amd_iommu.c 101.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

106
static DEFINE_PER_CPU(struct flush_queue, flush_queue);
107

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
static const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120 121
static struct dma_map_ops amd_iommu_dma_ops;

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
140
	bool use_vapic;			  /* Enable device to use vapic mode */
141 142
};

143 144 145
/*
 * general struct to manage commands send to an IOMMU
 */
146
struct iommu_cmd {
147 148 149
	u32 data[4];
};

150 151
struct kmem_cache *amd_iommu_irq_cache;

152
static void update_domain(struct protection_domain *domain);
153
static int protection_domain_init(struct protection_domain *domain);
154
static void detach_device(struct device *dev);
155

156 157 158 159 160 161 162
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

163 164
	/* IOVA RB-Tree */
	struct iova_domain iovad;
165 166
};

167 168 169
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

170 171 172 173 174 175
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

176 177
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
178
{
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
194 195
}

196
static inline u16 get_pci_device_id(struct device *dev)
197 198 199 200 201 202
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

230 231 232 233 234
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

235 236 237 238 239 240
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

241
static struct iommu_dev_data *alloc_dev_data(u16 devid)
242 243 244 245 246 247 248 249
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

250
	dev_data->devid = devid;
251 252 253 254 255 256 257 258

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

278 279 280 281 282 283 284 285 286 287 288
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

289
	/* The callers make sure that get_device_id() does not fail here */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
331
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
332 333 334 335 336 337 338 339
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

340 341 342 343 344 345 346 347 348 349 350 351
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

352 353 354 355 356
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

357 358 359 360
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
361
{
362
	struct acpihid_map_entry *p, *entry = NULL;
363
	int devid;
364 365 366 367 368 369 370 371 372 373 374 375 376 377

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
378 379
}

380 381 382 383
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
384 385
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
386 387 388 389 390 391 392 393 394 395 396 397
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

398 399 400 401 402 403 404 405 406
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

407 408 409 410 411 412
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
413
	int devid;
414 415 416 417 418

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
419
	if (devid < 0)
420
		return false;
421 422 423 424 425 426 427 428 429 430 431

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

432
static void init_iommu_group(struct device *dev)
433 434 435
{
	struct iommu_group *group;

436
	group = iommu_group_get_for_dev(dev);
437 438 439 440
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
441 442 443 444 445
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
446
	int devid;
447 448 449 450

	if (dev->archdata.iommu)
		return 0;

451
	devid = get_device_id(dev);
452
	if (devid < 0)
453 454 455
		return devid;

	dev_data = find_dev_data(devid);
456 457 458
	if (!dev_data)
		return -ENOMEM;

459 460
	dev_data->alias = get_alias(dev);

461
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
462 463
		struct amd_iommu *iommu;

464
		iommu = amd_iommu_rlookup_table[dev_data->devid];
465 466 467
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

468 469
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
470 471 472
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

473 474 475
	return 0;
}

476 477
static void iommu_ignore_device(struct device *dev)
{
478 479
	u16 alias;
	int devid;
480 481

	devid = get_device_id(dev);
482
	if (devid < 0)
483 484
		return;

485
	alias = get_alias(dev);
486 487 488 489 490 491 492 493

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

494 495
static void iommu_uninit_device(struct device *dev)
{
496 497
	int devid;
	struct iommu_dev_data *dev_data;
498

499
	devid = get_device_id(dev);
500
	if (devid < 0)
501
		return;
502

503
	dev_data = search_dev_data(devid);
504 505 506
	if (!dev_data)
		return;

507 508 509
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
510 511 512
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

513 514
	iommu_group_remove_device(dev);

515 516 517
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

518
	/*
519 520
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
521
	 */
522
}
J
Joerg Roedel 已提交
523

524 525 526 527 528 529
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

530 531 532 533
static void dump_dte_entry(u16 devid)
{
	int i;

534 535
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
536 537 538
			amd_iommu_dev_table[devid].data[i]);
}

539 540 541 542 543 544 545 546 547
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

548
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
549
{
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
571

572
	printk(KERN_ERR "AMD-Vi: Event logged [");
573 574 575 576 577

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
578
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
579
		       address, flags);
580
		dump_dte_entry(devid);
581 582 583 584
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
585
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
586 587 588 589 590
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
591
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 593 594 595 596
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 599 600 601
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
602
		dump_command(address);
603 604 605 606 607 608 609 610
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
611
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
612 613 614 615 616
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
617
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 619 620 621 622
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
623 624

	memset(__evt, 0, 4 * sizeof(u32));
625 626 627 628 629 630 631 632 633 634
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
635
		iommu_print_event(iommu, iommu->evt_buf + head);
636
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
637 638 639 640 641
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

642
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
687

688 689 690
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
691

692 693 694 695 696 697 698
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
699 700
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
701 702 703 704 705 706

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
707 708 709 710
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

771
irqreturn_t amd_iommu_int_thread(int irq, void *data)
772
{
773 774
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
775

776 777 778
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
779
			iommu->mmio_base + MMIO_STATUS_OFFSET);
780

781 782 783 784
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
785

786 787 788 789
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
790

791 792 793 794 795 796 797
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
813
	return IRQ_HANDLED;
814 815
}

816 817 818 819 820
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

821 822 823 824 825 826
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
847 848 849
{
	u8 *target;

850
	target = iommu->cmd_buf + tail;
851
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
852 853 854 855 856

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
857
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
858
}
859

860
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
861
{
862 863
	WARN_ON(address & 0x7ULL);

864
	memset(cmd, 0, sizeof(*cmd));
865 866 867
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
868 869 870
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

871 872 873 874 875 876 877
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

878 879 880 881
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
882
	bool s;
883 884

	pages = iommu_num_pages(address, size, PAGE_SIZE);
885
	s     = false;
886 887 888 889 890 891 892

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
893
		s = true;
894 895 896 897 898 899 900 901 902 903 904
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
905
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
906 907 908
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

909 910 911 912
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
913
	bool s;
914 915

	pages = iommu_num_pages(address, size, PAGE_SIZE);
916
	s     = false;
917 918 919 920 921 922 923

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
924
		s = true;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

940 941 942 943 944 945 946
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

947
	cmd->data[0]  = pasid;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
966
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
967 968
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
969
	cmd->data[1] |= (pasid & 0xff) << 16;
970 971 972 973 974 975 976 977
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

978 979 980 981 982 983 984
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
985
		cmd->data[1]  = pasid;
986 987 988 989 990 991 992 993
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

994 995 996 997
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
998 999
}

1000 1001 1002 1003 1004 1005 1006
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1007 1008
/*
 * Writes the command to the IOMMUs command buffer and informs the
1009
 * hardware about the new command.
1010
 */
1011 1012 1013
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1014
{
1015
	u32 left, tail, head, next_tail;
1016

1017
again:
1018

1019 1020
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1021 1022
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
1023

1024 1025 1026
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		int ret;
1027

1028
		iommu->cmd_sem = 0;
1029

1030 1031
		build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1032

1033
		if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0)
1034 1035 1036
			return ret;

		goto again;
1037 1038
	}

1039 1040 1041
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1042
	iommu->need_sync = sync;
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1056
	spin_unlock_irqrestore(&iommu->lock, flags);
1057

1058
	return ret;
1059 1060
}

1061 1062 1063 1064 1065
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1066 1067 1068 1069
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1070
static int iommu_completion_wait(struct amd_iommu *iommu)
1071 1072
{
	struct iommu_cmd cmd;
1073
	unsigned long flags;
1074
	int ret;
1075

1076
	if (!iommu->need_sync)
1077
		return 0;
1078

1079

1080 1081 1082 1083 1084 1085 1086
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1087
	if (ret)
1088 1089 1090 1091 1092 1093
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1094

1095
	return ret;
1096 1097
}

1098
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1099
{
1100
	struct iommu_cmd cmd;
1101

1102
	build_inv_dte(&cmd, devid);
1103

1104 1105
	return iommu_queue_command(iommu, &cmd);
}
1106

1107 1108 1109
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1110

1111 1112
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1113

1114 1115
	iommu_completion_wait(iommu);
}
1116

1117 1118 1119 1120 1121 1122 1123
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1124

1125 1126 1127 1128 1129 1130
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1131

1132
	iommu_completion_wait(iommu);
1133 1134
}

1135
static void iommu_flush_all(struct amd_iommu *iommu)
1136
{
1137
	struct iommu_cmd cmd;
1138

1139
	build_inv_all(&cmd);
1140

1141 1142 1143 1144
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1164 1165
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1166 1167 1168 1169
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1170
		iommu_flush_irt_all(iommu);
1171
		iommu_flush_tlb_all(iommu);
1172 1173 1174
	}
}

1175
/*
1176
 * Command send function for flushing on-device TLB
1177
 */
1178 1179
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1180 1181
{
	struct amd_iommu *iommu;
1182
	struct iommu_cmd cmd;
1183
	int qdep;
1184

1185 1186
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1187

1188
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1189 1190

	return iommu_queue_command(iommu, &cmd);
1191 1192
}

1193 1194 1195
/*
 * Command send function for invalidating a device table entry
 */
1196
static int device_flush_dte(struct iommu_dev_data *dev_data)
1197
{
1198
	struct amd_iommu *iommu;
1199
	u16 alias;
1200
	int ret;
1201

1202
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1203
	alias = dev_data->alias;
1204

1205
	ret = iommu_flush_dte(iommu, dev_data->devid);
1206 1207
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1208 1209 1210
	if (ret)
		return ret;

1211
	if (dev_data->ats.enabled)
1212
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1213 1214

	return ret;
1215 1216
}

1217 1218 1219 1220 1221
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1222 1223
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1224
{
1225
	struct iommu_dev_data *dev_data;
1226 1227
	struct iommu_cmd cmd;
	int ret = 0, i;
1228

1229
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1230

1231 1232 1233 1234 1235 1236 1237 1238
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1239
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1240 1241
	}

1242 1243
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1244
		if (!dev_data->ats.enabled)
1245 1246
			continue;

1247
		ret |= device_flush_iotlb(dev_data, address, size);
1248 1249
	}

1250
	WARN_ON(ret);
1251 1252
}

1253 1254
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1255
{
1256
	__domain_flush_pages(domain, address, size, 0);
1257
}
1258

1259
/* Flush the whole IO/TLB for a given protection domain */
1260
static void domain_flush_tlb(struct protection_domain *domain)
1261
{
1262
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1263 1264
}

1265
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1266
static void domain_flush_tlb_pde(struct protection_domain *domain)
1267
{
1268
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1269 1270
}

1271
static void domain_flush_complete(struct protection_domain *domain)
1272
{
1273
	int i;
1274

1275
	for (i = 0; i < amd_iommus_present; ++i) {
1276
		if (domain && !domain->dev_iommu[i])
1277
			continue;
1278

1279 1280 1281 1282 1283
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1284
	}
1285 1286
}

1287

1288
/*
1289
 * This function flushes the DTEs for all devices in domain
1290
 */
1291
static void domain_flush_devices(struct protection_domain *domain)
1292
{
1293
	struct iommu_dev_data *dev_data;
1294

1295
	list_for_each_entry(dev_data, &domain->dev_list, list)
1296
		device_flush_dte(dev_data);
1297 1298
}

1299 1300 1301 1302 1303 1304 1305
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1335
		      unsigned long page_size,
1336 1337 1338
		      u64 **pte_page,
		      gfp_t gfp)
{
1339
	int level, end_lvl;
1340
	u64 *pte, *page;
1341 1342

	BUG_ON(!is_power_of_2(page_size));
1343 1344 1345 1346

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1347 1348 1349 1350
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1351 1352

	while (level > end_lvl) {
1353 1354 1355 1356 1357
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1358 1359 1360
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1361 1362 1363

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1364 1365
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1366 1367 1368
				free_page((unsigned long)page);
				continue;
			}
1369 1370
		}

1371 1372 1373 1374
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1392 1393 1394
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1395 1396 1397 1398
{
	int level;
	u64 *pte;

1399 1400 1401
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1402 1403 1404
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1405

1406 1407 1408
	while (level > 0) {

		/* Not Present */
1409 1410 1411
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1412
		/* Large PTE */
1413 1414 1415
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1416 1417 1418 1419 1420

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1421 1422
		level -= 1;

1423
		/* Walk to the next level */
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1439 1440 1441 1442 1443
	}

	return pte;
}

1444 1445 1446 1447 1448 1449 1450
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1451 1452 1453
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1454
			  unsigned long page_size,
1455
			  int prot,
1456
			  gfp_t gfp)
1457
{
1458
	u64 __pte, *pte;
1459
	int i, count;
1460

1461 1462 1463
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1464
	if (!(prot & IOMMU_PROT_MASK))
1465 1466
		return -EINVAL;

1467
	count = PAGE_SIZE_PTE_COUNT(page_size);
1468
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1469

1470 1471 1472
	if (!pte)
		return -ENOMEM;

1473 1474 1475
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1476

1477
	if (count > 1) {
1478 1479 1480 1481
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1482 1483 1484 1485 1486 1487

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1488 1489
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1490

1491 1492
	update_domain(dom);

1493 1494 1495
	return 0;
}

1496 1497 1498
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1499
{
1500 1501
	unsigned long long unmapped;
	unsigned long unmap_size;
1502 1503 1504 1505 1506
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1507

1508 1509
	while (unmapped < page_size) {

1510 1511 1512 1513 1514 1515
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1516 1517 1518 1519 1520 1521 1522 1523
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1524
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1525

1526
	return unmapped;
1527 1528
}

1529 1530 1531
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1532
 * interface functions.
1533 1534
 *
 ****************************************************************************/
1535

1536

1537 1538 1539
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1540
{
1541
	unsigned long pfn = 0;
1542

1543
	pages = __roundup_pow_of_two(pages);
1544

1545 1546 1547
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1548

1549 1550
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1551

1552
	return (pfn << PAGE_SHIFT);
1553 1554
}

1555 1556 1557
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1558
{
1559 1560
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1561

1562
	free_iova_fast(&dma_dom->iovad, address, pages);
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1637
		/* PTE present? */				\
1638 1639 1640
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1641 1642 1643 1644 1645
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1658
static void free_pagetable(struct protection_domain *domain)
1659
{
1660
	unsigned long root = (unsigned long)domain->pt_root;
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1685 1686 1687
	}
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1718 1719
static void free_gcr3_table(struct protection_domain *domain)
{
1720 1721 1722 1723
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1724 1725
	else
		BUG_ON(domain->glx != 0);
1726

1727 1728 1729
	free_page((unsigned long)domain->gcr3_tbl);
}

1730 1731 1732 1733
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1734 1735 1736 1737 1738
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1739 1740
	del_domain_from_list(&dom->domain);

1741
	put_iova_domain(&dom->iovad);
1742

1743
	free_pagetable(&dom->domain);
1744

1745 1746 1747
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1748 1749 1750
	kfree(dom);
}

1751 1752
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1753
 * It also initializes the page table and the address allocator data
1754 1755
 * structures required for the dma_ops interface
 */
1756
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1757 1758 1759 1760 1761 1762 1763
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1764
	if (protection_domain_init(&dma_dom->domain))
1765
		goto free_dma_dom;
1766

1767
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1768
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1769
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1770 1771 1772
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1773 1774 1775
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1776 1777 1778
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1779 1780
	add_domain_to_list(&dma_dom->domain);

1781 1782 1783 1784 1785 1786 1787 1788
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1789 1790 1791 1792 1793 1794 1795 1796 1797
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1798
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1799
{
1800
	u64 pte_root = 0;
1801
	u64 flags = 0;
1802

1803 1804 1805
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1806 1807 1808
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1809

1810 1811
	flags = amd_iommu_dev_table[devid].data[1];

1812 1813 1814
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1841 1842 1843 1844 1845
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1846 1847 1848 1849 1850
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1851 1852
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1853 1854

	amd_iommu_apply_erratum_63(devid);
1855 1856
}

1857 1858
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1859 1860
{
	struct amd_iommu *iommu;
1861
	u16 alias;
1862
	bool ats;
1863

1864
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1865
	alias = dev_data->alias;
1866
	ats   = dev_data->ats.enabled;
1867 1868 1869 1870 1871 1872 1873 1874 1875

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1876 1877 1878
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1879
		set_dte_entry(alias, domain, ats);
1880

1881
	device_flush_dte(dev_data);
1882 1883
}

1884
static void do_detach(struct iommu_dev_data *dev_data)
1885 1886
{
	struct amd_iommu *iommu;
1887
	u16 alias;
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1898
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1899
	alias = dev_data->alias;
1900 1901

	/* decrease reference counters */
1902 1903 1904 1905 1906 1907
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1908
	clear_dte_entry(dev_data->devid);
1909 1910
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1911

1912
	/* Flush the DTE entry */
1913
	device_flush_dte(dev_data);
1914 1915 1916 1917 1918 1919
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1920
static int __attach_device(struct iommu_dev_data *dev_data,
1921
			   struct protection_domain *domain)
1922
{
1923
	int ret;
1924

1925 1926 1927 1928 1929 1930
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1931 1932 1933
	/* lock domain */
	spin_lock(&domain->lock);

1934
	ret = -EBUSY;
1935
	if (dev_data->domain != NULL)
1936
		goto out_unlock;
1937

1938
	/* Attach alias group root */
1939
	do_attach(dev_data, domain);
1940

1941 1942 1943 1944
	ret = 0;

out_unlock:

1945 1946
	/* ready */
	spin_unlock(&domain->lock);
1947

1948
	return ret;
1949
}
1950

1951 1952 1953 1954 1955 1956 1957 1958

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1959 1960 1961 1962 1963 1964
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1965
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1966 1967 1968
	if (!pos)
		return -EINVAL;

1969 1970 1971
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1972 1973 1974 1975

	return 0;
}

1976 1977
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1978 1979 1980 1981 1982 1983 1984 1985
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

1997 1998
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
1999 2000 2001
	if (ret)
		goto out_err;

2002 2003 2004 2005 2006 2007
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2021
/* FIXME: Move this to PCI code */
2022
#define PCI_PRI_TLP_OFF		(1 << 15)
2023

J
Joerg Roedel 已提交
2024
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2025
{
2026
	u16 status;
2027 2028
	int pos;

2029
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2030 2031 2032
	if (!pos)
		return false;

2033
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2034

2035
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2036 2037
}

2038
/*
F
Frank Arnold 已提交
2039
 * If a device is not yet associated with a domain, this function
2040 2041
 * assigns it visible for the hardware
 */
2042 2043
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2044
{
2045
	struct pci_dev *pdev;
2046
	struct iommu_dev_data *dev_data;
2047
	unsigned long flags;
2048
	int ret;
2049

2050 2051
	dev_data = get_dev_data(dev);

2052 2053 2054 2055
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2056
	if (domain->flags & PD_IOMMUV2_MASK) {
2057
		if (!dev_data->passthrough)
2058 2059
			return -EINVAL;

2060 2061 2062
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2063

2064 2065 2066 2067
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2068 2069
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2070 2071 2072
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2073

2074
skip_ats_check:
2075
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2076
	ret = __attach_device(dev_data, domain);
2077 2078
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2079 2080 2081 2082 2083
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2084
	domain_flush_tlb_pde(domain);
2085 2086

	return ret;
2087 2088
}

2089 2090 2091
/*
 * Removes a device from a protection domain (unlocked)
 */
2092
static void __detach_device(struct iommu_dev_data *dev_data)
2093
{
2094
	struct protection_domain *domain;
2095

2096 2097 2098 2099 2100
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2101

2102 2103
	if (WARN_ON(!dev_data->domain))
		return;
2104

2105
	domain = dev_data->domain;
2106

2107
	spin_lock(&domain->lock);
2108

2109
	do_detach(dev_data);
2110

2111
	spin_unlock(&domain->lock);
2112 2113 2114 2115 2116
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2117
static void detach_device(struct device *dev)
2118
{
2119
	struct protection_domain *domain;
2120
	struct iommu_dev_data *dev_data;
2121 2122
	unsigned long flags;

2123
	dev_data = get_dev_data(dev);
2124
	domain   = dev_data->domain;
2125

2126 2127
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2128
	__detach_device(dev_data);
2129
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2130

2131 2132 2133
	if (!dev_is_pci(dev))
		return;

2134
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2135 2136
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2137
		pci_disable_ats(to_pci_dev(dev));
2138 2139

	dev_data->ats.enabled = false;
2140
}
2141

2142
static int amd_iommu_add_device(struct device *dev)
2143
{
2144
	struct iommu_dev_data *dev_data;
2145
	struct iommu_domain *domain;
2146
	struct amd_iommu *iommu;
2147
	int ret, devid;
2148

2149
	if (!check_device(dev) || get_dev_data(dev))
2150
		return 0;
2151

2152
	devid = get_device_id(dev);
2153
	if (devid < 0)
2154 2155
		return devid;

2156
	iommu = amd_iommu_rlookup_table[devid];
2157

2158
	ret = iommu_init_device(dev);
2159 2160 2161 2162
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2163

2164
		iommu_ignore_device(dev);
2165
		dev->archdata.dma_ops = &nommu_dma_ops;
2166 2167 2168
		goto out;
	}
	init_iommu_group(dev);
2169

2170
	dev_data = get_dev_data(dev);
2171

2172
	BUG_ON(!dev_data);
2173

2174
	if (iommu_pass_through || dev_data->iommu_v2)
2175
		iommu_request_dm_for_dev(dev);
2176

2177 2178
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2179
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2180
		dev_data->passthrough = true;
2181
	else
2182
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2183

2184
out:
2185 2186 2187 2188 2189
	iommu_completion_wait(iommu);

	return 0;
}

2190
static void amd_iommu_remove_device(struct device *dev)
2191
{
2192
	struct amd_iommu *iommu;
2193
	int devid;
2194 2195 2196 2197 2198

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2199
	if (devid < 0)
2200 2201
		return;

2202 2203 2204 2205
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2206 2207
}

2208 2209 2210 2211 2212 2213 2214 2215
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2216 2217 2218 2219 2220 2221
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2253
static void queue_flush_all(void)
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2269 2270 2271 2272 2273 2274
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2300 2301 2302 2303

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2304 2305 2306 2307
	put_cpu_ptr(&flush_queue);
}


2308 2309 2310 2311 2312 2313 2314
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2315
static struct protection_domain *get_domain(struct device *dev)
2316
{
2317
	struct protection_domain *domain;
2318

2319
	if (!check_device(dev))
2320
		return ERR_PTR(-EINVAL);
2321

2322
	domain = get_dev_data(dev)->domain;
2323
	if (!dma_ops_domain(domain))
2324
		return ERR_PTR(-EBUSY);
2325

2326
	return domain;
2327 2328
}

2329 2330
static void update_device_table(struct protection_domain *domain)
{
2331
	struct iommu_dev_data *dev_data;
2332

2333
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2334
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2335 2336 2337 2338 2339 2340 2341

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2342 2343 2344 2345 2346 2347 2348 2349
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2350 2351 2352

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2353 2354 2355 2356

	domain->updated = false;
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2368 2369
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2370 2371
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2372 2373
 * Must be called with the domain lock held.
 */
2374 2375 2376 2377
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2378
			       enum dma_data_direction direction,
2379
			       u64 dma_mask)
2380 2381
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2382
	dma_addr_t address, start, ret;
2383
	unsigned int pages;
2384
	int prot = 0;
2385 2386
	int i;

2387
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2388 2389
	paddr &= PAGE_MASK;

2390
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2391 2392
	if (address == DMA_ERROR_CODE)
		goto out;
2393

2394
	prot = dir2prot(direction);
2395

2396 2397
	start = address;
	for (i = 0; i < pages; ++i) {
2398 2399 2400
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2401 2402
			goto out_unmap;

2403 2404 2405 2406 2407
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2408
	if (unlikely(amd_iommu_np_cache)) {
2409
		domain_flush_pages(&dma_dom->domain, address, size);
2410 2411
		domain_flush_complete(&dma_dom->domain);
	}
2412

2413 2414
out:
	return address;
2415 2416 2417 2418 2419

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2420
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2421 2422
	}

2423 2424 2425 2426
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2427

2428
	return DMA_ERROR_CODE;
2429 2430
}

2431 2432 2433 2434
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2435
static void __unmap_single(struct dma_ops_domain *dma_dom,
2436 2437 2438 2439
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2440
	dma_addr_t flush_addr;
2441 2442 2443
	dma_addr_t i, start;
	unsigned int pages;

2444
	flush_addr = dma_addr;
2445
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2446 2447 2448 2449
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2450
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2451 2452 2453
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2454 2455 2456 2457 2458 2459 2460
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2461 2462
}

2463 2464 2465
/*
 * The exported map_single function for dma_ops.
 */
2466 2467 2468
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2469
			   unsigned long attrs)
2470
{
2471
	phys_addr_t paddr = page_to_phys(page) + offset;
2472
	struct protection_domain *domain;
2473
	struct dma_ops_domain *dma_dom;
2474
	u64 dma_mask;
2475

2476 2477
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2478
		return (dma_addr_t)paddr;
2479 2480
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2481

2482
	dma_mask = *dev->dma_mask;
2483
	dma_dom = to_dma_ops_domain(domain);
2484

2485
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2486 2487
}

2488 2489 2490
/*
 * The exported unmap_single function for dma_ops.
 */
2491
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2492
		       enum dma_data_direction dir, unsigned long attrs)
2493 2494
{
	struct protection_domain *domain;
2495
	struct dma_ops_domain *dma_dom;
2496

2497 2498
	domain = get_domain(dev);
	if (IS_ERR(domain))
2499 2500
		return;

2501 2502 2503
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2504 2505
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2532 2533 2534 2535
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2536
static int map_sg(struct device *dev, struct scatterlist *sglist,
2537
		  int nelems, enum dma_data_direction direction,
2538
		  unsigned long attrs)
2539
{
2540
	int mapped_pages = 0, npages = 0, prot = 0, i;
2541
	struct protection_domain *domain;
2542
	struct dma_ops_domain *dma_dom;
2543
	struct scatterlist *s;
2544
	unsigned long address;
2545
	u64 dma_mask;
2546

2547
	domain = get_domain(dev);
2548
	if (IS_ERR(domain))
2549
		return 0;
2550

2551
	dma_dom  = to_dma_ops_domain(domain);
2552
	dma_mask = *dev->dma_mask;
2553

2554 2555 2556 2557 2558 2559 2560 2561 2562
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2563
	for_each_sg(sglist, s, nelems, i) {
2564 2565 2566 2567 2568
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2569

2570 2571 2572 2573 2574
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2575

2576 2577
			mapped_pages += 1;
		}
2578 2579
	}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2597

2598 2599 2600 2601 2602 2603
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2604 2605
	}

2606 2607 2608 2609
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2610
	return 0;
2611 2612
}

2613 2614 2615 2616
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2617
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2618
		     int nelems, enum dma_data_direction dir,
2619
		     unsigned long attrs)
2620 2621
{
	struct protection_domain *domain;
2622
	struct dma_ops_domain *dma_dom;
2623 2624
	unsigned long startaddr;
	int npages = 2;
2625

2626 2627
	domain = get_domain(dev);
	if (IS_ERR(domain))
2628 2629
		return;

2630
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2631
	dma_dom   = to_dma_ops_domain(domain);
2632 2633
	npages    = sg_num_pages(dev, sglist, nelems);

2634
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2635 2636
}

2637 2638 2639
/*
 * The exported alloc_coherent function for dma_ops.
 */
2640
static void *alloc_coherent(struct device *dev, size_t size,
2641
			    dma_addr_t *dma_addr, gfp_t flag,
2642
			    unsigned long attrs)
2643
{
2644
	u64 dma_mask = dev->coherent_dma_mask;
2645
	struct protection_domain *domain;
2646
	struct dma_ops_domain *dma_dom;
2647
	struct page *page;
2648

2649 2650
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2651 2652 2653
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2654 2655
	} else if (IS_ERR(domain))
		return NULL;
2656

2657
	dma_dom   = to_dma_ops_domain(domain);
2658
	size	  = PAGE_ALIGN(size);
2659 2660
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2661
	flag     |= __GFP_ZERO;
2662

2663 2664
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2665
		if (!gfpflags_allow_blocking(flag))
2666
			return NULL;
2667

2668 2669 2670 2671 2672
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2673

2674 2675 2676
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2677
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2678
				 size, DMA_BIDIRECTIONAL, dma_mask);
2679

2680
	if (*dma_addr == DMA_ERROR_CODE)
2681
		goto out_free;
2682

2683
	return page_address(page);
2684 2685 2686

out_free:

2687 2688
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2689 2690

	return NULL;
2691 2692
}

2693 2694 2695
/*
 * The exported free_coherent function for dma_ops.
 */
2696
static void free_coherent(struct device *dev, size_t size,
2697
			  void *virt_addr, dma_addr_t dma_addr,
2698
			  unsigned long attrs)
2699 2700
{
	struct protection_domain *domain;
2701
	struct dma_ops_domain *dma_dom;
2702
	struct page *page;
2703

2704 2705 2706
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2707 2708
	domain = get_domain(dev);
	if (IS_ERR(domain))
2709 2710
		goto free_mem;

2711 2712 2713
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2714 2715

free_mem:
2716 2717
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2718 2719
}

2720 2721 2722 2723 2724 2725
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2726
	return check_device(dev);
2727 2728
}

2729
static struct dma_map_ops amd_iommu_dma_ops = {
2730 2731 2732 2733 2734 2735 2736
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2737 2738
};

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2792
int __init amd_iommu_init_api(void)
2793
{
2794
	int ret, cpu, err = 0;
2795 2796 2797 2798

	ret = iova_cache_get();
	if (ret)
		return ret;
2799

2800 2801 2802 2803
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2816 2817 2818 2819 2820 2821 2822 2823
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2824 2825 2826
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2827
	return 0;
2828 2829 2830 2831 2832 2833 2834 2835 2836

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2837 2838
}

2839 2840
int __init amd_iommu_init_dma_ops(void)
{
2841 2842 2843
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2844
	swiotlb        = iommu_pass_through ? 1 : 0;
2845 2846
	iommu_detected = 1;

2847 2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2856 2857 2858 2859 2860
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2861
	return 0;
2862

2863
}
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2877
	struct iommu_dev_data *entry;
2878 2879 2880 2881
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2882 2883 2884 2885
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2886
	}
2887 2888 2889 2890

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2891 2892 2893 2894 2895
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2896 2897
	del_domain_from_list(domain);

2898 2899 2900 2901 2902 2903
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2916
static struct protection_domain *protection_domain_alloc(void)
2917 2918 2919 2920 2921
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2922
		return NULL;
2923

2924
	if (protection_domain_init(domain))
2925 2926
		goto out_err;

2927 2928
	add_domain_to_list(domain);

2929 2930 2931 2932 2933 2934 2935 2936
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2937
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2938
{
2939
	struct protection_domain *pdomain;
2940
	struct dma_ops_domain *dma_domain;
2941

2942 2943 2944 2945 2946
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2947

2948 2949 2950 2951 2952 2953
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2954

2955 2956 2957
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2968 2969 2970 2971
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2972

2973 2974
		pdomain->mode = PAGE_MODE_NONE;
		break;
2975 2976 2977
	default:
		return NULL;
	}
2978

2979
	return &pdomain->domain;
2980 2981
}

2982
static void amd_iommu_domain_free(struct iommu_domain *dom)
2983
{
2984
	struct protection_domain *domain;
2985
	struct dma_ops_domain *dma_dom;
2986

2987 2988
	domain = to_pdomain(dom);

2989 2990 2991 2992 2993
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2994 2995
	if (!dom)
		return;
2996

2997 2998
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2999 3000 3001 3002 3003 3004 3005
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
3006
		dma_dom = to_dma_ops_domain(domain);
3007 3008 3009 3010 3011
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3012

3013 3014 3015 3016 3017 3018
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3019 3020
}

3021 3022 3023
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3024
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3025
	struct amd_iommu *iommu;
3026
	int devid;
3027

3028
	if (!check_device(dev))
3029 3030
		return;

3031
	devid = get_device_id(dev);
3032
	if (devid < 0)
3033
		return;
3034

3035
	if (dev_data->domain != NULL)
3036
		detach_device(dev);
3037 3038 3039 3040 3041

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3042 3043 3044 3045 3046 3047
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3048 3049 3050
	iommu_completion_wait(iommu);
}

3051 3052 3053
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3054
	struct protection_domain *domain = to_pdomain(dom);
3055
	struct iommu_dev_data *dev_data;
3056
	struct amd_iommu *iommu;
3057
	int ret;
3058

3059
	if (!check_device(dev))
3060 3061
		return -EINVAL;

3062 3063
	dev_data = dev->archdata.iommu;

3064
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3065 3066 3067
	if (!iommu)
		return -EINVAL;

3068
	if (dev_data->domain)
3069
		detach_device(dev);
3070

3071
	ret = attach_device(dev, domain);
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3082 3083
	iommu_completion_wait(iommu);

3084
	return ret;
3085 3086
}

3087
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3088
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3089
{
3090
	struct protection_domain *domain = to_pdomain(dom);
3091 3092 3093
	int prot = 0;
	int ret;

3094 3095 3096
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3097 3098 3099 3100 3101
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3102
	mutex_lock(&domain->api_lock);
3103
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3104 3105
	mutex_unlock(&domain->api_lock);

3106
	return ret;
3107 3108
}

3109 3110
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3111
{
3112
	struct protection_domain *domain = to_pdomain(dom);
3113
	size_t unmap_size;
3114

3115 3116 3117
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3118
	mutex_lock(&domain->api_lock);
3119
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3120
	mutex_unlock(&domain->api_lock);
3121

3122
	domain_flush_tlb_pde(domain);
3123

3124
	return unmap_size;
3125 3126
}

3127
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3128
					  dma_addr_t iova)
3129
{
3130
	struct protection_domain *domain = to_pdomain(dom);
3131
	unsigned long offset_mask, pte_pgsize;
3132
	u64 *pte, __pte;
3133

3134 3135 3136
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3137
	pte = fetch_pte(domain, iova, &pte_pgsize);
3138

3139
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3140 3141
		return 0;

3142 3143
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3144

3145
	return (__pte & ~offset_mask) | (iova & offset_mask);
3146 3147
}

3148
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3149
{
3150 3151
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3152
		return true;
3153
	case IOMMU_CAP_INTR_REMAP:
3154
		return (irq_remapping_enabled == 1);
3155 3156
	case IOMMU_CAP_NOEXEC:
		return false;
3157 3158
	}

3159
	return false;
S
Sheng Yang 已提交
3160 3161
}

3162 3163 3164 3165
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3166
	int devid;
3167 3168

	devid = get_device_id(dev);
3169
	if (devid < 0)
3170
		return;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3205 3206 3207 3208
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
3209
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3210 3211 3212 3213 3214 3215 3216 3217
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3218
static const struct iommu_ops amd_iommu_ops = {
3219
	.capable = amd_iommu_capable,
3220 3221
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3222 3223
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3224 3225
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3226
	.map_sg = default_iommu_map_sg,
3227
	.iova_to_phys = amd_iommu_iova_to_phys,
3228 3229
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3230
	.device_group = amd_iommu_device_group,
3231 3232
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3233
	.apply_dm_region = amd_iommu_apply_dm_region,
3234
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3235 3236
};

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3259 3260 3261

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3262
	struct protection_domain *domain = to_pdomain(dom);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3280 3281 3282

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3283
	struct protection_domain *domain = to_pdomain(dom);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3361 3362 3363 3364 3365 3366
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3398
	struct protection_domain *domain = to_pdomain(dom);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3418
	struct protection_domain *domain = to_pdomain(dom);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3498
	struct protection_domain *domain = to_pdomain(dom);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3512
	struct protection_domain *domain = to_pdomain(dom);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3540 3541 3542

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3543
	struct protection_domain *pdomain;
3544

3545 3546
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3547 3548 3549
		return NULL;

	/* Only return IOMMUv2 domains */
3550
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3551 3552
		return NULL;

3553
	return &pdomain->domain;
3554 3555
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3611 3612 3613 3614 3615 3616 3617 3618 3619

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3620 3621
static struct irq_chip amd_ir_chip;

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3656
		goto out_unlock;
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3670
		goto out_unlock;
3671

3672 3673 3674
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3675 3676 3677 3678 3679 3680 3681
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3682
		table = NULL;
3683
		goto out_unlock;
3684 3685
	}

3686 3687 3688 3689 3690 3691
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3692 3693 3694 3695 3696

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3697
			iommu->irte_ops->set_allocated(table, i);
3698 3699 3700 3701 3702 3703 3704
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3705
		set_dte_irq_entry(alias, table);
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3718
static int alloc_irq_index(u16 devid, int count)
3719 3720 3721 3722
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3723 3724 3725 3726
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3738
		if (!iommu->irte_ops->is_allocated(table, index))
3739 3740 3741 3742 3743 3744
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3745
				iommu->irte_ops->set_allocated(table, index - c + 1);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3760 3761
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3762 3763 3764 3765
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3766
	struct irte_ga *entry;
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3777 3778 3779 3780 3781 3782 3783

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3784 3785
	if (data)
		data->ref = entry;
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3810
	table->table[index] = irte->val;
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3834
	iommu->irte_ops->clear_allocated(table, index);
3835 3836 3837 3838 3839 3840
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3841 3842
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3843
			 u8 vector, u32 dest_apicid, int devid)
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3857
			    u8 vector, u32 dest_apicid, int devid)
3858 3859
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3860
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3861 3862 3863

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3864
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3885
	modify_irte_ga(devid, index, irte, NULL);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3901
	modify_irte_ga(devid, index, irte, NULL);
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3918
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3919

3920 3921 3922 3923 3924 3925
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3926 3927
}

3928
#define IRTE_ALLOCATED (~1U)
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3974
static int get_devid(struct irq_alloc_info *info)
3975
{
3976
	int devid = -1;
3977

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3993

3994 3995
	return devid;
}
3996

3997 3998 3999 4000
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4001

4002 4003
	if (!info)
		return NULL;
4004

4005 4006 4007 4008 4009 4010
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4011

4012
	return NULL;
4013 4014
}

4015
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4016
{
4017 4018
	struct amd_iommu *iommu;
	int devid;
4019

4020 4021
	if (!info)
		return NULL;
4022

4023 4024 4025 4026
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4027
		if (devid < 0)
4028 4029
			return NULL;

4030 4031 4032
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4033 4034 4035 4036
		break;
	default:
		break;
	}
4037

4038 4039
	return NULL;
}
4040

4041 4042 4043 4044 4045 4046
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4047 4048 4049
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4050

4051 4052 4053 4054 4055 4056 4057 4058
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4059 4060 4061 4062
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4063

4064 4065
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4066 4067
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4068
				 irq_cfg->dest_apicid, devid);
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4084

4085 4086 4087 4088 4089 4090 4091
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4092

4093 4094 4095 4096
	default:
		BUG_ON(1);
		break;
	}
4097 4098
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4119 4120
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4121
{
4122 4123
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4124
	struct amd_ir_data *data = NULL;
4125
	struct irq_cfg *cfg;
4126 4127
	int i, ret, devid;
	int index = -1;
4128

4129 4130 4131 4132
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4133 4134
		return -EINVAL;

4135 4136 4137 4138 4139 4140
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4141

4142 4143 4144
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4145

4146 4147 4148
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4149

4150 4151 4152 4153 4154 4155
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4156
		index = alloc_irq_index(devid, nr_irqs);
4157 4158 4159
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4160
		ret = index;
4161 4162
		goto out_free_parent;
	}
4163

4164 4165 4166 4167 4168 4169 4170
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4171

4172 4173 4174 4175 4176
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4187 4188 4189 4190 4191 4192
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4193

4194
	return 0;
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4207 4208
}

4209 4210
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4211
{
4212 4213 4214 4215
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4216

4217 4218 4219 4220 4221 4222
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4223
			kfree(data->entry);
4224 4225 4226 4227 4228
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4229

4230 4231 4232 4233 4234
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4235
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4236

4237 4238 4239
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4240 4241
}

4242 4243
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4244
{
4245 4246
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4247
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4248

4249 4250 4251
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4252
}
4253

4254 4255 4256 4257 4258
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4259
};
4260

4261 4262 4263 4264 4265 4266 4267 4268
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4269 4270 4271 4272 4273 4274 4275 4276
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4325 4326 4327 4328 4329 4330 4331
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4332
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4333
	int ret;
4334

4335 4336 4337
	if (!iommu)
		return -ENODEV;

4338 4339 4340
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4341

4342 4343 4344 4345
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4346 4347
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4348

4349 4350 4351 4352 4353
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4354
	send_cleanup_vector(cfg);
4355 4356

	return IRQ_SET_MASK_OK_DONE;
4357 4358
}

4359
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4360
{
4361
	struct amd_ir_data *ir_data = irq_data->chip_data;
4362

4363 4364
	*msg = ir_data->msi_entry;
}
4365

4366 4367 4368
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4369
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4370 4371
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4372

4373 4374 4375 4376 4377
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4378

4379 4380
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4381 4382 4383

	return 0;
}
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4423
#endif