hci_request.c 74.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31

#include "smp.h"
#include "hci_request.h"
32
#include "msft.h"
33
#include "eir.h"
34 35 36 37 38 39 40 41

void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

42 43 44 45 46
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

47 48 49 50 51
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

52 53
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
54 55 56 57 58
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

59
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
60 61 62 63 64 65 66 67 68 69 70 71 72 73

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
74 75 76 77 78 79
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
80 81 82 83 84 85 86 87 88 89

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

90 91 92 93 94 95 96 97 98 99
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

100 101
void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
			   struct sk_buff *skb)
102
{
103
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
104 105 106 107 108 109 110 111 112 113

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

114
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
115
{
116
	bt_dev_dbg(hdev, "err 0x%2.2x", err);
117 118 119 120 121 122 123 124 125

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

/* Execute request and wait for completion. */
126 127
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
128
		   unsigned long opt, u32 timeout, u8 *hci_status)
129 130 131 132
{
	struct hci_request req;
	int err = 0;

133
	bt_dev_dbg(hdev, "start");
134 135 136 137 138

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

139 140 141 142 143 144
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
145 146 147 148 149 150 151 152 153 154

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
155 156 157
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
158
			return 0;
159 160 161 162
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
163 164 165 166

		return err;
	}

167 168
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
169

170
	if (err == -ERESTARTSYS)
171 172 173 174 175
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
176 177
		if (hci_status)
			*hci_status = hdev->req_result;
178 179 180 181
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
182 183
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
184 185 186 187
		break;

	default:
		err = -ETIMEDOUT;
188 189
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
190 191 192
		break;
	}

193 194
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
195 196
	hdev->req_status = hdev->req_result = 0;

197
	bt_dev_dbg(hdev, "end: err %d", err);
198 199 200 201

	return err;
}

202 203
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
204
		 unsigned long opt, u32 timeout, u8 *hci_status)
205 206 207 208
{
	int ret;

	/* Serialize all requests */
209
	hci_req_sync_lock(hdev);
210 211 212 213 214 215 216 217
	/* check the state after obtaing the lock to protect the HCI_UP
	 * against any races from hci_dev_do_close when the controller
	 * gets removed.
	 */
	if (test_bit(HCI_UP, &hdev->flags))
		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
	else
		ret = -ENETDOWN;
218
	hci_req_sync_unlock(hdev);
219 220 221 222

	return ret;
}

223 224 225 226 227 228 229 230 231 232 233
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

234
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
235 236 237 238
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
239
		skb_put_data(skb, param, plen);
240

241
	bt_dev_dbg(hdev, "skb len %d", skb->len);
242

243 244
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
245 246 247 248 249 250 251 252 253 254 255

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

256
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
257 258 259 260 261 262 263 264 265

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
266 267
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
268 269 270 271 272
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
273
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
274

275
	bt_cb(skb)->hci.req_event = event;
276 277 278 279 280 281 282 283 284 285

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
304 305
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
306 307
	}

308
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
309 310 311 312 313 314 315 316 317 318

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
345 346 347 348 349 350
	/* Do interleaved scan only if all of the following are true:
	 * - There is at least one ADV monitor
	 * - At least one pending LE connection or one device to be scanned for
	 * - Monitor offloading is not supported
	 * If so, we should alternate between allowlist scan and one without
	 * any filters to save power.
351 352 353
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
354 355 356
				  list_empty(&hdev->pend_le_reports)) &&
				hci_get_adv_monitor_offload_ext(hdev) ==
				    HCI_ADV_MONITOR_EXT_NONE;
357 358 359 360 361 362 363 364 365 366 367 368 369 370
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

406 407
	bt_dev_dbg(hdev, "ADV monitoring is %s",
		   hci_is_adv_monitoring(hdev) ? "on" : "off");
408

409
	if (list_empty(&hdev->pend_le_conns) &&
410 411
	    list_empty(&hdev->pend_le_reports) &&
	    !hci_is_adv_monitoring(hdev)) {
412
		/* If there is no pending LE connections or devices
413 414
		 * to be scanned for or no ADV monitors, we should stop the
		 * background scanning.
415 416 417 418 419 420
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

421
		hci_req_add_le_scan_disable(req, false);
422

423
		bt_dev_dbg(hdev, "stopping background scanning");
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
440
			hci_req_add_le_scan_disable(req, false);
441 442

		hci_req_add_le_passive_scan(req);
443
		bt_dev_dbg(hdev, "starting background scanning");
444 445 446
	}
}

447 448 449 450 451 452 453 454 455 456
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

476
	eir_create(hdev, cp.data);
477 478 479 480 481 482 483 484 485

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

486
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
487
{
488
	struct hci_dev *hdev = req->hdev;
489

490 491 492 493 494
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

495 496 497 498 499 500 501 502 503 504 505 506 507 508
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
509

510
	/* Disable address resolution */
511
	if (hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
512
		__u8 enable = 0x00;
513

514 515
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
516 517
}

518 519
static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
				 u8 bdaddr_type)
520
{
521
	struct hci_cp_le_del_from_accept_list cp;
522 523 524 525

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

526
	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
527
		   cp.bdaddr_type);
528
	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
529

530
	if (use_ll_privacy(req->hdev)) {
531 532 533 534 535 536 537 538 539 540 541 542 543
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
544 545
}

546 547 548 549
/* Adds connection to accept list if needed. On error, returns -1. */
static int add_to_accept_list(struct hci_request *req,
			      struct hci_conn_params *params, u8 *num_entries,
			      bool allow_rpa)
550
{
551
	struct hci_cp_le_add_to_accept_list cp;
552 553
	struct hci_dev *hdev = req->hdev;

554 555
	/* Already in accept list */
	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
556 557
				   params->addr_type))
		return 0;
558

559
	/* Select filter policy to accept all advertising */
560
	if (*num_entries >= hdev->le_accept_list_size)
561 562
		return -1;

563
	/* Accept list can not be used with RPAs */
564 565
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
566 567 568 569
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

570
	/* During suspend, only wakeable devices can be in accept list */
571 572
	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
						   params->current_flags))
573 574 575
		return 0;

	*num_entries += 1;
576 577 578
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

579
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
580
		   cp.bdaddr_type);
581
	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
582

583
	if (use_ll_privacy(hdev)) {
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

605
	return 0;
606 607
}

608
static u8 update_accept_list(struct hci_request *req)
609 610 611 612
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
613 614
	u8 num_entries = 0;
	bool pend_conn, pend_report;
615 616
	/* We allow usage of accept list even with RPAs in suspend. In the worst
	 * case, we won't be able to wake from devices that use the privacy1.2
617 618 619 620
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
621

622
	if (use_ll_privacy(hdev))
623 624
		allow_rpa = true;

625
	/* Go through the current accept list programmed into the
626 627 628 629 630
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
631
	list_for_each_entry(b, &hdev->le_accept_list, list) {
632 633 634 635 636 637 638 639
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
640
		 * remove it from the accept list.
641
		 */
642
		if (!pend_conn && !pend_report) {
643
			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
644 645 646
			continue;
		}

647
		/* Accept list can not be used with RPAs */
648 649
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
650
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
651 652
			return 0x00;
		}
653

654
		num_entries++;
655 656
	}

657
	/* Since all no longer valid accept list entries have been
658 659 660 661 662
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
663
	 * available accept list entries in the controller, then
664
	 * just abort and return filer policy value to not use the
665
	 * accept list.
666 667
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
668
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
669 670 671 672 673
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
674
	 * accept list if there is still space. Abort if space runs out.
675 676
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
677
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
678 679 680
			return 0x00;
	}

681 682
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
683
	 * - There are 1 or more ADV monitors registered and it's not offloaded
684
	 * - Interleaved scanning is not currently using the allowlist
685
	 */
686
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
687
	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
688
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
689 690
		return 0x00;

691
	/* Select filter policy to use accept list */
692 693 694
	return 0x01;
}

695 696 697 698 699
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

700
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
701
			       u16 window, u8 own_addr_type, u8 filter_policy,
702
			       bool filter_dup, bool addr_resolv)
703
{
704
	struct hci_dev *hdev = req->hdev;
705

706 707 708 709 710
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

711
	if (use_ll_privacy(hdev) && addr_resolv) {
712
		u8 enable = 0x01;
713

714 715 716
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

717 718 719 720 721 722 723
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
724 725
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
726 727 728 729 730 731 732 733

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
759 760

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
761
			    plen, ext_param_cp);
762 763 764

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
765
		ext_enable_cp.filter_dup = filter_dup;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
784
		enable_cp.filter_dup = filter_dup;
785 786 787
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

811 812 813 814
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
815 816
void hci_req_add_le_passive_scan(struct hci_request *req)
{
817 818 819
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
820
	u16 window, interval;
821 822
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
823 824
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
825 826 827 828 829

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
830 831 832 833 834 835 836

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
837 838
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
839 840
		return;

841 842
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
843 844 845
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
846
	/* Adding or removing entries from the accept list must
847
	 * happen before enabling scanning. The controller does
848
	 * not allow accept list modification while scanning.
849
	 */
850
	filter_policy = update_accept_list(req);
851 852 853 854 855 856

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
857 858 859
	 * So instead of using filter polices 0x00 (no accept list)
	 * and 0x01 (accept list enabled) use the new filter policies
	 * 0x02 (no accept list) and 0x03 (accept list enabled).
860
	 */
861
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
862 863 864
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

865
	if (hdev->suspended) {
866 867
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
868 869 870
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
871 872 873
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
874 875 876 877 878 879 880 881 882 883 884 885 886 887

		/* Disable duplicates filter when scanning for advertisement
		 * monitor for the following reasons.
		 *
		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
		 * controllers ignore RSSI_Sampling_Period when the duplicates
		 * filter is enabled.
		 *
		 * For SW pattern filtering, when we're not doing interleaved
		 * scanning, it is necessary to disable duplicates filter,
		 * otherwise hosts can only receive one advertisement and it's
		 * impossible to know if a peer is still in range.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
888 889 890 891 892
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

893 894
	bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
		   filter_policy);
895
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
896 897
			   own_addr_type, filter_policy, filter_dup,
			   addr_resolv);
898 899
}

900 901 902 903 904 905 906 907 908
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* This function requires the caller holds hdev->lock */
909
void __hci_req_pause_adv_instances(struct hci_request *req)
910
{
911
	bt_dev_dbg(req->hdev, "Pausing advertising instances");
912 913 914 915 916 917 918 919 920 921 922 923

	/* Call to disable any advertisements active on the controller.
	 * This will succeed even if no advertisements are configured.
	 */
	__hci_req_disable_advertising(req);

	/* If we are using software rotation, pause the loop */
	if (!ext_adv_capable(req->hdev))
		cancel_adv_timeout(req->hdev);
}

/* This function requires the caller holds hdev->lock */
924
static void __hci_req_resume_adv_instances(struct hci_request *req)
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
{
	struct adv_info *adv;

	bt_dev_dbg(req->hdev, "Resuming advertising instances");

	if (ext_adv_capable(req->hdev)) {
		/* Call for each tracked instance to be re-enabled */
		list_for_each_entry(adv, &req->hdev->adv_instances, list) {
			__hci_req_enable_ext_advertising(req,
							 adv->instance);
		}

	} else {
		/* Schedule for most recent instance to be restarted and begin
		 * the software rotation loop
		 */
		__hci_req_schedule_adv_instance(req,
						req->hdev->cur_adv_instance,
						true);
	}
}

947 948 949 950 951 952 953 954 955 956 957
/* This function requires the caller holds hdev->lock */
int hci_req_resume_adv_instances(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_resume_adv_instances(&req);

	return hci_req_run(&req, NULL);
}

958
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
959
{
960
	return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
961 962 963 964
}

void __hci_req_disable_advertising(struct hci_request *req)
{
965
	if (ext_adv_capable(req->hdev)) {
966
		__hci_req_disable_ext_adv_instance(req, 0x00);
967

968 969 970 971 972
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
973 974
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

998 999 1000 1001 1002 1003
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

1004 1005 1006 1007
	/* Check le_states if there is any connection in peripheral role. */
	if (hdev->conn_hash.le_num_peripheral > 0) {
		/* Peripheral connection state and non connectable mode bit 20.
		 */
1008 1009 1010
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

1011
		/* Peripheral connection state and connectable mode bit 38
1012 1013
		 * and scannable bit 21.
		 */
1014 1015
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1016 1017 1018
			return false;
	}

1019 1020 1021
	/* Check le_states if there is any connection in central role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
		/* Central connection state and non connectable mode bit 18. */
1022 1023 1024
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

1025
		/* Central connection state and connectable mode bit 35 and
1026 1027
		 * scannable 19.
		 */
1028
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1029 1030 1031 1032 1033 1034 1035
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1036 1037 1038
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
1039
	struct adv_info *adv;
1040 1041 1042
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1043
	u16 adv_min_interval, adv_max_interval;
1044 1045
	u32 flags;

1046 1047
	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
	adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1048 1049 1050 1051 1052 1053 1054 1055

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1072 1073 1074
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1075 1076 1077 1078
		return;

	memset(&cp, 0, sizeof(cp));

1079 1080 1081
	if (adv) {
		adv_min_interval = adv->min_interval;
		adv_max_interval = adv->max_interval;
1082
	} else {
1083 1084
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
1085 1086 1087 1088
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
1089
	} else {
1090
		if (adv_cur_instance_is_scannable(hdev))
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1104 1105 1106 1107 1108 1109 1110 1111
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1112
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1113 1114 1115 1116 1117 1118 1119
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1120
	if (ext_adv_capable(hdev)) {
1121 1122 1123 1124
		struct {
			struct hci_cp_le_set_ext_scan_rsp_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1125

1126
		memset(&pdu, 0, sizeof(pdu));
1127

1128
		len = eir_create_scan_rsp(hdev, instance, pdu.data);
1129 1130

		if (hdev->scan_rsp_data_len == len &&
1131
		    !memcmp(pdu.data, hdev->scan_rsp_data, len))
1132 1133
			return;

1134
		memcpy(hdev->scan_rsp_data, pdu.data, len);
1135 1136
		hdev->scan_rsp_data_len = len;

1137 1138 1139 1140
		pdu.cp.handle = instance;
		pdu.cp.length = len;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1141

1142 1143
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1144 1145 1146 1147 1148
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

1149
		len = eir_create_scan_rsp(hdev, instance, cp.data);
1150 1151 1152 1153

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1154

1155 1156
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1157

1158
		cp.length = len;
1159

1160 1161
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1162 1163
}

1164
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1165 1166 1167 1168 1169 1170 1171
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1172
	if (ext_adv_capable(hdev)) {
1173 1174 1175 1176
		struct {
			struct hci_cp_le_set_ext_adv_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1177

1178
		memset(&pdu, 0, sizeof(pdu));
1179

1180
		len = eir_create_adv_data(hdev, instance, pdu.data);
1181 1182 1183

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
1184
		    memcmp(pdu.data, hdev->adv_data, len) == 0)
1185 1186
			return;

1187
		memcpy(hdev->adv_data, pdu.data, len);
1188 1189
		hdev->adv_data_len = len;

1190 1191 1192 1193
		pdu.cp.length = len;
		pdu.cp.handle = instance;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1194

1195 1196
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1197 1198 1199 1200
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1201

1202
		len = eir_create_adv_data(hdev, instance, cp.data);
1203 1204 1205 1206 1207

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1208

1209 1210 1211 1212 1213 1214 1215
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1216 1217
}

1218
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1219 1220 1221 1222 1223 1224 1225 1226 1227
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

1239
	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1240 1241 1242 1243 1244 1245 1246 1247 1248
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1249 1250
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1251
	bt_dev_dbg(hdev, "status %u", status);
1252 1253 1254 1255 1256 1257 1258
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1259
	    list_empty(&hdev->adv_instances))
1260 1261 1262 1263
		return;

	hci_req_init(&req, hdev);

1264 1265 1266
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1267
	} else {
1268 1269 1270 1271 1272 1273 1274
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1288
	bt_dev_dbg(hdev, "");
1289 1290 1291 1292 1293

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1294
	instance = hdev->cur_adv_instance;
1295 1296 1297 1298 1299
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1300
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1301 1302 1303 1304

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1305
	hci_req_run(&req, NULL);
1306 1307 1308 1309 1310

unlock:
	hci_dev_unlock(hdev);
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
1379 1380 1381
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1382
		if (use_ll_privacy(hdev))
1383 1384 1385
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1386 1387

		if (adv_instance) {
1388
			if (adv_rpa_valid(adv_instance))
1389 1390
				return 0;
		} else {
1391
			if (rpa_valid(hdev))
1392 1393 1394 1395 1396
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1397
			bt_dev_err(hdev, "failed to generate new RPA");
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1440 1441 1442 1443 1444
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
	    hci_lookup_le_connect(hdev)) {
		bt_dev_dbg(hdev, "Deferring random address update");
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

1469
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1470 1471 1472 1473 1474
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1475 1476 1477 1478
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1479
	bool secondary_adv;
1480

1481 1482 1483 1484 1485 1486 1487 1488
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1489
	flags = hci_adv_instance_flags(hdev, instance);
1490 1491 1492 1493 1494 1495 1496

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1497
	if (!is_advertising_allowed(hdev, connectable))
1498 1499
		return -EPERM;

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1510 1511
	memset(&cp, 0, sizeof(cp));

1512 1513 1514 1515 1516 1517 1518 1519 1520
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
1521

1522 1523 1524 1525 1526 1527 1528
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1529
	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1530
		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1541

1542
	cp.own_addr_type = own_addr_type;
1543
	cp.channel_map = hdev->le_adv_channel_map;
1544
	cp.handle = instance;
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1558 1559
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1560 1561
	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
1572 1573 1574 1575 1576 1577 1578
			/* Instance 0x00 doesn't have an adv_info, instead it
			 * uses hdev->random_addr to track its address so
			 * whenever it needs to be updated this also set the
			 * random address since hdev->random_addr is shared with
			 * scan state machine.
			 */
			set_random_addr(req, &random_addr);
1579 1580 1581 1582
		}

		memset(&cp, 0, sizeof(cp));

1583
		cp.handle = instance;
1584 1585 1586 1587 1588 1589 1590
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1591 1592 1593
	return 0;
}

1594
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1595
{
1596
	struct hci_dev *hdev = req->hdev;
1597 1598 1599
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1600 1601 1602 1603 1604 1605 1606 1607 1608
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1620 1621 1622 1623 1624 1625
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1626
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1627 1628 1629 1630

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1631 1632 1633 1634

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1635 1636

	return 0;
1637 1638
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

1681 1682
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1683
	struct hci_dev *hdev = req->hdev;
1684
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
1685 1686
	int err;

1687 1688 1689 1690 1691
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
1692

1693 1694 1695 1696
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

1697
	__hci_req_update_scan_rsp_data(req, instance);
1698
	__hci_req_enable_ext_advertising(req, instance);
1699 1700 1701 1702

	return 0;
}

1703 1704 1705 1706 1707 1708 1709 1710
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1711
	    list_empty(&hdev->adv_instances))
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

1742 1743 1744 1745
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
1746 1747
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
1748
	}
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
1759 1760 1761 1762 1763 1764 1765
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
1781 1782 1783
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
1809
				mgmt_advertising_removed(sk, hdev, rem_inst);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
1823
				mgmt_advertising_removed(sk, hdev, instance);
1824 1825 1826 1827 1828 1829 1830
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

1831
	if (next_instance && !ext_adv_capable(hdev))
1832 1833 1834 1835
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

1836
int hci_update_random_address(struct hci_request *req, bool require_privacy,
1837
			      bool use_rpa, u8 *own_addr_type)
1838 1839 1840 1841 1842 1843 1844 1845
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
1846
	if (use_rpa) {
1847 1848 1849
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1850
		if (use_ll_privacy(hdev))
1851 1852 1853
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1854

1855
		if (rpa_valid(hdev))
1856 1857 1858 1859
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1860
			bt_dev_err(hdev, "failed to generate new RPA");
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
1900 1901 1902 1903
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
1904
	 */
1905
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1906
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1907
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1908
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
1923

1924
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
1925 1926 1927
{
	struct bdaddr_list *b;

1928
	list_for_each_entry(b, &hdev->accept_list, list) {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

1942
void __hci_req_update_scan(struct hci_request *req)
1943 1944 1945 1946
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

1947
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1948 1949 1950 1951 1952 1953 1954 1955
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

1956 1957 1958
	if (hdev->scanning_paused)
		return;

1959
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1960
	    disconnected_accept_list_entries(hdev))
1961 1962 1963 1964
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

1965
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1966 1967
		scan |= SCAN_INQUIRY;

1968 1969 1970 1971
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

1972 1973 1974
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

1975
static int update_scan(struct hci_request *req, unsigned long opt)
1976
{
1977 1978 1979 1980 1981
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
1982

1983 1984 1985 1986 1987
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1988 1989
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2003
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2004 2005 2006

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2007 2008 2009 2010 2011 2012
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

2047
	bt_dev_dbg(hdev, "");
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2115
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2116
		__hci_req_update_adv_data(req, 0x00);
2117

2118 2119 2120
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2121 2122 2123 2124 2125 2126
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2127 2128
	}

2129 2130 2131 2132 2133
	hci_dev_unlock(hdev);

	return 0;
}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2191
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2206
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2220
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2221 2222 2223 2224 2225
		return err;
	}

	return 0;
}
2226

2227
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2228 2229 2230 2231
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2232
	return 0;
2233 2234 2235 2236 2237 2238
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2252

2253
	hci_dev_unlock(hdev);
2254 2255
}

2256
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2257
{
2258
	hci_req_add_le_scan_disable(req, false);
2259
	return 0;
2260 2261
}

2262
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2263
{
2264
	u8 length = opt;
2265 2266
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2267 2268
	struct hci_cp_inquiry cp;

2269 2270 2271
	if (test_bit(HCI_INQUIRY, &req->hdev->flags))
		return 0;

2272
	bt_dev_dbg(req->hdev, "");
2273

2274 2275 2276
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2277

2278
	memset(&cp, 0, sizeof(cp));
2279 2280 2281 2282 2283 2284

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2285
	cp.length = length;
2286

2287
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2288

2289
	return 0;
2290 2291 2292 2293 2294 2295 2296 2297
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2298
	bt_dev_dbg(hdev, "");
2299

2300 2301 2302
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2303 2304
	cancel_delayed_work(&hdev->le_scan_restart);

2305 2306
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2307 2308
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2326 2327
		return;

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2339
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2340 2341 2342 2343 2344 2345 2346 2347 2348
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2349 2350
}

2351 2352 2353 2354 2355 2356 2357 2358
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

2359 2360 2361 2362 2363
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

2364
	hci_req_add_le_scan_disable(req, false);
2365

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2383 2384 2385 2386 2387

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2388
{
2389 2390
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2391
	unsigned long timeout, duration, scan_start, now;
2392
	u8 status;
2393

2394
	bt_dev_dbg(hdev, "");
2395

2396
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2397
	if (status) {
2398 2399
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2437 2438 2439 2440 2441
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
2442
	/* Accept list is not used for discovery */
2443
	u8 filter_policy = 0x00;
2444 2445
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2446 2447
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
2448 2449
	int err;

2450
	bt_dev_dbg(hdev, "");
2451 2452 2453 2454 2455

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
2456
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2457
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
2458 2459
		cancel_interleave_scan(hdev);
	}
2460 2461 2462 2463 2464

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2465 2466
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2467 2468 2469
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	if (hci_is_adv_monitoring(hdev)) {
		/* Duplicate filter should be disabled when some advertisement
		 * monitor is activated, otherwise AdvMon can only receive one
		 * advertisement for one peer(*) during active scanning, and
		 * might report loss to these peers.
		 *
		 * Note that different controllers have different meanings of
		 * |duplicate|. Some of them consider packets with the same
		 * address as duplicate, and others consider packets with the
		 * same address and the same RSSI as duplicate. Although in the
		 * latter case we don't need to disable duplicate filter, but
		 * it is common to have active scanning for a short period of
		 * time, the power impact should be neglectable.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
	}

2487 2488
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
2489
			   filter_policy, filter_dup, addr_resolv);
2490 2491 2492 2493 2494 2495 2496
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

2497
	bt_dev_dbg(req->hdev, "");
2498 2499 2500 2501 2502

	err = active_scan(req, opt);
	if (err)
		return err;

2503
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2504 2505 2506 2507 2508 2509
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

2510
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
2511 2512 2513 2514

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2515 2516
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
2536
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2537 2538 2539 2540 2541
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2542
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2543 2544 2545 2546
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2547
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

2558
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2575 2576 2577 2578 2579 2580 2581 2582
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

2583
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
2584 2585 2586 2587 2588 2589 2590

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
2591
			cancel_delayed_work(&hdev->le_scan_restart);
2592
			hci_req_add_le_scan_disable(req, false);
2593 2594 2595 2596 2597 2598
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2599
			hci_req_add_le_scan_disable(req, false);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
static void config_data_path_complete(struct hci_dev *hdev, u8 status,
				      u16 opcode)
{
	bt_dev_dbg(hdev, "status %u", status);
}

int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec)
{
	struct hci_request req;
	int err;
	__u8 vnd_len, *vnd_data = NULL;
	struct hci_op_configure_data_path *cmd = NULL;

	hci_req_init(&req, hdev);

	err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
					  &vnd_data);
	if (err < 0)
		goto error;

	cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
	if (!cmd) {
		err = -ENOMEM;
		goto error;
	}

	err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
	if (err < 0)
		goto error;

	cmd->vnd_len = vnd_len;
	memcpy(cmd->vnd_data, vnd_data, vnd_len);

	cmd->direction = 0x00;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	cmd->direction = 0x01;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	err = hci_req_run(&req, config_data_path_complete);
error:

	kfree(cmd);
	kfree(vnd_data);
	return err;
}

2670 2671 2672 2673 2674 2675 2676 2677 2678
static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2694 2695 2696 2697 2698 2699
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2700 2701 2702 2703 2704 2705
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2706 2707 2708 2709 2710
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

2711
	bt_dev_dbg(hdev, "");
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

2767
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2768 2769 2770 2771
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
2772 2773
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
2787

2788
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2789
				if (!ext_adv_capable(hdev))
2790
					__hci_req_enable_advertising(req);
2791
				else if (!err)
2792 2793
					__hci_req_enable_ext_advertising(req,
									 0x00);
2794
			}
2795 2796
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
2797 2798 2799 2800

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
2801
							adv_instance->instance,
2802
							true);
2803
		}
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

2839 2840
void hci_request_setup(struct hci_dev *hdev)
{
2841
	INIT_WORK(&hdev->discov_update, discov_update);
2842
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2843
	INIT_WORK(&hdev->scan_update, scan_update_work);
2844
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2845
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2846 2847
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2848
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2849
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
2850 2851 2852 2853
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
2854 2855
	hci_req_sync_cancel(hdev, ENODEV);

2856
	cancel_work_sync(&hdev->discov_update);
2857
	cancel_work_sync(&hdev->bg_scan_update);
2858
	cancel_work_sync(&hdev->scan_update);
2859
	cancel_work_sync(&hdev->connectable_update);
2860
	cancel_delayed_work_sync(&hdev->discov_off);
2861 2862
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
2863 2864 2865 2866 2867

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
2868 2869

	cancel_interleave_scan(hdev);
2870
}