reg, 1);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2318
		trace_regmap_hw_write_done(map, reg, 1);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2333
					       struct reg_sequence *regs,
2334 2335 2336 2337
					       size_t num_regs)
{
	int ret;
	int i, n;
2338
	struct reg_sequence *base;
2339
	unsigned int this_page = 0;
2340
	unsigned int page_change = 0;
2341 2342 2343
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2344 2345
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2381 2382 2383
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2384

2385 2386 2387 2388 2389 2390
				if (regs[i].delay_us) {
					if (map->can_sleep)
						fsleep(regs[i].delay_us);
					else
						udelay(regs[i].delay_us);
				}
2391

2392 2393
				base += n;
				n = 0;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2405
		}
2406

2407 2408 2409 2410 2411 2412
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2413
static int _regmap_multi_reg_write(struct regmap *map,
2414
				   const struct reg_sequence *regs,
2415
				   size_t num_regs)
2416
{
2417 2418 2419 2420 2421 2422 2423 2424
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2425

2426 2427 2428 2429 2430 2431
			if (regs[i].delay_us) {
				if (map->can_sleep)
					fsleep(regs[i].delay_us);
				else
					udelay(regs[i].delay_us);
			}
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2444
			if (!IS_ALIGNED(reg, map->reg_stride))
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2467 2468

	for (i = 0; i < num_regs; i++) {
2469 2470
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2471 2472 2473 2474

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2475
		range = _regmap_range_lookup(map, reg);
2476
		if (range || regs[i].delay_us) {
2477 2478
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2479 2480 2481 2482 2483 2484 2485
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2486 2487 2488
			return ret;
		}
	}
2489
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2490 2491
}

2492 2493
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2494 2495 2496 2497 2498
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2499 2500 2501
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2502
 * The 'normal' block write mode will send ultimately send data on the
2503
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2504 2505 2506
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2507
 *
2508 2509
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2510
 */
2511
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2512
			   int num_regs)
2513
{
2514
	int ret;
2515 2516 2517

	map->lock(map->lock_arg);

2518 2519
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2520 2521 2522 2523 2524 2525
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2526 2527 2528
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2529 2530 2531 2532 2533
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2534 2535 2536
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2537 2538 2539 2540 2541 2542 2543
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2544
int regmap_multi_reg_write_bypassed(struct regmap *map,
2545
				    const struct reg_sequence *regs,
2546
				    int num_regs)
2547
{
2548 2549
	int ret;
	bool bypass;
2550 2551 2552

	map->lock(map->lock_arg);

2553 2554 2555 2556 2557 2558 2559
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2560 2561 2562 2563
	map->unlock(map->lock_arg);

	return ret;
}
2564
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2565

2566
/**
2567 2568
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2595
	if (!IS_ALIGNED(reg, map->reg_stride))
2596 2597 2598 2599
		return -EINVAL;

	map->lock(map->lock_arg);

2600 2601
	map->async = true;

2602
	ret = _regmap_raw_write(map, reg, val, val_len, false);
2603 2604

	map->async = false;
2605 2606 2607 2608 2609 2610 2611

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2612
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2613
			    unsigned int val_len, bool noinc)
2614
{
2615
	struct regmap_range_node *range;
2616 2617
	int ret;

2618
	WARN_ON(!map->bus);
2619

2620 2621 2622
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2623 2624 2625
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
2626
					  noinc ? 1 : val_len / map->format.val_bytes);
2627
		if (ret != 0)
2628 2629
			return ret;
	}
2630

2631
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2632 2633
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2634
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2635

2636
	ret = map->bus->read(map->bus_context, map->work_buf,
2637
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2638
			     val, val_len);
2639

2640
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2641 2642

	return ret;
2643 2644
}

2645 2646 2647 2648 2649 2650 2651 2652
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2653 2654 2655 2656 2657
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;
2658 2659
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
2660 2661 2662 2663

	if (!map->format.parse_val)
		return -EINVAL;

2664
	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2665
	if (ret == 0)
2666
		*val = map->format.parse_val(work_val);
2667 2668 2669 2670

	return ret;
}

2671 2672 2673 2674
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2675 2676
	void *context = _regmap_map_get_context(map);

2677 2678 2679 2680 2681 2682 2683 2684 2685
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2686 2687 2688
	if (!regmap_readable(map, reg))
		return -EIO;

2689
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2690
	if (ret == 0) {
B
Ben Dooks 已提交
2691
		if (regmap_should_log(map))
2692 2693
			dev_info(map->dev, "%x => %x\n", reg, *val);

2694
		trace_regmap_reg_read(map, reg, *val);
2695

2696 2697 2698
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2699

2700 2701 2702 2703
	return ret;
}

/**
2704
 * regmap_read() - Read a value from a single register
2705
 *
2706
 * @map: Register map to read from
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2717
	if (!IS_ALIGNED(reg, map->reg_stride))
2718 2719
		return -EINVAL;

2720
	map->lock(map->lock_arg);
2721 2722 2723

	ret = _regmap_read(map, reg, val);

2724
	map->unlock(map->lock_arg);
2725 2726 2727 2728 2729 2730

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2731
 * regmap_raw_read() - Read raw data from the device
2732
 *
2733
 * @map: Register map to read from
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2744 2745 2746 2747
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2748

2749 2750
	if (!map->bus)
		return -EINVAL;
2751 2752
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2753
	if (!IS_ALIGNED(reg, map->reg_stride))
2754
		return -EINVAL;
2755 2756
	if (val_count == 0)
		return -EINVAL;
2757

2758
	map->lock(map->lock_arg);
2759

2760 2761
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2762 2763
		size_t chunk_count, chunk_bytes;
		size_t chunk_regs = val_count;
2764

2765 2766 2767 2768 2769
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}

2770 2771 2772 2773
		if (map->use_single_read)
			chunk_regs = 1;
		else if (map->max_raw_read && val_len > map->max_raw_read)
			chunk_regs = map->max_raw_read / val_bytes;
2774

2775 2776 2777 2778
		chunk_count = val_count / chunk_regs;
		chunk_bytes = chunk_regs * val_bytes;

		/* Read bytes that fit into whole chunks */
2779
		for (i = 0; i < chunk_count; i++) {
2780
			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2781
			if (ret != 0)
2782 2783 2784 2785 2786
				goto out;

			reg += regmap_get_offset(map, chunk_regs);
			val += chunk_bytes;
			val_len -= chunk_bytes;
2787
		}
2788

2789
		/* Read remaining bytes */
2790
		if (val_len) {
2791
			ret = _regmap_raw_read(map, reg, val, val_len, false);
2792
			if (ret != 0)
2793
				goto out;
2794
		}
2795 2796 2797 2798 2799
	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2800
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2801
					   &v);
2802 2803 2804
			if (ret != 0)
				goto out;

2805
			map->format.format_val(val + (i * val_bytes), v, 0);
2806 2807
		}
	}
2808

2809
 out:
2810
	map->unlock(map->lock_arg);
2811 2812 2813 2814 2815

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2816
/**
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
 * regmap_noinc_read(): Read data from a register without incrementing the
 *			register number
 *
 * @map: Register map to read from
 * @reg: Register to read from
 * @val: Pointer to data buffer
 * @val_len: Length of output buffer in bytes.
 *
 * The regmap API usually assumes that bulk bus read operations will read a
 * range of registers. Some devices have certain registers for which a read
 * operation read will read from an internal FIFO.
 *
 * The target register must be volatile but registers after it can be
 * completely unrelated cacheable registers.
 *
 * This will attempt multiple reads as required to read val_len bytes.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_noinc_read(struct regmap *map, unsigned int reg,
		      void *val, size_t val_len)
{
	size_t read_len;
	int ret;

	if (!map->bus)
		return -EINVAL;
	if (!map->bus->read)
		return -ENOTSUPP;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_len == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	while (val_len) {
		if (map->max_raw_read && map->max_raw_read < val_len)
			read_len = map->max_raw_read;
		else
			read_len = val_len;
2866
		ret = _regmap_raw_read(map, reg, val, read_len, true);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
		if (ret)
			goto out_unlock;
		val = ((u8 *)val) + read_len;
		val_len -= read_len;
	}

out_unlock:
	map->unlock(map->lock_arg);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_noinc_read);

/**
 * regmap_field_read(): Read a value to a single register field
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2904
/**
2905
 * regmap_fields_read() - Read a value to a single register field with port ID
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2937
/**
2938
 * regmap_bulk_read() - Read multiple registers from the device
2939
 *
2940
 * @map: Register map to read from
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2953
	bool vol = regmap_volatile_range(map, reg, val_count);
2954

2955
	if (!IS_ALIGNED(reg, map->reg_stride))
2956
		return -EINVAL;
2957 2958
	if (val_count == 0)
		return -EINVAL;
2959

2960
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2961 2962 2963
		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
		if (ret != 0)
			return ret;
2964 2965

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2966
			map->format.parse_inplace(val + i);
2967
	} else {
2968 2969 2970 2971 2972 2973 2974
#ifdef CONFIG_64BIT
		u64 *u64 = val;
#endif
		u32 *u32 = val;
		u16 *u16 = val;
		u8 *u8 = val;

2975 2976
		map->lock(map->lock_arg);

2977
		for (i = 0; i < val_count; i++) {
2978
			unsigned int ival;
2979

2980 2981
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
					   &ival);
2982
			if (ret != 0)
2983
				goto out;
2984

2985
			switch (map->format.val_bytes) {
X
Xiubo Li 已提交
2986
#ifdef CONFIG_64BIT
2987 2988 2989
			case 8:
				u64[i] = ival;
				break;
X
Xiubo Li 已提交
2990
#endif
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
			case 4:
				u32[i] = ival;
				break;
			case 2:
				u16[i] = ival;
				break;
			case 1:
				u8[i] = ival;
				break;
			default:
3001 3002
				ret = -EINVAL;
				goto out;
3003
			}
3004
		}
3005 3006 3007

out:
		map->unlock(map->lock_arg);
3008
	}
3009

3010
	return ret;
3011 3012 3013
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

3014 3015
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
3016
			       bool *change, bool force_write)
3017 3018
{
	int ret;
3019
	unsigned int tmp, orig;
3020

3021 3022
	if (change)
		*change = false;
3023

3024 3025 3026
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
3027
			*change = true;
3028
	} else {
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
3041
	}
3042 3043 3044

	return ret;
}
3045 3046

/**
3047
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3048 3049 3050 3051 3052 3053
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
3054 3055
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
3056
 *
3057 3058 3059 3060 3061 3062 3063 3064
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
3065 3066 3067
 *
 * Returns zero for success, a negative number on error.
 */
3068 3069 3070
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
3071 3072 3073 3074 3075
{
	int ret;

	map->lock(map->lock_arg);

3076
	map->async = async;
3077

3078
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3079 3080 3081 3082 3083 3084 3085

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
3086
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3087

3088 3089 3090 3091 3092 3093 3094
/**
 * regmap_test_bits() - Check if all specified bits are set in a register.
 *
 * @map: Register map to operate on
 * @reg: Register to read from
 * @bits: Bits to test
 *
3095 3096 3097
 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
 * bits are set and a negative error number if the underlying regmap_read()
 * fails.
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
 */
int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
{
	unsigned int val, ret;

	ret = regmap_read(map, reg, &val);
	if (ret)
		return ret;

	return (val & bits) == bits;
}
EXPORT_SYMBOL_GPL(regmap_test_bits);

3111 3112 3113 3114 3115
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

3116
	trace_regmap_async_io_complete(map);
3117

3118
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
3119
	list_move(&async->list, &map->async_free);
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
3130
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
3145
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
3158
	if (!map->bus || !map->bus->async_write)
3159 3160
		return 0;

3161
	trace_regmap_async_complete_start(map);
3162

3163 3164 3165 3166 3167 3168 3169
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

3170
	trace_regmap_async_complete_done(map);
3171

3172 3173
	return ret;
}
3174
EXPORT_SYMBOL_GPL(regmap_async_complete);
3175

M
Mark Brown 已提交
3176
/**
3177 3178
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
M
Mark Brown 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
3189 3190 3191
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
3192
 */
3193
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
3194 3195
			  int num_regs)
{
3196
	struct reg_sequence *p;
3197
	int ret;
M
Mark Brown 已提交
3198 3199
	bool bypass;

3200 3201 3202 3203
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

3204
	p = krealloc(map->patch,
3205
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3206 3207 3208 3209 3210
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
3211
	} else {
3212
		return -ENOMEM;
M
Mark Brown 已提交
3213 3214
	}

3215
	map->lock(map->lock_arg);
M
Mark Brown 已提交
3216 3217 3218 3219

	bypass = map->cache_bypass;

	map->cache_bypass = true;
3220
	map->async = true;
M
Mark Brown 已提交
3221

3222
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
3223

3224
	map->async = false;
M
Mark Brown 已提交
3225 3226
	map->cache_bypass = bypass;

3227
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
3228

3229 3230
	regmap_async_complete(map);

M
Mark Brown 已提交
3231 3232 3233 3234
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

3235 3236 3237 3238
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

3252
/**
3253 3254 3255
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

3266
/**
3267 3268 3269
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

3292 3293 3294 3295 3296 3297 3298
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);