vmscan.c 111.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

14 15
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
16 17
#include <linux/mm.h>
#include <linux/module.h>
18
#include <linux/gfp.h>
L
Linus Torvalds 已提交
19 20 21 22 23
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
24
#include <linux/vmpressure.h>
25
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
37
#include <linux/compaction.h>
L
Linus Torvalds 已提交
38 39
#include <linux/notifier.h>
#include <linux/rwsem.h>
40
#include <linux/delay.h>
41
#include <linux/kthread.h>
42
#include <linux/freezer.h>
43
#include <linux/memcontrol.h>
44
#include <linux/delayacct.h>
45
#include <linux/sysctl.h>
46
#include <linux/oom.h>
47
#include <linux/prefetch.h>
48
#include <linux/printk.h>
L
Linus Torvalds 已提交
49 50 51 52 53

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
54
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
55

56 57
#include "internal.h"

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
61
struct scan_control {
62 63 64
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

L
Linus Torvalds 已提交
65
	/* This context's GFP mask */
A
Al Viro 已提交
66
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
67

68
	/* Allocation order */
A
Andy Whitcroft 已提交
69
	int order;
70

71 72 73 74 75
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
76

77 78 79 80 81
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
82

83 84 85 86 87 88 89 90 91 92 93
	/* Scan (total_size >> priority) pages at once */
	int priority;

	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

94 95 96
	/* Can cgroups be reclaimed below their normal consumption range? */
	unsigned int may_thrash:1;

97 98 99 100 101 102 103 104 105 106
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
141 142 143 144 145
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
146 147 148 149

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
150
#ifdef CONFIG_MEMCG
151 152
static bool global_reclaim(struct scan_control *sc)
{
153
	return !sc->target_mem_cgroup;
154
}
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
176
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
177 178 179 180
		return true;
#endif
	return false;
}
181
#else
182 183 184 185
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
186 187 188 189 190

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
191 192
#endif

193
static unsigned long zone_reclaimable_pages(struct zone *zone)
194
{
195
	unsigned long nr;
196 197

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
198 199
	     zone_page_state(zone, NR_INACTIVE_FILE) +
	     zone_page_state(zone, NR_ISOLATED_FILE);
200 201 202

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
203 204
		      zone_page_state(zone, NR_INACTIVE_ANON) +
		      zone_page_state(zone, NR_ISOLATED_ANON);
205 206 207 208 209 210

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
211 212
	return zone_page_state(zone, NR_PAGES_SCANNED) <
		zone_reclaimable_pages(zone) * 6;
213 214
}

215
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216
{
217
	if (!mem_cgroup_disabled())
218
		return mem_cgroup_get_lru_size(lruvec, lru);
219

220
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 222
}

L
Linus Torvalds 已提交
223
/*
G
Glauber Costa 已提交
224
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
225
 */
G
Glauber Costa 已提交
226
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
227
{
G
Glauber Costa 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

245 246 247
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
248
	return 0;
L
Linus Torvalds 已提交
249
}
250
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
251 252 253 254

/*
 * Remove one
 */
255
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
256 257 258 259
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
260
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
261
}
262
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
263 264

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
265

266 267 268 269
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
				    struct shrinker *shrinker,
				    unsigned long nr_scanned,
				    unsigned long nr_eligible)
G
Glauber Costa 已提交
270 271 272 273
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
274
	long freeable;
G
Glauber Costa 已提交
275 276 277 278 279 280
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

281 282
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
283 284 285 286 287 288 289 290 291 292
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
293
	delta = (4 * nr_scanned) / shrinker->seeks;
294
	delta *= freeable;
295
	do_div(delta, nr_eligible + 1);
G
Glauber Costa 已提交
296 297
	total_scan += delta;
	if (total_scan < 0) {
298
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
299
		       shrinker->scan_objects, total_scan);
300
		total_scan = freeable;
G
Glauber Costa 已提交
301 302 303 304 305 306 307 308
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
309
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
310 311 312 313 314
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
315 316
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
317 318 319 320 321 322

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
323 324
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
325 326

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 328
				   nr_scanned, nr_eligible,
				   freeable, delta, total_scan);
G
Glauber Costa 已提交
329

330 331 332 333 334 335 336 337 338 339 340
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
341
	 * than the total number of objects on slab (freeable), we must be
342 343 344 345
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
346
	       total_scan >= freeable) {
D
Dave Chinner 已提交
347
		unsigned long ret;
348
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
349

350
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
351 352 353 354
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
355

356 357
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

373
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
374
	return freed;
375 376
}

377
/**
378
 * shrink_slab - shrink slab caches
379 380
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
381
 * @memcg: memory cgroup whose slab caches to target
382 383
 * @nr_scanned: pressure numerator
 * @nr_eligible: pressure denominator
L
Linus Torvalds 已提交
384
 *
385
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
386
 *
387 388
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
389
 *
390 391 392 393 394 395
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 * objects from the memory cgroup specified. Otherwise all shrinkers
 * are called, and memcg aware shrinkers are supposed to scan the
 * global list then.
 *
396 397 398 399 400 401 402
 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 * the available objects should be scanned.  Page reclaim for example
 * passes the number of pages scanned and the number of pages on the
 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 * when it encountered mapped pages.  The ratio is further biased by
 * the ->seeks setting of the shrink function, which indicates the
 * cost to recreate an object relative to that of an LRU page.
403
 *
404
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
405
 */
406 407 408 409
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
				 unsigned long nr_scanned,
				 unsigned long nr_eligible)
L
Linus Torvalds 已提交
410 411
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
412
	unsigned long freed = 0;
L
Linus Torvalds 已提交
413

414
	if (memcg && !memcg_kmem_online(memcg))
415 416
		return 0;

417 418
	if (nr_scanned == 0)
		nr_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
419

420
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
421 422 423 424 425 426 427
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
428 429
		goto out;
	}
L
Linus Torvalds 已提交
430 431

	list_for_each_entry(shrinker, &shrinker_list, list) {
432 433 434
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
435
			.memcg = memcg,
436
		};
437

438 439 440
		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
			continue;

441 442
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
443

444
		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
L
Linus Torvalds 已提交
445
	}
446

L
Linus Torvalds 已提交
447
	up_read(&shrinker_rwsem);
448 449
out:
	cond_resched();
D
Dave Chinner 已提交
450
	return freed;
L
Linus Torvalds 已提交
451 452
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
			freed += shrink_slab(GFP_KERNEL, nid, memcg,
					     1000, 1000);
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
476 477
static inline int is_page_cache_freeable(struct page *page)
{
478 479 480 481 482
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
483
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
484 485
}

486
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
487
{
488
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
489
		return 1;
490
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
491
		return 1;
492
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
512
	lock_page(page);
513 514
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
515 516 517
	unlock_page(page);
}

518 519 520 521 522 523 524 525 526 527 528 529
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
530
/*
A
Andrew Morton 已提交
531 532
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
533
 */
534
static pageout_t pageout(struct page *page, struct address_space *mapping,
535
			 struct scan_control *sc)
L
Linus Torvalds 已提交
536 537 538 539 540 541 542 543
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
544
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
560
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
561 562
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
563
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
564 565 566 567 568 569 570
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
571
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
572 573 574 575 576 577 578
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
579 580
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
581 582 583 584 585 586 587
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
588
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
589 590 591
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
592

L
Linus Torvalds 已提交
593 594 595 596
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
597
		trace_mm_vmscan_writepage(page);
598
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
599 600 601 602 603 604
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

605
/*
N
Nick Piggin 已提交
606 607
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
608
 */
609 610
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
611
{
612 613 614
	unsigned long flags;
	struct mem_cgroup *memcg;

615 616
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
617

618 619
	memcg = mem_cgroup_begin_page_stat(page);
	spin_lock_irqsave(&mapping->tree_lock, flags);
620
	/*
N
Nick Piggin 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
644
	 */
N
Nick Piggin 已提交
645
	if (!page_freeze_refs(page, 2))
646
		goto cannot_free;
N
Nick Piggin 已提交
647 648 649
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
650
		goto cannot_free;
N
Nick Piggin 已提交
651
	}
652 653 654

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
655
		mem_cgroup_swapout(page, swap);
656
		__delete_from_swap_cache(page);
657 658
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
659
		swapcache_free(swap);
N
Nick Piggin 已提交
660
	} else {
661
		void (*freepage)(struct page *);
662
		void *shadow = NULL;
663 664

		freepage = mapping->a_ops->freepage;
665 666 667 668 669 670 671 672 673 674 675 676 677
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
678 679 680
		__delete_from_page_cache(page, shadow, memcg);
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
		mem_cgroup_end_page_stat(memcg);
681 682 683

		if (freepage != NULL)
			freepage(page);
684 685 686 687 688
	}

	return 1;

cannot_free:
689 690
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
	mem_cgroup_end_page_stat(memcg);
691 692 693
	return 0;
}

N
Nick Piggin 已提交
694 695 696 697 698 699 700 701
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
702
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
703 704 705 706 707 708 709 710 711 712 713
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
714 715 716 717 718 719 720 721 722 723 724
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
725
	bool is_unevictable;
726
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
727

728
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
729 730 731 732

redo:
	ClearPageUnevictable(page);

733
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
734 735 736 737 738 739
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
740
		is_unevictable = false;
741
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
742 743 744 745 746
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
747
		is_unevictable = true;
L
Lee Schermerhorn 已提交
748
		add_page_to_unevictable_list(page);
749
		/*
750 751 752
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
753
		 * isolation/check_move_unevictable_pages,
754
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 756
		 * the page back to the evictable list.
		 *
757
		 * The other side is TestClearPageMlocked() or shmem_lock().
758 759
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
760 761 762 763 764 765 766
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
767
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
768 769 770 771 772 773 774 775 776 777
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

778
	if (was_unevictable && !is_unevictable)
779
		count_vm_event(UNEVICTABLE_PGRESCUED);
780
	else if (!was_unevictable && is_unevictable)
781 782
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
783 784 785
	put_page(page);		/* drop ref from isolate */
}

786 787 788
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
789
	PAGEREF_KEEP,
790 791 792 793 794 795
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
796
	int referenced_ptes, referenced_page;
797 798
	unsigned long vm_flags;

799 800
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
801
	referenced_page = TestClearPageReferenced(page);
802 803 804 805 806 807 808 809

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

810
	if (referenced_ptes) {
811
		if (PageSwapBacked(page))
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

829
		if (referenced_page || referenced_ptes > 1)
830 831
			return PAGEREF_ACTIVATE;

832 833 834 835 836 837
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

838 839
		return PAGEREF_KEEP;
	}
840 841

	/* Reclaim if clean, defer dirty pages to writeback */
842
	if (referenced_page && !PageSwapBacked(page))
843 844 845
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
846 847
}

848 849 850 851
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
852 853
	struct address_space *mapping;

854 855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
867 868 869 870 871 872 873 874

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 876
}

L
Linus Torvalds 已提交
877
/*
A
Andrew Morton 已提交
878
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
879
 */
A
Andrew Morton 已提交
880
static unsigned long shrink_page_list(struct list_head *page_list,
881
				      struct zone *zone,
882
				      struct scan_control *sc,
883
				      enum ttu_flags ttu_flags,
884
				      unsigned long *ret_nr_dirty,
885
				      unsigned long *ret_nr_unqueued_dirty,
886
				      unsigned long *ret_nr_congested,
887
				      unsigned long *ret_nr_writeback,
888
				      unsigned long *ret_nr_immediate,
889
				      bool force_reclaim)
L
Linus Torvalds 已提交
890 891
{
	LIST_HEAD(ret_pages);
892
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
893
	int pgactivate = 0;
894
	unsigned long nr_unqueued_dirty = 0;
895 896
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
897
	unsigned long nr_reclaimed = 0;
898
	unsigned long nr_writeback = 0;
899
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
900 901 902 903 904 905 906

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
907
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
908
		bool dirty, writeback;
M
Minchan Kim 已提交
909 910
		bool lazyfree = false;
		int ret = SWAP_SUCCESS;
L
Linus Torvalds 已提交
911 912 913 914 915 916

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
917
		if (!trylock_page(page))
L
Linus Torvalds 已提交
918 919
			goto keep;

920 921
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
922 923

		sc->nr_scanned++;
924

925
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
926
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
927

928
		if (!sc->may_unmap && page_mapped(page))
929 930
			goto keep_locked;

L
Linus Torvalds 已提交
931 932 933 934
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

935 936 937
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

938 939 940 941 942 943 944 945 946 947 948 949 950
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

951 952 953 954 955 956
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
957
		mapping = page_mapping(page);
958
		if (((dirty || writeback) && mapping &&
959
		     inode_write_congested(mapping->host)) ||
960
		    (writeback && PageReclaim(page)))
961 962
			nr_congested++;

963 964 965 966 967 968 969 970 971 972 973
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
974 975
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
976
		 *
977
		 * 2) Global or new memcg reclaim encounters a page that is
978 979 980
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
981
		 *    reclaim and continue scanning.
982
		 *
983 984
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
985 986 987 988 989
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
990
		 * 3) Legacy memcg encounters a page that is already marked
991 992 993 994 995
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
996
		if (PageWriteback(page)) {
997 998 999
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
J
Johannes Weiner 已提交
1000
			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1001 1002
				nr_immediate++;
				goto keep_locked;
1003 1004

			/* Case 2 above */
1005
			} else if (sane_reclaim(sc) ||
1006
			    !PageReclaim(page) || !may_enter_fs) {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1019
				nr_writeback++;
1020
				goto keep_locked;
1021 1022 1023

			/* Case 3 above */
			} else {
1024
				unlock_page(page);
1025
				wait_on_page_writeback(page);
1026 1027 1028
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1029
			}
1030
		}
L
Linus Torvalds 已提交
1031

1032 1033 1034
		if (!force_reclaim)
			references = page_check_references(page, sc);

1035 1036
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1037
			goto activate_locked;
1038 1039
		case PAGEREF_KEEP:
			goto keep_locked;
1040 1041 1042 1043
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1044 1045 1046 1047 1048

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
1049
		if (PageAnon(page) && !PageSwapCache(page)) {
1050 1051
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
1052
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
1053
				goto activate_locked;
M
Minchan Kim 已提交
1054
			lazyfree = true;
1055
			may_enter_fs = 1;
L
Linus Torvalds 已提交
1056

1057 1058 1059
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
1060 1061 1062 1063 1064 1065

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
M
Minchan Kim 已提交
1066 1067 1068
			switch (ret = try_to_unmap(page, lazyfree ?
				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
				(ttu_flags | TTU_BATCH_FLUSH))) {
L
Linus Torvalds 已提交
1069 1070 1071 1072
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
1073 1074
			case SWAP_MLOCK:
				goto cull_mlocked;
M
Minchan Kim 已提交
1075 1076
			case SWAP_LZFREE:
				goto lazyfree;
L
Linus Torvalds 已提交
1077 1078 1079 1080 1081 1082
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
1083 1084
			/*
			 * Only kswapd can writeback filesystem pages to
1085 1086
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
1087
			 */
1088
			if (page_is_file_cache(page) &&
1089
					(!current_is_kswapd() ||
J
Johannes Weiner 已提交
1090
					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1091 1092 1093 1094 1095 1096 1097 1098 1099
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1100 1101 1102
				goto keep_locked;
			}

1103
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1104
				goto keep_locked;
1105
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1106
				goto keep_locked;
1107
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1108 1109
				goto keep_locked;

1110 1111 1112 1113 1114 1115
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1116
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1117 1118 1119 1120 1121
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1122
				if (PageWriteback(page))
1123
					goto keep;
1124
				if (PageDirty(page))
L
Linus Torvalds 已提交
1125
					goto keep;
1126

L
Linus Torvalds 已提交
1127 1128 1129 1130
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1131
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1151
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1162
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1163 1164
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1181 1182
		}

M
Minchan Kim 已提交
1183
lazyfree:
1184
		if (!mapping || !__remove_mapping(mapping, page, true))
1185
			goto keep_locked;
L
Linus Torvalds 已提交
1186

N
Nick Piggin 已提交
1187 1188 1189 1190 1191 1192 1193
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1194
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1195
free_it:
M
Minchan Kim 已提交
1196 1197 1198
		if (ret == SWAP_LZFREE)
			count_vm_event(PGLAZYFREED);

1199
		nr_reclaimed++;
1200 1201 1202 1203 1204 1205

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1206 1207
		continue;

N
Nick Piggin 已提交
1208
cull_mlocked:
1209 1210
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1211
		unlock_page(page);
1212
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1213 1214
		continue;

L
Linus Torvalds 已提交
1215
activate_locked:
1216 1217
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1218
			try_to_free_swap(page);
1219
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224 1225
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1226
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1227
	}
1228

1229
	mem_cgroup_uncharge_list(&free_pages);
1230
	try_to_unmap_flush();
1231
	free_hot_cold_page_list(&free_pages, true);
1232

L
Linus Torvalds 已提交
1233
	list_splice(&ret_pages, page_list);
1234
	count_vm_events(PGACTIVATE, pgactivate);
1235

1236 1237
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1238
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1239
	*ret_nr_writeback += nr_writeback;
1240
	*ret_nr_immediate += nr_immediate;
1241
	return nr_reclaimed;
L
Linus Torvalds 已提交
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1252
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1253 1254 1255 1256
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1257 1258
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1259 1260 1261 1262 1263 1264
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1265 1266
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1267
	list_splice(&clean_pages, page_list);
1268
	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1269 1270 1271
	return ret;
}

A
Andy Whitcroft 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1282
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1283 1284 1285 1286 1287 1288 1289
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1290 1291
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1292 1293
		return ret;

A
Andy Whitcroft 已提交
1294
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1295

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1329

1330 1331 1332
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1357
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1358
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1359
 * @nr_scanned:	The number of pages that were scanned.
1360
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1361
 * @mode:	One of the LRU isolation modes
1362
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1363 1364 1365
 *
 * returns how many pages were moved onto *@dst.
 */
1366
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1367
		struct lruvec *lruvec, struct list_head *dst,
1368
		unsigned long *nr_scanned, struct scan_control *sc,
1369
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1370
{
H
Hugh Dickins 已提交
1371
	struct list_head *src = &lruvec->lists[lru];
1372
	unsigned long nr_taken = 0;
1373
	unsigned long scan;
L
Linus Torvalds 已提交
1374

1375 1376
	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
					!list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1377
		struct page *page;
1378
		int nr_pages;
A
Andy Whitcroft 已提交
1379

L
Linus Torvalds 已提交
1380 1381 1382
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1383
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1384

1385
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1386
		case 0:
1387 1388
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1389
			list_move(&page->lru, dst);
1390
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1391 1392 1393 1394 1395 1396
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1397

A
Andy Whitcroft 已提交
1398 1399 1400
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1401 1402
	}

H
Hugh Dickins 已提交
1403
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1404 1405
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1406 1407 1408
	return nr_taken;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1420 1421 1422
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1438
	VM_BUG_ON_PAGE(!page_count(page), page);
1439
	VM_BUG_ON_PAGE(PageTail(page), page);
1440

1441 1442
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1443
		struct lruvec *lruvec;
1444 1445

		spin_lock_irq(&zone->lru_lock);
1446
		lruvec = mem_cgroup_page_lruvec(page, zone);
1447
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1448
			int lru = page_lru(page);
1449
			get_page(page);
1450
			ClearPageLRU(page);
1451 1452
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1453 1454 1455 1456 1457 1458
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1459
/*
F
Fengguang Wu 已提交
1460 1461 1462 1463 1464
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1465 1466 1467 1468 1469 1470 1471 1472 1473
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1474
	if (!sane_reclaim(sc))
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1485 1486 1487 1488 1489
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1490
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1491 1492
		inactive >>= 3;

1493 1494 1495
	return isolated > inactive;
}

1496
static noinline_for_stack void
H
Hugh Dickins 已提交
1497
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1498
{
1499 1500
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1501
	LIST_HEAD(pages_to_free);
1502 1503 1504 1505 1506

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1507
		struct page *page = lru_to_page(page_list);
1508
		int lru;
1509

1510
		VM_BUG_ON_PAGE(PageLRU(page), page);
1511
		list_del(&page->lru);
1512
		if (unlikely(!page_evictable(page))) {
1513 1514 1515 1516 1517
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1518 1519 1520

		lruvec = mem_cgroup_page_lruvec(page, zone);

1521
		SetPageLRU(page);
1522
		lru = page_lru(page);
1523 1524
		add_page_to_lru_list(page, lruvec, lru);

1525 1526
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1527 1528
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1529
		}
1530 1531 1532
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1533
			del_page_from_lru_list(page, lruvec, lru);
1534 1535 1536

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1537
				mem_cgroup_uncharge(page);
1538 1539 1540 1541
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1542 1543 1544
		}
	}

1545 1546 1547 1548
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1549 1550
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1564
/*
A
Andrew Morton 已提交
1565 1566
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1567
 */
1568
static noinline_for_stack unsigned long
1569
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1570
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1571 1572
{
	LIST_HEAD(page_list);
1573
	unsigned long nr_scanned;
1574
	unsigned long nr_reclaimed = 0;
1575
	unsigned long nr_taken;
1576 1577
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1578
	unsigned long nr_unqueued_dirty = 0;
1579
	unsigned long nr_writeback = 0;
1580
	unsigned long nr_immediate = 0;
1581
	isolate_mode_t isolate_mode = 0;
1582
	int file = is_file_lru(lru);
1583 1584
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1585

1586
	while (unlikely(too_many_isolated(zone, file, sc))) {
1587
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1588 1589 1590 1591 1592 1593

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1594
	lru_add_drain();
1595 1596

	if (!sc->may_unmap)
1597
		isolate_mode |= ISOLATE_UNMAPPED;
1598
	if (!sc->may_writepage)
1599
		isolate_mode |= ISOLATE_CLEAN;
1600

L
Linus Torvalds 已提交
1601
	spin_lock_irq(&zone->lru_lock);
1602

1603 1604
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1605 1606 1607 1608

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1609
	if (global_reclaim(sc)) {
1610
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1611
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1612
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1613
		else
H
Hugh Dickins 已提交
1614
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1615
	}
1616
	spin_unlock_irq(&zone->lru_lock);
1617

1618
	if (nr_taken == 0)
1619
		return 0;
A
Andy Whitcroft 已提交
1620

1621
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1622 1623 1624
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1625

1626 1627
	spin_lock_irq(&zone->lru_lock);

1628
	reclaim_stat->recent_scanned[file] += nr_taken;
1629

Y
Ying Han 已提交
1630 1631 1632 1633 1634 1635 1636 1637
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1638

1639
	putback_inactive_pages(lruvec, &page_list);
1640

1641
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1642 1643 1644

	spin_unlock_irq(&zone->lru_lock);

1645
	mem_cgroup_uncharge_list(&page_list);
1646
	free_hot_cold_page_list(&page_list, true);
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1658 1659 1660
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1661
	 */
1662
	if (nr_writeback && nr_writeback == nr_taken)
J
Johannes Weiner 已提交
1663
		set_bit(ZONE_WRITEBACK, &zone->flags);
1664

1665
	/*
1666 1667
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling here.
1668
	 */
1669
	if (sane_reclaim(sc)) {
1670 1671 1672 1673 1674
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
J
Johannes Weiner 已提交
1675
			set_bit(ZONE_CONGESTED, &zone->flags);
1676

1677 1678 1679
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
J
Johannes Weiner 已提交
1680 1681
		 * the zone ZONE_DIRTY and kswapd will start writing pages from
		 * reclaim context.
1682 1683
		 */
		if (nr_unqueued_dirty == nr_taken)
J
Johannes Weiner 已提交
1684
			set_bit(ZONE_DIRTY, &zone->flags);
1685 1686

		/*
1687 1688 1689
		 * If kswapd scans pages marked marked for immediate
		 * reclaim and under writeback (nr_immediate), it implies
		 * that pages are cycling through the LRU faster than
1690 1691
		 * they are written so also forcibly stall.
		 */
1692
		if (nr_immediate && current_may_throttle())
1693
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1694
	}
1695

1696 1697 1698 1699 1700
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
1701 1702
	if (!sc->hibernation_mode && !current_is_kswapd() &&
	    current_may_throttle())
1703 1704
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1705 1706
	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
			sc->priority, file);
1707
	return nr_reclaimed;
L
Linus Torvalds 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1727

1728
static void move_active_pages_to_lru(struct lruvec *lruvec,
1729
				     struct list_head *list,
1730
				     struct list_head *pages_to_free,
1731 1732
				     enum lru_list lru)
{
1733
	struct zone *zone = lruvec_zone(lruvec);
1734 1735
	unsigned long pgmoved = 0;
	struct page *page;
1736
	int nr_pages;
1737 1738 1739

	while (!list_empty(list)) {
		page = lru_to_page(list);
1740
		lruvec = mem_cgroup_page_lruvec(page, zone);
1741

1742
		VM_BUG_ON_PAGE(PageLRU(page), page);
1743 1744
		SetPageLRU(page);

1745 1746
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1747
		list_move(&page->lru, &lruvec->lists[lru]);
1748
		pgmoved += nr_pages;
1749

1750 1751 1752
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1753
			del_page_from_lru_list(page, lruvec, lru);
1754 1755 1756

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
1757
				mem_cgroup_uncharge(page);
1758 1759 1760 1761
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1762 1763 1764 1765 1766 1767
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1768

H
Hugh Dickins 已提交
1769
static void shrink_active_list(unsigned long nr_to_scan,
1770
			       struct lruvec *lruvec,
1771
			       struct scan_control *sc,
1772
			       enum lru_list lru)
L
Linus Torvalds 已提交
1773
{
1774
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1775
	unsigned long nr_scanned;
1776
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1777
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1778
	LIST_HEAD(l_active);
1779
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1780
	struct page *page;
1781
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1782
	unsigned long nr_rotated = 0;
1783
	isolate_mode_t isolate_mode = 0;
1784
	int file = is_file_lru(lru);
1785
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1786 1787

	lru_add_drain();
1788 1789

	if (!sc->may_unmap)
1790
		isolate_mode |= ISOLATE_UNMAPPED;
1791
	if (!sc->may_writepage)
1792
		isolate_mode |= ISOLATE_CLEAN;
1793

L
Linus Torvalds 已提交
1794
	spin_lock_irq(&zone->lru_lock);
1795

1796 1797
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1798
	if (global_reclaim(sc))
1799
		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1800

1801
	reclaim_stat->recent_scanned[file] += nr_taken;
1802

H
Hugh Dickins 已提交
1803
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1804
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1805
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1812

1813
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1814 1815 1816 1817
			putback_lru_page(page);
			continue;
		}

1818 1819 1820 1821 1822 1823 1824 1825
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1826 1827
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1828
			nr_rotated += hpage_nr_pages(page);
1829 1830 1831 1832 1833 1834 1835 1836 1837
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1838
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1839 1840 1841 1842
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1843

1844
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1845 1846 1847
		list_add(&page->lru, &l_inactive);
	}

1848
	/*
1849
	 * Move pages back to the lru list.
1850
	 */
1851
	spin_lock_irq(&zone->lru_lock);
1852
	/*
1853 1854 1855
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
1856
	 * get_scan_count.
1857
	 */
1858
	reclaim_stat->recent_rotated[file] += nr_rotated;
1859

1860 1861
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1862
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1863
	spin_unlock_irq(&zone->lru_lock);
1864

1865
	mem_cgroup_uncharge_list(&l_hold);
1866
	free_hot_cold_page_list(&l_hold, true);
L
Linus Torvalds 已提交
1867 1868
}

1869
#ifdef CONFIG_SWAP
1870
static bool inactive_anon_is_low_global(struct zone *zone)
1871 1872 1873 1874 1875 1876
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

1877
	return inactive * zone->inactive_ratio < active;
1878 1879
}

1880 1881
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1882
 * @lruvec: LRU vector to check
1883 1884 1885 1886
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1887
static bool inactive_anon_is_low(struct lruvec *lruvec)
1888
{
1889 1890 1891 1892 1893
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
1894
		return false;
1895

1896
	if (!mem_cgroup_disabled())
1897
		return mem_cgroup_inactive_anon_is_low(lruvec);
1898

1899
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1900
}
1901
#else
1902
static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1903
{
1904
	return false;
1905 1906
}
#endif
1907

1908 1909
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1910
 * @lruvec: LRU vector to check
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1922
static bool inactive_file_is_low(struct lruvec *lruvec)
1923
{
1924 1925 1926 1927 1928
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1929

1930
	return active > inactive;
1931 1932
}

1933
static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1934
{
H
Hugh Dickins 已提交
1935
	if (is_file_lru(lru))
1936
		return inactive_file_is_low(lruvec);
1937
	else
1938
		return inactive_anon_is_low(lruvec);
1939 1940
}

1941
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1942
				 struct lruvec *lruvec, struct scan_control *sc)
1943
{
1944
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1945
		if (inactive_list_is_low(lruvec, lru))
1946
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1947 1948 1949
		return 0;
	}

1950
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1951 1952
}

1953 1954 1955 1956 1957 1958 1959
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1960 1961 1962 1963 1964 1965
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1966 1967
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1968
 */
1969
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1970 1971
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
1972
{
1973
	int swappiness = mem_cgroup_swappiness(memcg);
1974 1975 1976 1977
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1978
	unsigned long anon_prio, file_prio;
1979
	enum scan_balance scan_balance;
1980
	unsigned long anon, file;
1981
	bool force_scan = false;
1982
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1983
	enum lru_list lru;
1984 1985
	bool some_scanned;
	int pass;
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1997 1998 1999 2000 2001 2002
	if (current_is_kswapd()) {
		if (!zone_reclaimable(zone))
			force_scan = true;
		if (!mem_cgroup_lruvec_online(lruvec))
			force_scan = true;
	}
2003
	if (!global_reclaim(sc))
2004
		force_scan = true;
2005 2006

	/* If we have no swap space, do not bother scanning anon pages. */
2007
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
2008
		scan_balance = SCAN_FILE;
2009 2010
		goto out;
	}
2011

2012 2013 2014 2015 2016 2017 2018
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2019
	if (!global_reclaim(sc) && !swappiness) {
2020
		scan_balance = SCAN_FILE;
2021 2022 2023 2024 2025 2026 2027 2028
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2029
	if (!sc->priority && swappiness) {
2030
		scan_balance = SCAN_EQUAL;
2031 2032 2033
		goto out;
	}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
2044 2045 2046 2047 2048 2049
		unsigned long zonefile;
		unsigned long zonefree;

		zonefree = zone_page_state(zone, NR_FREE_PAGES);
		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
			   zone_page_state(zone, NR_INACTIVE_FILE);
2050

2051
		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2052 2053 2054 2055 2056
			scan_balance = SCAN_ANON;
			goto out;
		}
	}

2057
	/*
2058 2059 2060 2061 2062 2063 2064
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2065
	 */
2066 2067
	if (!inactive_file_is_low(lruvec) &&
	    get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2068
		scan_balance = SCAN_FILE;
2069 2070 2071
		goto out;
	}

2072 2073
	scan_balance = SCAN_FRACT;

2074 2075 2076 2077
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2078
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2079
	file_prio = 200 - anon_prio;
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2092 2093 2094 2095 2096 2097

	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);

2098
	spin_lock_irq(&zone->lru_lock);
2099 2100 2101
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2102 2103
	}

2104 2105 2106
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2107 2108 2109
	}

	/*
2110 2111 2112
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2113
	 */
2114
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2115
	ap /= reclaim_stat->recent_rotated[0] + 1;
2116

2117
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2118
	fp /= reclaim_stat->recent_rotated[1] + 1;
2119
	spin_unlock_irq(&zone->lru_lock);
2120

2121 2122 2123 2124
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2125 2126 2127
	some_scanned = false;
	/* Only use force_scan on second pass. */
	for (pass = 0; !some_scanned && pass < 2; pass++) {
2128
		*lru_pages = 0;
2129 2130 2131 2132
		for_each_evictable_lru(lru) {
			int file = is_file_lru(lru);
			unsigned long size;
			unsigned long scan;
2133

2134 2135
			size = get_lru_size(lruvec, lru);
			scan = size >> sc->priority;
2136

2137 2138
			if (!scan && pass && force_scan)
				scan = min(size, SWAP_CLUSTER_MAX);
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
			switch (scan_balance) {
			case SCAN_EQUAL:
				/* Scan lists relative to size */
				break;
			case SCAN_FRACT:
				/*
				 * Scan types proportional to swappiness and
				 * their relative recent reclaim efficiency.
				 */
				scan = div64_u64(scan * fraction[file],
							denominator);
				break;
			case SCAN_FILE:
			case SCAN_ANON:
				/* Scan one type exclusively */
2155 2156
				if ((scan_balance == SCAN_FILE) != file) {
					size = 0;
2157
					scan = 0;
2158
				}
2159 2160 2161 2162 2163
				break;
			default:
				/* Look ma, no brain */
				BUG();
			}
2164 2165

			*lru_pages += size;
2166
			nr[lru] = scan;
2167

2168
			/*
2169 2170
			 * Skip the second pass and don't force_scan,
			 * if we found something to scan.
2171
			 */
2172
			some_scanned |= !!scan;
2173
		}
2174
	}
2175
}
2176

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
static void init_tlb_ubc(void)
{
	/*
	 * This deliberately does not clear the cpumask as it's expensive
	 * and unnecessary. If there happens to be data in there then the
	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
	 * then will be cleared.
	 */
	current->tlb_ubc.flush_required = false;
}
#else
static inline void init_tlb_ubc(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */

2194 2195 2196
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2197 2198
static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
			      struct scan_control *sc, unsigned long *lru_pages)
2199
{
2200
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2201
	unsigned long nr[NR_LRU_LISTS];
2202
	unsigned long targets[NR_LRU_LISTS];
2203 2204 2205 2206 2207
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2208
	bool scan_adjusted;
2209

2210
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2211

2212 2213 2214
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2229 2230
	init_tlb_ubc();

2231 2232 2233
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2234 2235 2236
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2237 2238 2239 2240 2241 2242 2243 2244 2245
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2246 2247 2248 2249 2250 2251

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2252
		 * requested. Ensure that the anon and file LRUs are scanned
2253 2254 2255 2256 2257 2258 2259
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2260 2261 2262 2263 2264 2265 2266 2267 2268
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2315
/* Use reclaim/compaction for costly allocs or under memory pressure */
2316
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2317
{
2318
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2319
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2320
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2321 2322 2323 2324 2325
		return true;

	return false;
}

2326
/*
M
Mel Gorman 已提交
2327 2328 2329 2330 2331
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2332
 */
2333
static inline bool should_continue_reclaim(struct zone *zone,
2334 2335 2336 2337 2338 2339 2340 2341
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2342
	if (!in_reclaim_compaction(sc))
2343 2344
		return false;

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2367 2368 2369 2370 2371 2372

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2373
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2374
	if (get_nr_swap_pages() > 0)
2375
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2376 2377 2378 2379 2380
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2381
	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2382 2383 2384 2385 2386 2387 2388 2389
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2390 2391
static bool shrink_zone(struct zone *zone, struct scan_control *sc,
			bool is_classzone)
L
Linus Torvalds 已提交
2392
{
2393
	struct reclaim_state *reclaim_state = current->reclaim_state;
2394
	unsigned long nr_reclaimed, nr_scanned;
2395
	bool reclaimable = false;
L
Linus Torvalds 已提交
2396

2397 2398 2399 2400 2401 2402
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2403
		unsigned long zone_lru_pages = 0;
2404
		struct mem_cgroup *memcg;
2405

2406 2407
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2408

2409 2410
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2411
			unsigned long lru_pages;
2412
			unsigned long reclaimed;
2413
			unsigned long scanned;
2414

2415 2416 2417 2418 2419 2420
			if (mem_cgroup_low(root, memcg)) {
				if (!sc->may_thrash)
					continue;
				mem_cgroup_events(memcg, MEMCG_LOW, 1);
			}

2421
			reclaimed = sc->nr_reclaimed;
2422
			scanned = sc->nr_scanned;
2423

2424
			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2425
			zone_lru_pages += lru_pages;
2426

2427 2428 2429 2430 2431
			if (memcg && is_classzone)
				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
					    memcg, sc->nr_scanned - scanned,
					    lru_pages);

2432 2433 2434 2435 2436
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2437
			/*
2438 2439
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2440
			 * zone.
2441 2442 2443 2444 2445
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2446
			 */
2447 2448
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2449 2450 2451
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2452
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2453

2454 2455 2456 2457
		/*
		 * Shrink the slab caches in the same proportion that
		 * the eligible LRU pages were scanned.
		 */
2458 2459 2460 2461 2462 2463 2464 2465
		if (global_reclaim(sc) && is_classzone)
			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
				    sc->nr_scanned - nr_scanned,
				    zone_lru_pages);

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2466 2467
		}

2468 2469
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2470 2471 2472
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2473 2474 2475
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2476 2477
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2478 2479

	return reclaimable;
2480 2481
}

2482 2483 2484 2485
/*
 * Returns true if compaction should go ahead for a high-order request, or
 * the high-order allocation would succeed without compaction.
 */
2486
static inline bool compaction_ready(struct zone *zone, int order)
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
2497 2498
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2499
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2500
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2501 2502 2503 2504 2505

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2506
	if (compaction_deferred(zone, order))
2507 2508
		return watermark_ok;

2509 2510 2511 2512
	/*
	 * If compaction is not ready to start and allocation is not likely
	 * to succeed without it, then keep reclaiming.
	 */
2513
	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2514 2515 2516 2517 2518
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2519 2520 2521 2522 2523
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2524 2525
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2526 2527
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2528 2529 2530
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2531 2532 2533
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2534 2535
 *
 * Returns true if a zone was reclaimable.
L
Linus Torvalds 已提交
2536
 */
2537
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2538
{
2539
	struct zoneref *z;
2540
	struct zone *zone;
2541 2542
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2543
	gfp_t orig_mask;
2544
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2545
	bool reclaimable = false;
2546

2547 2548 2549 2550 2551
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2552
	orig_mask = sc->gfp_mask;
2553 2554 2555
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2556
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2557 2558 2559
					requested_highidx, sc->nodemask) {
		enum zone_type classzone_idx;

2560
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2561
			continue;
2562 2563 2564 2565 2566 2567

		classzone_idx = requested_highidx;
		while (!populated_zone(zone->zone_pgdat->node_zones +
							classzone_idx))
			classzone_idx--;

2568 2569 2570 2571
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2572
		if (global_reclaim(sc)) {
2573 2574
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2575
				continue;
2576

2577 2578
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2579
				continue;	/* Let kswapd poll it */
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
			    zonelist_zone_idx(z) <= requested_highidx &&
			    compaction_ready(zone, sc->order)) {
				sc->compaction_ready = true;
				continue;
2596
			}
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2610 2611
			if (nr_soft_reclaimed)
				reclaimable = true;
2612
			/* need some check for avoid more shrink_zone() */
2613
		}
2614

2615
		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2616 2617 2618 2619 2620
			reclaimable = true;

		if (global_reclaim(sc) &&
		    !reclaimable && zone_reclaimable(zone))
			reclaimable = true;
L
Linus Torvalds 已提交
2621
	}
2622

2623 2624 2625 2626 2627
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
2628

2629
	return reclaimable;
L
Linus Torvalds 已提交
2630
}
2631

L
Linus Torvalds 已提交
2632 2633 2634 2635 2636 2637 2638 2639
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2640 2641 2642 2643
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2644 2645 2646
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2647
 */
2648
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2649
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2650
{
2651
	int initial_priority = sc->priority;
2652
	unsigned long total_scanned = 0;
2653
	unsigned long writeback_threshold;
2654
	bool zones_reclaimable;
2655
retry:
2656 2657
	delayacct_freepages_start();

2658
	if (global_reclaim(sc))
2659
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2660

2661
	do {
2662 2663
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2664
		sc->nr_scanned = 0;
2665
		zones_reclaimable = shrink_zones(zonelist, sc);
2666

2667
		total_scanned += sc->nr_scanned;
2668
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2669 2670 2671 2672
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2673

2674 2675 2676 2677 2678 2679 2680
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2681 2682 2683 2684 2685 2686 2687
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2688 2689
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2690 2691
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2692
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2693
		}
2694
	} while (--sc->priority >= 0);
2695

2696 2697
	delayacct_freepages_end();

2698 2699 2700
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2701
	/* Aborted reclaim to try compaction? don't OOM, then */
2702
	if (sc->compaction_ready)
2703 2704
		return 1;

2705 2706 2707 2708 2709 2710 2711
	/* Untapped cgroup reserves?  Don't OOM, retry. */
	if (!sc->may_thrash) {
		sc->priority = initial_priority;
		sc->may_thrash = 1;
		goto retry;
	}

2712 2713
	/* Any of the zones still reclaimable?  Don't OOM. */
	if (zones_reclaimable)
2714 2715 2716
		return 1;

	return 0;
L
Linus Torvalds 已提交
2717 2718
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
2729 2730
		if (!populated_zone(zone) ||
		    zone_reclaimable_pages(zone) == 0)
2731 2732
			continue;

2733 2734 2735 2736
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

2737 2738 2739 2740
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2757 2758 2759 2760
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2761
 */
2762
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2763 2764
					nodemask_t *nodemask)
{
2765
	struct zoneref *z;
2766
	struct zone *zone;
2767
	pg_data_t *pgdat = NULL;
2768 2769 2770 2771 2772 2773 2774 2775 2776

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2777 2778 2779 2780 2781 2782 2783 2784
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2785

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2801
					gfp_zone(gfp_mask), nodemask) {
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
		if (pfmemalloc_watermark_ok(pgdat))
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
2814
		goto out;
2815

2816 2817 2818
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2830 2831

		goto check_pending;
2832 2833 2834 2835 2836
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2837 2838 2839 2840 2841 2842 2843

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2844 2845
}

2846
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2847
				gfp_t gfp_mask, nodemask_t *nodemask)
2848
{
2849
	unsigned long nr_reclaimed;
2850
	struct scan_control sc = {
2851
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2852
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2853 2854 2855
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
2856
		.may_writepage = !laptop_mode,
2857
		.may_unmap = 1,
2858
		.may_swap = 1,
2859 2860
	};

2861
	/*
2862 2863 2864
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2865
	 */
2866
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2867 2868
		return 1;

2869 2870 2871 2872
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2873
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2874 2875 2876 2877

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2878 2879
}

A
Andrew Morton 已提交
2880
#ifdef CONFIG_MEMCG
2881

2882
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2883
						gfp_t gfp_mask, bool noswap,
2884 2885
						struct zone *zone,
						unsigned long *nr_scanned)
2886 2887
{
	struct scan_control sc = {
2888
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2889
		.target_mem_cgroup = memcg,
2890 2891 2892 2893
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
	};
2894
	unsigned long lru_pages;
2895

2896 2897
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2898

2899
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2900 2901 2902
						      sc.may_writepage,
						      sc.gfp_mask);

2903 2904 2905 2906 2907 2908 2909
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2910
	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2911 2912 2913

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2914
	*nr_scanned = sc.nr_scanned;
2915 2916 2917
	return sc.nr_reclaimed;
}

2918
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2919
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
2920
					   gfp_t gfp_mask,
2921
					   bool may_swap)
2922
{
2923
	struct zonelist *zonelist;
2924
	unsigned long nr_reclaimed;
2925
	int nid;
2926
	struct scan_control sc = {
2927
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2928 2929
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2930 2931 2932 2933
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
2934
		.may_swap = may_swap,
2935
	};
2936

2937 2938 2939 2940 2941
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2942
	nid = mem_cgroup_select_victim_node(memcg);
2943 2944

	zonelist = NODE_DATA(nid)->node_zonelists;
2945 2946 2947 2948 2949

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2950
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2951 2952 2953 2954

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2955 2956 2957
}
#endif

2958
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2959
{
2960
	struct mem_cgroup *memcg;
2961

2962 2963 2964 2965 2966
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2967
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2968

2969
		if (inactive_anon_is_low(lruvec))
2970
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2971
					   sc, LRU_ACTIVE_ANON);
2972 2973 2974

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2975 2976
}

2977 2978 2979 2980
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2981
				    balance_gap, classzone_idx))
2982 2983
		return false;

2984 2985
	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
				order, 0, classzone_idx) == COMPACT_SKIPPED)
2986 2987 2988 2989 2990
		return false;

	return true;
}

2991
/*
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
3002 3003 3004 3005
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
3006
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
3007 3008 3009 3010
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
3011
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3012
{
3013
	unsigned long managed_pages = 0;
3014
	unsigned long balanced_pages = 0;
3015 3016
	int i;

3017 3018 3019
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
3020

3021 3022 3023
		if (!populated_zone(zone))
			continue;

3024
		managed_pages += zone->managed_pages;
3025 3026 3027 3028 3029 3030 3031 3032

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
3033
		if (!zone_reclaimable(zone)) {
3034
			balanced_pages += zone->managed_pages;
3035 3036 3037 3038
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
3039
			balanced_pages += zone->managed_pages;
3040 3041 3042 3043 3044
		else if (!order)
			return false;
	}

	if (order)
3045
		return balanced_pages >= (managed_pages >> 2);
3046 3047
	else
		return true;
3048 3049
}

3050 3051 3052 3053 3054 3055 3056
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3057
					int classzone_idx)
3058 3059 3060
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
3061 3062 3063
		return false;

	/*
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
	 * The throttled processes are normally woken up in balance_pgdat() as
	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3075
	 */
3076 3077
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3078

3079
	return pgdat_balanced(pgdat, order, classzone_idx);
3080 3081
}

3082 3083 3084
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
3085 3086
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3087 3088
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3089
 */
3090
static bool kswapd_shrink_zone(struct zone *zone,
3091
			       int classzone_idx,
3092
			       struct scan_control *sc,
3093
			       unsigned long *nr_attempted)
3094
{
3095 3096 3097
	int testorder = sc->order;
	unsigned long balance_gap;
	bool lowmem_pressure;
3098 3099 3100

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3101 3102 3103 3104 3105 3106 3107 3108

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3109 3110
			compaction_suitable(zone, sc->order, 0, classzone_idx)
							!= COMPACT_SKIPPED)
3111 3112 3113 3114 3115 3116 3117 3118
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
3119 3120
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

3131
	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3132

3133 3134 3135
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

J
Johannes Weiner 已提交
3136
	clear_bit(ZONE_WRITEBACK, &zone->flags);
3137

3138 3139 3140 3141 3142 3143
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
3144
	if (zone_reclaimable(zone) &&
3145
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
J
Johannes Weiner 已提交
3146 3147
		clear_bit(ZONE_CONGESTED, &zone->flags);
		clear_bit(ZONE_DIRTY, &zone->flags);
3148 3149
	}

3150
	return sc->nr_scanned >= sc->nr_to_reclaim;
3151 3152
}

L
Linus Torvalds 已提交
3153 3154
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
3155
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
3156
 *
3157
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3168 3169 3170 3171 3172
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
3173
 */
3174
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3175
							int *classzone_idx)
L
Linus Torvalds 已提交
3176 3177
{
	int i;
3178
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3179 3180
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3181 3182
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3183
		.order = order,
3184
		.priority = DEF_PRIORITY,
3185
		.may_writepage = !laptop_mode,
3186
		.may_unmap = 1,
3187
		.may_swap = 1,
3188
	};
3189
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3190

3191
	do {
3192
		unsigned long nr_attempted = 0;
3193
		bool raise_priority = true;
3194
		bool pgdat_needs_compaction = (order > 0);
3195 3196

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
3197

3198 3199 3200 3201 3202 3203
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
3204

3205 3206
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
3207

3208 3209
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
3210
				continue;
L
Linus Torvalds 已提交
3211

3212 3213 3214 3215
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
3216
			age_active_anon(zone, &sc);
3217

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

3229
			if (!zone_balanced(zone, order, 0, 0)) {
3230
				end_zone = i;
A
Andrew Morton 已提交
3231
				break;
3232
			} else {
3233 3234 3235 3236
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
J
Johannes Weiner 已提交
3237 3238
				clear_bit(ZONE_CONGESTED, &zone->flags);
				clear_bit(ZONE_DIRTY, &zone->flags);
L
Linus Torvalds 已提交
3239 3240
			}
		}
3241

3242
		if (i < 0)
A
Andrew Morton 已提交
3243 3244
			goto out;

L
Linus Torvalds 已提交
3245 3246 3247
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
			if (!populated_zone(zone))
				continue;

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3261 3262
		}

3263 3264 3265 3266 3267 3268 3269
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3282
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3283 3284
				continue;

3285 3286
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3287 3288 3289
				continue;

			sc.nr_scanned = 0;
3290

3291 3292 3293 3294 3295 3296 3297 3298 3299
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3300
			/*
3301 3302 3303 3304
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3305
			 */
3306 3307
			if (kswapd_shrink_zone(zone, end_zone,
					       &sc, &nr_attempted))
3308
				raise_priority = false;
L
Linus Torvalds 已提交
3309
		}
3310 3311 3312 3313 3314 3315 3316 3317

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
3318
			wake_up_all(&pgdat->pfmemalloc_wait);
3319

L
Linus Torvalds 已提交
3320
		/*
3321 3322 3323 3324 3325 3326
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3327
		 */
3328 3329
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3330

3331 3332 3333
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3334

3335 3336 3337 3338 3339 3340 3341
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3342
		/*
3343 3344
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3345
		 */
3346 3347
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3348
	} while (sc.priority >= 1 &&
3349
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3350

3351
out:
3352
	/*
3353
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3354 3355 3356 3357
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3358
	*classzone_idx = end_zone;
3359
	return order;
L
Linus Torvalds 已提交
3360 3361
}

3362
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3373
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3374 3375 3376 3377 3378 3379 3380 3381 3382
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3383
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3395

3396 3397 3398 3399 3400 3401 3402 3403
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3404 3405 3406
		if (!kthread_should_stop())
			schedule();

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3417 3418
/*
 * The background pageout daemon, started as a kernel thread
3419
 * from the init process.
L
Linus Torvalds 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3432
	unsigned long order, new_order;
3433
	unsigned balanced_order;
3434
	int classzone_idx, new_classzone_idx;
3435
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3436 3437
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3438

L
Linus Torvalds 已提交
3439 3440 3441
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3442
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3443

3444 3445
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3446
	if (!cpumask_empty(cpumask))
3447
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3462
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3463
	set_freezable();
L
Linus Torvalds 已提交
3464

3465
	order = new_order = 0;
3466
	balanced_order = 0;
3467
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3468
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3469
	for ( ; ; ) {
3470
		bool ret;
3471

3472 3473 3474 3475 3476
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3477 3478
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3479 3480 3481 3482 3483 3484
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3485
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3486 3487
			/*
			 * Don't sleep if someone wants a larger 'order'
3488
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3489 3490
			 */
			order = new_order;
3491
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3492
		} else {
3493 3494
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3495
			order = pgdat->kswapd_max_order;
3496
			classzone_idx = pgdat->classzone_idx;
3497 3498
			new_order = order;
			new_classzone_idx = classzone_idx;
3499
			pgdat->kswapd_max_order = 0;
3500
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3501 3502
		}

3503 3504 3505 3506 3507 3508 3509 3510
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3511 3512
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3513 3514 3515
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3516
		}
L
Linus Torvalds 已提交
3517
	}
3518

3519
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3520
	current->reclaim_state = NULL;
3521 3522
	lockdep_clear_current_reclaim_state();

L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3529
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3530 3531 3532
{
	pg_data_t *pgdat;

3533
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3534 3535
		return;

3536
	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
L
Linus Torvalds 已提交
3537
		return;
3538
	pgdat = zone->zone_pgdat;
3539
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3540
		pgdat->kswapd_max_order = order;
3541 3542
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3543
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3544
		return;
3545
	if (zone_balanced(zone, order, 0, 0))
3546 3547 3548
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3549
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3550 3551
}

3552
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3553
/*
3554
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3555 3556 3557 3558 3559
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3560
 */
3561
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3562
{
3563 3564
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3565
		.nr_to_reclaim = nr_to_reclaim,
3566
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3567
		.priority = DEF_PRIORITY,
3568
		.may_writepage = 1,
3569 3570
		.may_unmap = 1,
		.may_swap = 1,
3571
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3572
	};
3573
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3574 3575
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3576

3577 3578 3579 3580
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3581

3582
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3583

3584 3585 3586
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3587

3588
	return nr_reclaimed;
L
Linus Torvalds 已提交
3589
}
3590
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3591 3592 3593 3594 3595

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3596 3597
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3598
{
3599
	int nid;
L
Linus Torvalds 已提交
3600

3601
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3602
		for_each_node_state(nid, N_MEMORY) {
3603
			pg_data_t *pgdat = NODE_DATA(nid);
3604 3605 3606
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3607

3608
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3609
				/* One of our CPUs online: restore mask */
3610
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3611 3612 3613 3614 3615
		}
	}
	return NOTIFY_OK;
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3632 3633
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3634
		pgdat->kswapd = NULL;
3635 3636 3637 3638
	}
	return ret;
}

3639
/*
3640
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3641
 * hold mem_hotplug_begin/end().
3642 3643 3644 3645 3646
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3647
	if (kswapd) {
3648
		kthread_stop(kswapd);
3649 3650
		NODE_DATA(nid)->kswapd = NULL;
	}
3651 3652
}

L
Linus Torvalds 已提交
3653 3654
static int __init kswapd_init(void)
{
3655
	int nid;
3656

L
Linus Torvalds 已提交
3657
	swap_setup();
3658
	for_each_node_state(nid, N_MEMORY)
3659
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3660 3661 3662 3663 3664
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3675
#define RECLAIM_OFF 0
3676
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3677
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3678
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3679

3680 3681 3682 3683 3684 3685 3686
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3687 3688 3689 3690 3691 3692
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3693 3694 3695 3696 3697 3698
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3714
static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3715
{
3716 3717
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3718 3719

	/*
3720
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3721 3722 3723 3724
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
3725
	if (zone_reclaim_mode & RECLAIM_UNMAP)
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3741 3742 3743
/*
 * Try to free up some pages from this zone through reclaim.
 */
3744
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3745
{
3746
	/* Minimum pages needed in order to stay on node */
3747
	const unsigned long nr_pages = 1 << order;
3748 3749
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3750
	struct scan_control sc = {
3751
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3752
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3753
		.order = order,
3754
		.priority = ZONE_RECLAIM_PRIORITY,
3755
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3756
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3757
		.may_swap = 1,
3758
	};
3759 3760

	cond_resched();
3761
	/*
3762
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3763
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3764
	 * and RECLAIM_UNMAP.
3765 3766
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3767
	lockdep_set_current_reclaim_state(gfp_mask);
3768 3769
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3770

3771
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3772 3773 3774 3775 3776
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3777
			shrink_zone(zone, &sc, true);
3778
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3779
	}
3780

3781
	p->reclaim_state = NULL;
3782
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3783
	lockdep_clear_current_reclaim_state();
3784
	return sc.nr_reclaimed >= nr_pages;
3785
}
3786 3787 3788 3789

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3790
	int ret;
3791 3792

	/*
3793 3794
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3795
	 *
3796 3797 3798 3799 3800
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3801
	 */
3802 3803
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3804
		return ZONE_RECLAIM_FULL;
3805

3806
	if (!zone_reclaimable(zone))
3807
		return ZONE_RECLAIM_FULL;
3808

3809
	/*
3810
	 * Do not scan if the allocation should not be delayed.
3811
	 */
3812
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3813
		return ZONE_RECLAIM_NOSCAN;
3814 3815 3816 3817 3818 3819 3820

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3821
	node_id = zone_to_nid(zone);
3822
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3823
		return ZONE_RECLAIM_NOSCAN;
3824

J
Johannes Weiner 已提交
3825
	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3826 3827
		return ZONE_RECLAIM_NOSCAN;

3828
	ret = __zone_reclaim(zone, gfp_mask, order);
J
Johannes Weiner 已提交
3829
	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3830

3831 3832 3833
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3834
	return ret;
3835
}
3836
#endif
L
Lee Schermerhorn 已提交
3837 3838 3839 3840 3841 3842

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3843
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3844 3845
 *
 * Reasons page might not be evictable:
3846
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3847
 * (2) page is part of an mlocked VMA
3848
 *
L
Lee Schermerhorn 已提交
3849
 */
3850
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3851
{
3852
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3853
}
3854

3855
#ifdef CONFIG_SHMEM
3856
/**
3857 3858 3859
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3860
 *
3861
 * Checks pages for evictability and moves them to the appropriate lru list.
3862 3863
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3864
 */
3865
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3866
{
3867
	struct lruvec *lruvec;
3868 3869 3870 3871
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3872

3873 3874 3875
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3876

3877 3878 3879 3880 3881 3882 3883 3884
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3885
		lruvec = mem_cgroup_page_lruvec(page, zone);
3886

3887 3888
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3889

3890
		if (page_evictable(page)) {
3891 3892
			enum lru_list lru = page_lru_base_type(page);

3893
			VM_BUG_ON_PAGE(PageActive(page), page);
3894
			ClearPageUnevictable(page);
3895 3896
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3897
			pgrescued++;
3898
		}
3899
	}
3900

3901 3902 3903 3904
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3905 3906
	}
}
3907
#endif /* CONFIG_SHMEM */