xfs_reflink.c 43.0 KB
Newer Older
D
Dave Chinner 已提交
1
// SPDX-License-Identifier: GPL-2.0+
D
Darrick J. Wong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
20
#include "xfs_btree.h"
D
Darrick J. Wong 已提交
21 22 23 24 25 26 27 28
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_bit.h"
#include "xfs_alloc.h"
#include "xfs_quota.h"
#include "xfs_reflink.h"
29
#include "xfs_iomap.h"
30 31
#include "xfs_sb.h"
#include "xfs_ag_resv.h"
D
Darrick J. Wong 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

/*
 * Copy on Write of Shared Blocks
 *
 * XFS must preserve "the usual" file semantics even when two files share
 * the same physical blocks.  This means that a write to one file must not
 * alter the blocks in a different file; the way that we'll do that is
 * through the use of a copy-on-write mechanism.  At a high level, that
 * means that when we want to write to a shared block, we allocate a new
 * block, write the data to the new block, and if that succeeds we map the
 * new block into the file.
 *
 * XFS provides a "delayed allocation" mechanism that defers the allocation
 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
 * possible.  This reduces fragmentation by enabling the filesystem to ask
 * for bigger chunks less often, which is exactly what we want for CoW.
 *
 * The delalloc mechanism begins when the kernel wants to make a block
 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
 * create a delalloc mapping, which is a regular in-core extent, but without
 * a real startblock.  (For delalloc mappings, the startblock encodes both
 * a flag that this is a delalloc mapping, and a worst-case estimate of how
 * many blocks might be required to put the mapping into the BMBT.)  delalloc
 * mappings are a reservation against the free space in the filesystem;
 * adjacent mappings can also be combined into fewer larger mappings.
 *
58 59 60 61 62 63 64 65
 * As an optimization, the CoW extent size hint (cowextsz) creates
 * outsized aligned delalloc reservations in the hope of landing out of
 * order nearby CoW writes in a single extent on disk, thereby reducing
 * fragmentation and improving future performance.
 *
 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
 * C: ------DDDDDDD--------- (CoW fork)
 *
D
Darrick J. Wong 已提交
66
 * When dirty pages are being written out (typically in writepage), the
67 68 69 70 71 72 73
 * delalloc reservations are converted into unwritten mappings by
 * allocating blocks and replacing the delalloc mapping with real ones.
 * A delalloc mapping can be replaced by several unwritten ones if the
 * free space is fragmented.
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUUUUUU---------
D
Darrick J. Wong 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87
 *
 * We want to adapt the delalloc mechanism for copy-on-write, since the
 * write paths are similar.  The first two steps (creating the reservation
 * and allocating the blocks) are exactly the same as delalloc except that
 * the mappings must be stored in a separate CoW fork because we do not want
 * to disturb the mapping in the data fork until we're sure that the write
 * succeeded.  IO completion in this case is the process of removing the old
 * mapping from the data fork and moving the new mapping from the CoW fork to
 * the data fork.  This will be discussed shortly.
 *
 * For now, unaligned directio writes will be bounced back to the page cache.
 * Block-aligned directio writes will use the same mechanism as buffered
 * writes.
 *
88 89 90 91 92 93 94 95
 * Just prior to submitting the actual disk write requests, we convert
 * the extents representing the range of the file actually being written
 * (as opposed to extra pieces created for the cowextsize hint) to real
 * extents.  This will become important in the next step:
 *
 * D: --RRRRRRSSSRRRRRRRR---
 * C: ------UUrrUUU---------
 *
D
Darrick J. Wong 已提交
96 97 98 99 100 101
 * CoW remapping must be done after the data block write completes,
 * because we don't want to destroy the old data fork map until we're sure
 * the new block has been written.  Since the new mappings are kept in a
 * separate fork, we can simply iterate these mappings to find the ones
 * that cover the file blocks that we just CoW'd.  For each extent, simply
 * unmap the corresponding range in the data fork, map the new range into
102 103 104 105 106 107 108 109 110
 * the data fork, and remove the extent from the CoW fork.  Because of
 * the presence of the cowextsize hint, however, we must be careful
 * only to remap the blocks that we've actually written out --  we must
 * never remap delalloc reservations nor CoW staging blocks that have
 * yet to be written.  This corresponds exactly to the real extents in
 * the CoW fork:
 *
 * D: --RRRRRRrrSRRRRRRRR---
 * C: ------UU--UUU---------
D
Darrick J. Wong 已提交
111 112 113 114 115 116 117 118 119
 *
 * Since the remapping operation can be applied to an arbitrary file
 * range, we record the need for the remap step as a flag in the ioend
 * instead of declaring a new IO type.  This is required for direct io
 * because we only have ioend for the whole dio, and we have to be able to
 * remember the presence of unwritten blocks and CoW blocks with a single
 * ioend structure.  Better yet, the more ground we can cover with one
 * ioend, the better.
 */
120 121 122 123 124 125 126 127 128 129 130

/*
 * Given an AG extent, find the lowest-numbered run of shared blocks
 * within that range and return the range in fbno/flen.  If
 * find_end_of_shared is true, return the longest contiguous extent of
 * shared blocks.  If there are no shared extents, fbno and flen will
 * be set to NULLAGBLOCK and 0, respectively.
 */
int
xfs_reflink_find_shared(
	struct xfs_mount	*mp,
131
	struct xfs_trans	*tp,
132 133 134 135 136 137 138 139 140 141 142
	xfs_agnumber_t		agno,
	xfs_agblock_t		agbno,
	xfs_extlen_t		aglen,
	xfs_agblock_t		*fbno,
	xfs_extlen_t		*flen,
	bool			find_end_of_shared)
{
	struct xfs_buf		*agbp;
	struct xfs_btree_cur	*cur;
	int			error;

143
	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 145 146
	if (error)
		return error;

147
	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
148 149 150 151

	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
			find_end_of_shared);

152
	xfs_btree_del_cursor(cur, error);
153

154
	xfs_trans_brelse(tp, agbp);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
	return error;
}

/*
 * Trim the mapping to the next block where there's a change in the
 * shared/unshared status.  More specifically, this means that we
 * find the lowest-numbered extent of shared blocks that coincides with
 * the given block mapping.  If the shared extent overlaps the start of
 * the mapping, trim the mapping to the end of the shared extent.  If
 * the shared region intersects the mapping, trim the mapping to the
 * start of the shared extent.  If there are no shared regions that
 * overlap, just return the original extent.
 */
int
xfs_reflink_trim_around_shared(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
172
	bool			*shared)
173 174 175 176 177 178 179 180 181
{
	xfs_agnumber_t		agno;
	xfs_agblock_t		agbno;
	xfs_extlen_t		aglen;
	xfs_agblock_t		fbno;
	xfs_extlen_t		flen;
	int			error = 0;

	/* Holes, unwritten, and delalloc extents cannot be shared */
182
	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
183 184 185 186 187 188 189 190 191 192
		*shared = false;
		return 0;
	}

	trace_xfs_reflink_trim_around_shared(ip, irec);

	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
	aglen = irec->br_blockcount;

193
	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 195 196 197
			aglen, &fbno, &flen, true);
	if (error)
		return error;

198
	*shared = false;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
	if (fbno == NULLAGBLOCK) {
		/* No shared blocks at all. */
		return 0;
	} else if (fbno == agbno) {
		/*
		 * The start of this extent is shared.  Truncate the
		 * mapping at the end of the shared region so that a
		 * subsequent iteration starts at the start of the
		 * unshared region.
		 */
		irec->br_blockcount = flen;
		*shared = true;
		return 0;
	} else {
		/*
		 * There's a shared extent midway through this extent.
		 * Truncate the mapping at the start of the shared
		 * extent so that a subsequent iteration starts at the
		 * start of the shared region.
		 */
		irec->br_blockcount = fbno - agbno;
		return 0;
	}
}

224 225
int
xfs_bmap_trim_cow(
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*imap,
	bool			*shared)
{
	/* We can't update any real extents in always COW mode. */
	if (xfs_is_always_cow_inode(ip) &&
	    !isnullstartblock(imap->br_startblock)) {
		*shared = true;
		return 0;
	}

	/* Trim the mapping to the nearest shared extent boundary. */
	return xfs_reflink_trim_around_shared(ip, imap, shared);
}

241 242 243 244 245
static int
xfs_reflink_convert_cow_locked(
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb,
	xfs_filblks_t		count_fsb)
246
{
247 248 249 250
	struct xfs_iext_cursor	icur;
	struct xfs_bmbt_irec	got;
	struct xfs_btree_cur	*dummy_cur = NULL;
	int			dummy_logflags;
251
	int			error = 0;
252

253
	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 255
		return 0;

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	do {
		if (got.br_startoff >= offset_fsb + count_fsb)
			break;
		if (got.br_state == XFS_EXT_NORM)
			continue;
		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
			return -EIO;

		xfs_trim_extent(&got, offset_fsb, count_fsb);
		if (!got.br_blockcount)
			continue;

		got.br_state = XFS_EXT_NORM;
		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
				XFS_COW_FORK, &icur, &dummy_cur, &got,
				&dummy_logflags);
		if (error)
			return error;
	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));

	return error;
277 278 279 280 281 282 283 284 285 286 287 288
}

/* Convert all of the unwritten CoW extents in a file's range to real ones. */
int
xfs_reflink_convert_cow(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		count)
{
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
289
	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
290
	int			error;
291

292
	ASSERT(count != 0);
293

294
	xfs_ilock(ip, XFS_ILOCK_EXCL);
295
	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 297 298 299
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

300 301 302 303 304 305 306 307 308
/*
 * Find the extent that maps the given range in the COW fork. Even if the extent
 * is not shared we might have a preallocation for it in the COW fork. If so we
 * use it that rather than trigger a new allocation.
 */
static int
xfs_find_trim_cow_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*imap,
309
	struct xfs_bmbt_irec	*cmap,
310 311 312 313 314 315 316 317 318 319 320 321 322
	bool			*shared,
	bool			*found)
{
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
	struct xfs_iext_cursor	icur;

	*found = false;

	/*
	 * If we don't find an overlapping extent, trim the range we need to
	 * allocate to fit the hole we found.
	 */
323 324 325
	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
		cmap->br_startoff = offset_fsb + count_fsb;
	if (cmap->br_startoff > offset_fsb) {
326
		xfs_trim_extent(imap, imap->br_startoff,
327
				cmap->br_startoff - imap->br_startoff);
328
		return xfs_bmap_trim_cow(ip, imap, shared);
329
	}
330 331

	*shared = true;
332 333
	if (isnullstartblock(cmap->br_startblock)) {
		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 335 336 337
		return 0;
	}

	/* real extent found - no need to allocate */
338
	xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 340 341 342
	*found = true;
	return 0;
}

343
/* Allocate all CoW reservations covering a range of blocks in a file. */
344 345
int
xfs_reflink_allocate_cow(
346
	struct xfs_inode	*ip,
347
	struct xfs_bmbt_irec	*imap,
348
	struct xfs_bmbt_irec	*cmap,
349
	bool			*shared,
350
	uint			*lockmode,
351
	bool			convert_now)
352 353
{
	struct xfs_mount	*mp = ip->i_mount;
354 355
	xfs_fileoff_t		offset_fsb = imap->br_startoff;
	xfs_filblks_t		count_fsb = imap->br_blockcount;
356
	struct xfs_trans	*tp;
357
	int			nimaps, error = 0;
358
	bool			found;
359
	xfs_filblks_t		resaligned;
360
	xfs_extlen_t		resblks = 0;
361

362
	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
363 364 365 366
	if (!ip->i_cowfp) {
		ASSERT(!xfs_is_reflink_inode(ip));
		xfs_ifork_init_cow(ip);
	}
367

368
	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 370 371 372
	if (error || !*shared)
		return error;
	if (found)
		goto convert;
373

374 375 376
	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
377

378 379 380 381
	xfs_iunlock(ip, *lockmode);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	*lockmode = XFS_ILOCK_EXCL;
	xfs_ilock(ip, *lockmode);
382

383 384
	if (error)
		return error;
385

386 387 388
	error = xfs_qm_dqattach_locked(ip, false);
	if (error)
		goto out_trans_cancel;
389

390 391 392
	/*
	 * Check for an overlapping extent again now that we dropped the ilock.
	 */
393
	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
394 395 396 397 398
	if (error || !*shared)
		goto out_trans_cancel;
	if (found) {
		xfs_trans_cancel(tp);
		goto convert;
399 400 401 402
	}

	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
403
	if (error)
404
		goto out_trans_cancel;
405

406 407
	xfs_trans_ijoin(tp, ip, 0);

408
	/* Allocate the entire reservation as unwritten blocks. */
409
	nimaps = 1;
410
	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
411 412
			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
			&nimaps);
413
	if (error)
414
		goto out_unreserve;
415

416
	xfs_inode_set_cowblocks_tag(ip);
417
	error = xfs_trans_commit(tp);
418
	if (error)
419
		return error;
420 421 422 423 424 425 426

	/*
	 * Allocation succeeded but the requested range was not even partially
	 * satisfied?  Bail out!
	 */
	if (nimaps == 0)
		return -ENOSPC;
427
convert:
428
	xfs_trim_extent(cmap, offset_fsb, count_fsb);
429 430 431 432 433
	/*
	 * COW fork extents are supposed to remain unwritten until we're ready
	 * to initiate a disk write.  For direct I/O we are going to write the
	 * data and need the conversion, but for buffered writes we're done.
	 */
434
	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
435
		return 0;
436
	trace_xfs_reflink_convert_cow(ip, cmap);
437
	return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
438 439

out_unreserve:
440 441
	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
			XFS_QMOPT_RES_REGBLKS);
442 443
out_trans_cancel:
	xfs_trans_cancel(tp);
444
	return error;
445 446
}

447
/*
448 449 450 451
 * Cancel CoW reservations for some block range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
452 453 454
 *
 * Caller must have already joined the inode to the current transaction. The
 * inode will be joined to the transaction returned to the caller.
455 456 457 458 459 460
 */
int
xfs_reflink_cancel_cow_blocks(
	struct xfs_inode		*ip,
	struct xfs_trans		**tpp,
	xfs_fileoff_t			offset_fsb,
461 462
	xfs_fileoff_t			end_fsb,
	bool				cancel_real)
463
{
464
	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
465
	struct xfs_bmbt_irec		got, del;
466
	struct xfs_iext_cursor		icur;
467
	int				error = 0;
468

469
	if (!xfs_inode_has_cow_data(ip))
470
		return 0;
471
	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
472
		return 0;
473

474 475
	/* Walk backwards until we're out of the I/O range... */
	while (got.br_startoff + got.br_blockcount > offset_fsb) {
476 477
		del = got;
		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
478 479 480 481 482 483 484

		/* Extent delete may have bumped ext forward */
		if (!del.br_blockcount) {
			xfs_iext_prev(ifp, &icur);
			goto next_extent;
		}

485
		trace_xfs_reflink_cancel_cow(ip, &del);
486

487 488
		if (isnullstartblock(del.br_startblock)) {
			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
489
					&icur, &got, &del);
490 491
			if (error)
				break;
492
		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
493
			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
494

495
			/* Free the CoW orphan record. */
496 497
			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
					del.br_blockcount);
498

499 500
			xfs_bmap_add_free(*tpp, del.br_startblock,
					  del.br_blockcount, NULL);
501 502

			/* Roll the transaction */
503
			error = xfs_defer_finish(tpp);
504
			if (error)
505 506 507
				break;

			/* Remove the mapping from the CoW fork. */
508
			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
509 510 511 512 513 514 515

			/* Remove the quota reservation */
			error = xfs_trans_reserve_quota_nblks(NULL, ip,
					-(long)del.br_blockcount, 0,
					XFS_QMOPT_RES_REGBLKS);
			if (error)
				break;
516 517 518
		} else {
			/* Didn't do anything, push cursor back. */
			xfs_iext_prev(ifp, &icur);
519
		}
520 521
next_extent:
		if (!xfs_iext_get_extent(ifp, &icur, &got))
522
			break;
523 524
	}

525 526 527
	/* clear tag if cow fork is emptied */
	if (!ifp->if_bytes)
		xfs_inode_clear_cowblocks_tag(ip);
528 529 530 531
	return error;
}

/*
532 533 534 535
 * Cancel CoW reservations for some byte range of an inode.
 *
 * If cancel_real is true this function cancels all COW fork extents for the
 * inode; if cancel_real is false, real extents are not cleared.
536 537 538 539 540
 */
int
xfs_reflink_cancel_cow_range(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
541 542
	xfs_off_t		count,
	bool			cancel_real)
543 544 545 546 547 548 549
{
	struct xfs_trans	*tp;
	xfs_fileoff_t		offset_fsb;
	xfs_fileoff_t		end_fsb;
	int			error;

	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
550
	ASSERT(ip->i_cowfp);
551 552 553 554 555 556 557 558 559

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	if (count == NULLFILEOFF)
		end_fsb = NULLFILEOFF;
	else
		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
C
Christoph Hellwig 已提交
560
			0, 0, 0, &tp);
561 562 563 564 565 566 567
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* Scrape out the old CoW reservations */
568 569
	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
			cancel_real);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	if (error)
		goto out_cancel;

	error = xfs_trans_commit(tp);

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
	return error;
}

/*
587 588 589 590 591 592 593 594
 * Remap part of the CoW fork into the data fork.
 *
 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
 * into the data fork; this function will remap what it can (at the end of the
 * range) and update @end_fsb appropriately.  Each remap gets its own
 * transaction because we can end up merging and splitting bmbt blocks for
 * every remap operation and we'd like to keep the block reservation
 * requirements as low as possible.
595
 */
596 597 598 599 600
STATIC int
xfs_reflink_end_cow_extent(
	struct xfs_inode	*ip,
	xfs_fileoff_t		offset_fsb,
	xfs_fileoff_t		*end_fsb)
601
{
602 603 604 605 606 607 608 609
	struct xfs_bmbt_irec	got, del;
	struct xfs_iext_cursor	icur;
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
	xfs_filblks_t		rlen;
	unsigned int		resblks;
	int			error;
610

611
	/* No COW extents?  That's easy! */
612 613
	if (ifp->if_bytes == 0) {
		*end_fsb = offset_fsb;
614
		return 0;
615
	}
616

617 618
	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
C
Christoph Hellwig 已提交
619
			XFS_TRANS_RESERVE, &tp);
620 621
	if (error)
		return error;
622

623
	/*
624 625 626
	 * Lock the inode.  We have to ijoin without automatic unlock because
	 * the lead transaction is the refcountbt record deletion; the data
	 * fork update follows as a deferred log item.
627
	 */
628 629 630
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

631 632 633 634 635
	/*
	 * In case of racing, overlapping AIO writes no COW extents might be
	 * left by the time I/O completes for the loser of the race.  In that
	 * case we are done.
	 */
636 637 638
	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
	    got.br_startoff + got.br_blockcount <= offset_fsb) {
		*end_fsb = offset_fsb;
639
		goto out_cancel;
640
	}
641

642 643 644 645 646 647 648 649
	/*
	 * Structure copy @got into @del, then trim @del to the range that we
	 * were asked to remap.  We preserve @got for the eventual CoW fork
	 * deletion; from now on @del represents the mapping that we're
	 * actually remapping.
	 */
	del = got;
	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
650

651
	ASSERT(del.br_blockcount > 0);
652

653 654 655 656 657 658 659 660 661
	/*
	 * Only remap real extents that contain data.  With AIO, speculative
	 * preallocations can leak into the range we are called upon, and we
	 * need to skip them.
	 */
	if (!xfs_bmap_is_real_extent(&got)) {
		*end_fsb = del.br_startoff;
		goto out_cancel;
	}
662

663 664 665 666 667
	/* Unmap the old blocks in the data fork. */
	rlen = del.br_blockcount;
	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
	if (error)
		goto out_cancel;
668

669 670 671
	/* Trim the extent to whatever got unmapped. */
	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
	trace_xfs_reflink_cow_remap(ip, &del);
672

673
	/* Free the CoW orphan record. */
674
	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
675

676
	/* Map the new blocks into the data fork. */
677
	xfs_bmap_map_extent(tp, ip, &del);
678

679 680 681
	/* Charge this new data fork mapping to the on-disk quota. */
	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
			(long)del.br_blockcount);
682

683 684
	/* Remove the mapping from the CoW fork. */
	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
685 686 687 688

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
689 690 691 692
		return error;

	/* Update the caller about how much progress we made. */
	*end_fsb = del.br_startoff;
693 694
	return 0;

695
out_cancel:
696 697
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	return error;
}

/*
 * Remap parts of a file's data fork after a successful CoW.
 */
int
xfs_reflink_end_cow(
	struct xfs_inode		*ip,
	xfs_off_t			offset,
	xfs_off_t			count)
{
	xfs_fileoff_t			offset_fsb;
	xfs_fileoff_t			end_fsb;
	int				error = 0;

	trace_xfs_reflink_end_cow(ip, offset, count);

	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);

	/*
	 * Walk backwards until we're out of the I/O range.  The loop function
	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
	 * extent.
	 *
	 * If we're being called by writeback then the the pages will still
	 * have PageWriteback set, which prevents races with reflink remapping
	 * and truncate.  Reflink remapping prevents races with writeback by
	 * taking the iolock and mmaplock before flushing the pages and
	 * remapping, which means there won't be any further writeback or page
	 * cache dirtying until the reflink completes.
	 *
	 * We should never have two threads issuing writeback for the same file
	 * region.  There are also have post-eof checks in the writeback
	 * preparation code so that we don't bother writing out pages that are
	 * about to be truncated.
	 *
	 * If we're being called as part of directio write completion, the dio
	 * count is still elevated, which reflink and truncate will wait for.
	 * Reflink remapping takes the iolock and mmaplock and waits for
	 * pending dio to finish, which should prevent any directio until the
	 * remap completes.  Multiple concurrent directio writes to the same
	 * region are handled by end_cow processing only occurring for the
	 * threads which succeed; the outcome of multiple overlapping direct
	 * writes is not well defined anyway.
	 *
	 * It's possible that a buffered write and a direct write could collide
	 * here (the buffered write stumbles in after the dio flushes and
	 * invalidates the page cache and immediately queues writeback), but we
	 * have never supported this 100%.  If either disk write succeeds the
	 * blocks will be remapped.
	 */
	while (end_fsb > offset_fsb && !error)
		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);

	if (error)
		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
756 757
	return error;
}
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

/*
 * Free leftover CoW reservations that didn't get cleaned out.
 */
int
xfs_reflink_recover_cow(
	struct xfs_mount	*mp)
{
	xfs_agnumber_t		agno;
	int			error = 0;

	if (!xfs_sb_version_hasreflink(&mp->m_sb))
		return 0;

	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
		error = xfs_refcount_recover_cow_leftovers(mp, agno);
		if (error)
			break;
	}

	return error;
}
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

/*
 * Reflinking (Block) Ranges of Two Files Together
 *
 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 * optimization to avoid unnecessary refcount btree lookups in the write path.
 *
 * Now we can iteratively remap the range of extents (and holes) in src to the
 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 * logical blocks in dest and src touched by the reflink operation.
 *
 * While the length of drange is greater than zero,
 *    - Read src's bmbt at the start of srange ("imap")
 *    - If imap doesn't exist, make imap appear to start at the end of srange
 *      with zero length.
 *    - If imap starts before srange, advance imap to start at srange.
 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 *    - Punch (imap start - srange start + imap len) blocks from dest at
 *      offset (drange start).
 *    - If imap points to a real range of pblks,
 *         > Increase the refcount of the imap's pblks
 *         > Map imap's pblks into dest at the offset
 *           (drange start + imap start - srange start)
 *    - Advance drange and srange by (imap start - srange start + imap len)
 *
 * Finally, if the reflink made dest longer, update both the in-core and
 * on-disk file sizes.
 *
 * ASCII Art Demonstration:
 *
 * Let's say we want to reflink this source file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 *   <-------------------->
 *
 * into this destination file:
 *
 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 *        <-------------------->
 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 * Observe that the range has different logical offsets in either file.
 *
 * Consider that the first extent in the source file doesn't line up with our
 * reflink range.  Unmapping  and remapping are separate operations, so we can
 * unmap more blocks from the destination file than we remap.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD---------DDDDD--DDD
 *        <------->
 *
 * Now remap the source extent into the destination file:
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *   <------->
 * --DDDDD--SSSSSSSDDDDD--DDD
 *        <------->
 *
 * Do likewise with the second hole and extent in our range.  Holes in the
 * unmap range don't affect our operation.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *            <---->
 * --DDDDD--SSSSSSS-SSSSS-DDD
 *                 <---->
 *
 * Finally, unmap and remap part of the third extent.  This will increase the
 * size of the destination file.
 *
 * ----SSSSSSS-SSSSS----SSSSSS
 *                  <----->
 * --DDDDD--SSSSSSS-SSSSS----SSS
 *                       <----->
 *
 * Once we update the destination file's i_size, we're done.
 */

/*
 * Ensure the reflink bit is set in both inodes.
 */
STATIC int
xfs_reflink_set_inode_flag(
	struct xfs_inode	*src,
	struct xfs_inode	*dest)
{
	struct xfs_mount	*mp = src->i_mount;
	int			error;
	struct xfs_trans	*tp;

	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	/* Lock both files against IO */
	if (src->i_ino == dest->i_ino)
		xfs_ilock(src, XFS_ILOCK_EXCL);
	else
880
		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

	if (!xfs_is_reflink_inode(src)) {
		trace_xfs_reflink_set_inode_flag(src);
		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
		xfs_ifork_init_cow(src);
	} else
		xfs_iunlock(src, XFS_ILOCK_EXCL);

	if (src->i_ino == dest->i_ino)
		goto commit_flags;

	if (!xfs_is_reflink_inode(dest)) {
		trace_xfs_reflink_set_inode_flag(dest);
		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
		xfs_ifork_init_cow(dest);
	} else
		xfs_iunlock(dest, XFS_ILOCK_EXCL);

commit_flags:
	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
	return error;
}

/*
915
 * Update destination inode size & cowextsize hint, if necessary.
916
 */
917
int
918 919
xfs_reflink_update_dest(
	struct xfs_inode	*dest,
920
	xfs_off_t		newlen,
921
	xfs_extlen_t		cowextsize,
922
	unsigned int		remap_flags)
923 924 925 926 927
{
	struct xfs_mount	*mp = dest->i_mount;
	struct xfs_trans	*tp;
	int			error;

928
	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
929 930 931 932 933 934 935 936 937
		return 0;

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
	if (error)
		goto out_error;

	xfs_ilock(dest, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);

938 939 940 941 942 943 944 945 946 947 948
	if (newlen > i_size_read(VFS_I(dest))) {
		trace_xfs_reflink_update_inode_size(dest, newlen);
		i_size_write(VFS_I(dest), newlen);
		dest->i_d.di_size = newlen;
	}

	if (cowextsize) {
		dest->i_d.di_cowextsize = cowextsize;
		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
	}

949 950 951 952 953 954 955 956 957 958 959 960
	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);

	error = xfs_trans_commit(tp);
	if (error)
		goto out_error;
	return error;

out_error:
	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
	return error;
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 * btree already reserved all the space it needs, but the rmap btree can grow
 * infinitely, so we won't allow more reflinks when the AG is down to the
 * btree reserves.
 */
static int
xfs_reflink_ag_has_free_space(
	struct xfs_mount	*mp,
	xfs_agnumber_t		agno)
{
	struct xfs_perag	*pag;
	int			error = 0;

	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
		return 0;

	pag = xfs_perag_get(mp, agno);
979
	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
980 981 982 983 984 985
	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
		error = -ENOSPC;
	xfs_perag_put(pag);
	return error;
}

986 987 988 989 990 991 992 993 994 995 996 997 998
/*
 * Unmap a range of blocks from a file, then map other blocks into the hole.
 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 * The extent irec is mapped into dest at irec->br_startoff.
 */
STATIC int
xfs_reflink_remap_extent(
	struct xfs_inode	*ip,
	struct xfs_bmbt_irec	*irec,
	xfs_fileoff_t		destoff,
	xfs_off_t		new_isize)
{
	struct xfs_mount	*mp = ip->i_mount;
999
	bool			real_extent = xfs_bmap_is_real_extent(irec);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	struct xfs_trans	*tp;
	unsigned int		resblks;
	struct xfs_bmbt_irec	uirec;
	xfs_filblks_t		rlen;
	xfs_filblks_t		unmap_len;
	xfs_off_t		newlen;
	int			error;

	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);

1011 1012 1013 1014 1015 1016 1017 1018
	/* No reflinking if we're low on space */
	if (real_extent) {
		error = xfs_reflink_ag_has_free_space(mp,
				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
		if (error)
			goto out;
	}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	/* Start a rolling transaction to switch the mappings */
	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
	if (error)
		goto out;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	/* If we're not just clearing space, then do we have enough quota? */
	if (real_extent) {
		error = xfs_trans_reserve_quota_nblks(tp, ip,
				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
		if (error)
			goto out_cancel;
	}

	trace_xfs_reflink_remap(ip, irec->br_startoff,
				irec->br_blockcount, irec->br_startblock);

	/* Unmap the old blocks in the data fork. */
	rlen = unmap_len;
	while (rlen) {
1042
		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1043
		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1044
		if (error)
1045
			goto out_cancel;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

		/*
		 * Trim the extent to whatever got unmapped.
		 * Remember, bunmapi works backwards.
		 */
		uirec.br_startblock = irec->br_startblock + rlen;
		uirec.br_startoff = irec->br_startoff + rlen;
		uirec.br_blockcount = unmap_len - rlen;
		unmap_len = rlen;

		/* If this isn't a real mapping, we're done. */
		if (!real_extent || uirec.br_blockcount == 0)
			goto next_extent;

		trace_xfs_reflink_remap(ip, uirec.br_startoff,
				uirec.br_blockcount, uirec.br_startblock);

		/* Update the refcount tree */
1064
		xfs_refcount_increase_extent(tp, &uirec);
1065 1066

		/* Map the new blocks into the data fork. */
1067
		xfs_bmap_map_extent(tp, ip, &uirec);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

		/* Update quota accounting. */
		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
				uirec.br_blockcount);

		/* Update dest isize if needed. */
		newlen = XFS_FSB_TO_B(mp,
				uirec.br_startoff + uirec.br_blockcount);
		newlen = min_t(xfs_off_t, newlen, new_isize);
		if (newlen > i_size_read(VFS_I(ip))) {
			trace_xfs_reflink_update_inode_size(ip, newlen);
			i_size_write(VFS_I(ip), newlen);
			ip->i_d.di_size = newlen;
			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		}

next_extent:
		/* Process all the deferred stuff. */
1086
		error = xfs_defer_finish(&tp);
1087
		if (error)
1088
			goto out_cancel;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	}

	error = xfs_trans_commit(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		goto out;
	return 0;

out_cancel:
	xfs_trans_cancel(tp);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
	return error;
}

/*
 * Iteratively remap one file's extents (and holes) to another's.
 */
1108
int
1109 1110
xfs_reflink_remap_blocks(
	struct xfs_inode	*src,
1111
	loff_t			pos_in,
1112
	struct xfs_inode	*dest,
1113
	loff_t			pos_out,
1114 1115
	loff_t			remap_len,
	loff_t			*remapped)
1116 1117
{
	struct xfs_bmbt_irec	imap;
1118 1119 1120 1121
	xfs_fileoff_t		srcoff;
	xfs_fileoff_t		destoff;
	xfs_filblks_t		len;
	xfs_filblks_t		range_len;
1122
	xfs_filblks_t		remapped_len = 0;
1123
	xfs_off_t		new_isize = pos_out + remap_len;
1124 1125
	int			nimaps;
	int			error = 0;
1126 1127 1128 1129

	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1130 1131 1132

	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
	while (len) {
1133 1134
		uint		lock_mode;

1135 1136
		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
				dest, destoff);
1137

1138 1139
		/* Read extent from the source file */
		nimaps = 1;
1140
		lock_mode = xfs_ilock_data_map_shared(src);
1141
		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1142
		xfs_iunlock(src, lock_mode);
1143
		if (error)
1144
			break;
1145 1146
		ASSERT(nimaps == 1);

1147
		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
				&imap);

		/* Translate imap into the destination file. */
		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
		imap.br_startoff += destoff - srcoff;

		/* Clear dest from destoff to the end of imap and map it in. */
		error = xfs_reflink_remap_extent(dest, &imap, destoff,
				new_isize);
		if (error)
1158
			break;
1159 1160 1161

		if (fatal_signal_pending(current)) {
			error = -EINTR;
1162
			break;
1163 1164 1165 1166 1167 1168
		}

		/* Advance drange/srange */
		srcoff += range_len;
		destoff += range_len;
		len -= range_len;
1169
		remapped_len += range_len;
1170 1171
	}

1172 1173
	if (error)
		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1174 1175
	*remapped = min_t(loff_t, remap_len,
			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1176 1177 1178
	return error;
}

1179
/*
1180 1181 1182 1183 1184
 * Grab the exclusive iolock for a data copy from src to dest, making sure to
 * abide vfs locking order (lowest pointer value goes first) and breaking the
 * layout leases before proceeding.  The loop is needed because we cannot call
 * the blocking break_layout() with the iolocks held, and therefore have to
 * back out both locks.
1185 1186 1187 1188 1189 1190 1191 1192
 */
static int
xfs_iolock_two_inodes_and_break_layout(
	struct inode		*src,
	struct inode		*dest)
{
	int			error;

1193 1194
	if (src > dest)
		swap(src, dest);
1195

1196 1197 1198 1199 1200 1201
retry:
	/* Wait to break both inodes' layouts before we start locking. */
	error = break_layout(src, true);
	if (error)
		return error;
	if (src != dest) {
1202 1203 1204 1205
		error = break_layout(dest, true);
		if (error)
			return error;
	}
1206 1207 1208 1209

	/* Lock one inode and make sure nobody got in and leased it. */
	inode_lock(src);
	error = break_layout(src, false);
1210
	if (error) {
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		inode_unlock(src);
		if (error == -EWOULDBLOCK)
			goto retry;
		return error;
	}

	if (src == dest)
		return 0;

	/* Lock the other inode and make sure nobody got in and leased it. */
	inode_lock_nested(dest, I_MUTEX_NONDIR2);
	error = break_layout(dest, false);
	if (error) {
		inode_unlock(src);
1225
		inode_unlock(dest);
1226 1227
		if (error == -EWOULDBLOCK)
			goto retry;
1228 1229
		return error;
	}
1230

1231 1232 1233
	return 0;
}

1234
/* Unlock both inodes after they've been prepped for a range clone. */
1235
void
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
xfs_reflink_remap_unlock(
	struct file		*file_in,
	struct file		*file_out)
{
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);

	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
	if (!same_inode)
1248
		xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1249 1250
	inode_unlock(inode_out);
	if (!same_inode)
1251
		inode_unlock(inode_in);
1252 1253
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/*
 * If we're reflinking to a point past the destination file's EOF, we must
 * zero any speculative post-EOF preallocations that sit between the old EOF
 * and the destination file offset.
 */
static int
xfs_reflink_zero_posteof(
	struct xfs_inode	*ip,
	loff_t			pos)
{
	loff_t			isize = i_size_read(VFS_I(ip));

	if (pos <= isize)
		return 0;

	trace_xfs_zero_eof(ip, isize, pos - isize);
	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1271
			&xfs_buffered_write_iomap_ops);
1272 1273
}

1274
/*
1275
 * Prepare two files for range cloning.  Upon a successful return both inodes
1276 1277 1278
 * will have the iolock and mmaplock held, the page cache of the out file will
 * be truncated, and any leases on the out file will have been broken.  This
 * function borrows heavily from xfs_file_aio_write_checks.
1279 1280 1281 1282
 *
 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
 * checked that the bytes beyond EOF physically match. Hence we cannot use the
 * EOF block in the source dedupe range because it's not a complete block match,
1283
 * hence can introduce a corruption into the file that has it's block replaced.
1284
 *
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
 * "block aligned" for the purposes of cloning entire files.  However, if the
 * source file range includes the EOF block and it lands within the existing EOF
 * of the destination file, then we can expose stale data from beyond the source
 * file EOF in the destination file.
 *
 * XFS doesn't support partial block sharing, so in both cases we have check
 * these cases ourselves. For dedupe, we can simply round the length to dedupe
 * down to the previous whole block and ignore the partial EOF block. While this
 * means we can't dedupe the last block of a file, this is an acceptible
 * tradeoff for simplicity on implementation.
 *
 * For cloning, we want to share the partial EOF block if it is also the new EOF
 * block of the destination file. If the partial EOF block lies inside the
 * existing destination EOF, then we have to abort the clone to avoid exposing
 * stale data in the destination file. Hence we reject these clone attempts with
 * -EINVAL in this case.
1302
 */
1303
int
1304
xfs_reflink_remap_prep(
1305 1306 1307 1308
	struct file		*file_in,
	loff_t			pos_in,
	struct file		*file_out,
	loff_t			pos_out,
1309
	loff_t			*len,
1310
	unsigned int		remap_flags)
1311
{
1312 1313 1314 1315 1316 1317
	struct inode		*inode_in = file_inode(file_in);
	struct xfs_inode	*src = XFS_I(inode_in);
	struct inode		*inode_out = file_inode(file_out);
	struct xfs_inode	*dest = XFS_I(inode_out);
	bool			same_inode = (inode_in == inode_out);
	ssize_t			ret;
1318

1319
	/* Lock both files against IO */
1320 1321 1322
	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
	if (ret)
		return ret;
1323
	if (same_inode)
1324
		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1325
	else
1326
		xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
1327
				XFS_MMAPLOCK_EXCL);
1328

1329
	/* Check file eligibility and prepare for block sharing. */
1330
	ret = -EINVAL;
1331 1332
	/* Don't reflink realtime inodes */
	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1333 1334 1335 1336 1337 1338
		goto out_unlock;

	/* Don't share DAX file data for now. */
	if (IS_DAX(inode_in) || IS_DAX(inode_out))
		goto out_unlock;

1339
	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1340
			len, remap_flags);
1341
	if (ret < 0 || *len == 0)
1342 1343
		goto out_unlock;

1344
	/* Attach dquots to dest inode before changing block map */
1345
	ret = xfs_qm_dqattach(dest);
1346 1347 1348
	if (ret)
		goto out_unlock;

1349
	/*
1350 1351
	 * Zero existing post-eof speculative preallocations in the destination
	 * file.
1352
	 */
1353 1354 1355
	ret = xfs_reflink_zero_posteof(dest, pos_out);
	if (ret)
		goto out_unlock;
1356

1357
	/* Set flags and remap blocks. */
1358 1359 1360
	ret = xfs_reflink_set_inode_flag(src, dest);
	if (ret)
		goto out_unlock;
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	/*
	 * If pos_out > EOF, we may have dirtied blocks between EOF and
	 * pos_out. In that case, we need to extend the flush and unmap to cover
	 * from EOF to the end of the copy length.
	 */
	if (pos_out > XFS_ISIZE(dest)) {
		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
	} else {
		ret = xfs_flush_unmap_range(dest, pos_out, *len);
	}
	if (ret)
		goto out_unlock;
1375

1376 1377 1378 1379 1380 1381
	return 1;
out_unlock:
	xfs_reflink_remap_unlock(file_in, file_out);
	return ret;
}

1382
/* Does this inode need the reflink flag? */
1383
int
1384 1385 1386 1387
xfs_reflink_inode_has_shared_extents(
	struct xfs_trans		*tp,
	struct xfs_inode		*ip,
	bool				*has_shared)
1388
{
1389 1390 1391 1392 1393 1394 1395 1396
	struct xfs_bmbt_irec		got;
	struct xfs_mount		*mp = ip->i_mount;
	struct xfs_ifork		*ifp;
	xfs_agnumber_t			agno;
	xfs_agblock_t			agbno;
	xfs_extlen_t			aglen;
	xfs_agblock_t			rbno;
	xfs_extlen_t			rlen;
1397
	struct xfs_iext_cursor		icur;
1398 1399
	bool				found;
	int				error;
1400

1401 1402 1403
	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1404 1405
		if (error)
			return error;
1406
	}
1407

1408
	*has_shared = false;
1409
	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1410 1411 1412 1413 1414 1415 1416
	while (found) {
		if (isnullstartblock(got.br_startblock) ||
		    got.br_state != XFS_EXT_NORM)
			goto next;
		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
		aglen = got.br_blockcount;
1417

1418
		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1419 1420 1421 1422
				&rbno, &rlen, false);
		if (error)
			return error;
		/* Is there still a shared block here? */
1423 1424
		if (rbno != NULLAGBLOCK) {
			*has_shared = true;
1425
			return 0;
1426
		}
1427
next:
1428
		found = xfs_iext_next_extent(ifp, &icur, &got);
1429 1430
	}

1431 1432 1433
	return 0;
}

1434 1435 1436 1437 1438 1439
/*
 * Clear the inode reflink flag if there are no shared extents.
 *
 * The caller is responsible for joining the inode to the transaction passed in.
 * The inode will be joined to the transaction that is returned to the caller.
 */
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
int
xfs_reflink_clear_inode_flag(
	struct xfs_inode	*ip,
	struct xfs_trans	**tpp)
{
	bool			needs_flag;
	int			error = 0;

	ASSERT(xfs_is_reflink_inode(ip));

	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
	if (error || needs_flag)
		return error;

1454 1455 1456 1457
	/*
	 * We didn't find any shared blocks so turn off the reflink flag.
	 * First, get rid of any leftover CoW mappings.
	 */
D
Darrick J. Wong 已提交
1458 1459
	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
			true);
1460 1461 1462 1463 1464 1465
	if (error)
		return error;

	/* Clear the inode flag. */
	trace_xfs_reflink_unset_inode_flag(ip);
	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1466
	xfs_inode_clear_cowblocks_tag(ip);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);

	return error;
}

/*
 * Clear the inode reflink flag if there are no shared extents and the size
 * hasn't changed.
 */
STATIC int
xfs_reflink_try_clear_inode_flag(
1478
	struct xfs_inode	*ip)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
{
	struct xfs_mount	*mp = ip->i_mount;
	struct xfs_trans	*tp;
	int			error = 0;

	/* Start a rolling transaction to remove the mappings */
	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
	if (error)
		return error;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, 0);

	error = xfs_reflink_clear_inode_flag(ip, &tp);
	if (error)
		goto cancel;

	error = xfs_trans_commit(tp);
	if (error)
		goto out;

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return 0;
cancel:
	xfs_trans_cancel(tp);
out:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return error;
}

/*
 * Pre-COW all shared blocks within a given byte range of a file and turn off
 * the reflink flag if we unshare all of the file's blocks.
 */
int
xfs_reflink_unshare(
	struct xfs_inode	*ip,
	xfs_off_t		offset,
	xfs_off_t		len)
{
1519
	struct inode		*inode = VFS_I(ip);
1520 1521 1522 1523 1524 1525 1526
	int			error;

	if (!xfs_is_reflink_inode(ip))
		return 0;

	trace_xfs_reflink_unshare(ip, offset, len);

1527
	inode_dio_wait(inode);
1528

1529 1530
	error = iomap_file_unshare(inode, offset, len,
			&xfs_buffered_write_iomap_ops);
1531
	if (error)
1532 1533
		goto out;
	error = filemap_write_and_wait(inode->i_mapping);
1534 1535 1536
	if (error)
		goto out;

1537 1538 1539 1540
	/* Turn off the reflink flag if possible. */
	error = xfs_reflink_try_clear_inode_flag(ip);
	if (error)
		goto out;
1541 1542 1543 1544 1545 1546
	return 0;

out:
	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
	return error;
}