Kconfig 63.3 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0-only
2 3
config ARM64
	def_bool y
4
	select ACPI_CCA_REQUIRED if ACPI
5
	select ACPI_GENERIC_GSI if ACPI
6
	select ACPI_GTDT if ACPI
7
	select ACPI_IORT if ACPI
8
	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9
	select ACPI_MCFG if (ACPI && PCI)
10
	select ACPI_SPCR_TABLE if ACPI
11
	select ACPI_PPTT if ACPI
12
	select ARCH_HAS_DEBUG_WX
13
	select ARCH_BINFMT_ELF_STATE
14
	select ARCH_HAS_DEBUG_VIRTUAL
15
	select ARCH_HAS_DEBUG_VM_PGTABLE
16
	select ARCH_HAS_DEVMEM_IS_ALLOWED
17
	select ARCH_HAS_DMA_PREP_COHERENT
18
	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19
	select ARCH_HAS_FAST_MULTIPLIER
20
	select ARCH_HAS_FORTIFY_SOURCE
21
	select ARCH_HAS_GCOV_PROFILE_ALL
22
	select ARCH_HAS_GIGANTIC_PAGE
23
	select ARCH_HAS_KCOV
24
	select ARCH_HAS_KEEPINITRD
25
	select ARCH_HAS_MEMBARRIER_SYNC_CORE
26
	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
27
	select ARCH_HAS_PTE_DEVMAP
28
	select ARCH_HAS_PTE_SPECIAL
29
	select ARCH_HAS_SETUP_DMA_OPS
30
	select ARCH_HAS_SET_DIRECT_MAP
31
	select ARCH_HAS_SET_MEMORY
32
	select ARCH_STACKWALK
33 34
	select ARCH_HAS_STRICT_KERNEL_RWX
	select ARCH_HAS_STRICT_MODULE_RWX
35 36
	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
	select ARCH_HAS_SYNC_DMA_FOR_CPU
37
	select ARCH_HAS_SYSCALL_WRAPPER
38
	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
39
	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
40
	select ARCH_HAVE_ELF_PROT
41
	select ARCH_HAVE_NMI_SAFE_CMPXCHG
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
	select ARCH_INLINE_READ_LOCK if !PREEMPTION
	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
68
	select ARCH_KEEP_MEMBLOCK
69
	select ARCH_USE_CMPXCHG_LOCKREF
70
	select ARCH_USE_GNU_PROPERTY
71
	select ARCH_USE_QUEUED_RWLOCKS
72
	select ARCH_USE_QUEUED_SPINLOCKS
73
	select ARCH_USE_SYM_ANNOTATIONS
74
	select ARCH_SUPPORTS_MEMORY_FAILURE
75
	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
76
	select ARCH_SUPPORTS_ATOMIC_RMW
77
	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
78
	select ARCH_SUPPORTS_NUMA_BALANCING
79
	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
80
	select ARCH_WANT_DEFAULT_BPF_JIT
81
	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
82
	select ARCH_WANT_FRAME_POINTERS
83
	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
84
	select ARCH_HAS_UBSAN_SANITIZE_ALL
85
	select ARM_AMBA
86
	select ARM_ARCH_TIMER
87
	select ARM_GIC
88
	select AUDIT_ARCH_COMPAT_GENERIC
89
	select ARM_GIC_V2M if PCI
90
	select ARM_GIC_V3
91
	select ARM_GIC_V3_ITS if PCI
92
	select ARM_PSCI_FW
93
	select BUILDTIME_TABLE_SORT
94
	select CLONE_BACKWARDS
95
	select COMMON_CLK
96
	select CPU_PM if (SUSPEND || CPU_IDLE)
97
	select CRC32
98
	select DCACHE_WORD_ACCESS
99
	select DMA_DIRECT_REMAP
100
	select EDAC_SUPPORT
101
	select FRAME_POINTER
102
	select GENERIC_ALLOCATOR
103
	select GENERIC_ARCH_TOPOLOGY
104
	select GENERIC_CLOCKEVENTS
105
	select GENERIC_CLOCKEVENTS_BROADCAST
106
	select GENERIC_CPU_AUTOPROBE
107
	select GENERIC_CPU_VULNERABILITIES
108
	select GENERIC_EARLY_IOREMAP
109
	select GENERIC_IDLE_POLL_SETUP
110
	select GENERIC_IRQ_IPI
111
	select GENERIC_IRQ_MULTI_HANDLER
112 113
	select GENERIC_IRQ_PROBE
	select GENERIC_IRQ_SHOW
114
	select GENERIC_IRQ_SHOW_LEVEL
115
	select GENERIC_PCI_IOMAP
116
	select GENERIC_PTDUMP
117
	select GENERIC_SCHED_CLOCK
118
	select GENERIC_SMP_IDLE_THREAD
119 120
	select GENERIC_STRNCPY_FROM_USER
	select GENERIC_STRNLEN_USER
121
	select GENERIC_TIME_VSYSCALL
122
	select GENERIC_GETTIMEOFDAY
123
	select GENERIC_VDSO_TIME_NS
124
	select HANDLE_DOMAIN_IRQ
125
	select HARDIRQS_SW_RESEND
126
	select HAVE_PCI
127
	select HAVE_ACPI_APEI if (ACPI && EFI)
128
	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
129
	select HAVE_ARCH_AUDITSYSCALL
130
	select HAVE_ARCH_BITREVERSE
131
	select HAVE_ARCH_COMPILER_H
132
	select HAVE_ARCH_HUGE_VMAP
133
	select HAVE_ARCH_JUMP_LABEL
134
	select HAVE_ARCH_JUMP_LABEL_RELATIVE
135
	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
136
	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
137
	select HAVE_ARCH_KGDB
138 139
	select HAVE_ARCH_MMAP_RND_BITS
	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
140
	select HAVE_ARCH_PREL32_RELOCATIONS
141
	select HAVE_ARCH_SECCOMP_FILTER
142
	select HAVE_ARCH_STACKLEAK
143
	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
144
	select HAVE_ARCH_TRACEHOOK
145
	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
146
	select HAVE_ARCH_VMAP_STACK
147
	select HAVE_ARM_SMCCC
148
	select HAVE_ASM_MODVERSIONS
149
	select HAVE_EBPF_JIT
150
	select HAVE_C_RECORDMCOUNT
151
	select HAVE_CMPXCHG_DOUBLE
152
	select HAVE_CMPXCHG_LOCAL
153
	select HAVE_CONTEXT_TRACKING
154
	select HAVE_DEBUG_BUGVERBOSE
155
	select HAVE_DEBUG_KMEMLEAK
L
Laura Abbott 已提交
156
	select HAVE_DMA_CONTIGUOUS
157
	select HAVE_DYNAMIC_FTRACE
158 159
	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
		if $(cc-option,-fpatchable-function-entry=2)
160
	select HAVE_EFFICIENT_UNALIGNED_ACCESS
161
	select HAVE_FAST_GUP
162
	select HAVE_FTRACE_MCOUNT_RECORD
163
	select HAVE_FUNCTION_TRACER
164
	select HAVE_FUNCTION_ERROR_INJECTION
165
	select HAVE_FUNCTION_GRAPH_TRACER
E
Emese Revfy 已提交
166
	select HAVE_GCC_PLUGINS
167
	select HAVE_HW_BREAKPOINT if PERF_EVENTS
168
	select HAVE_IRQ_TIME_ACCOUNTING
169
	select HAVE_NMI
170
	select HAVE_PATA_PLATFORM
171
	select HAVE_PERF_EVENTS
172 173
	select HAVE_PERF_REGS
	select HAVE_PERF_USER_STACK_DUMP
174
	select HAVE_REGS_AND_STACK_ACCESS_API
175
	select HAVE_FUNCTION_ARG_ACCESS_API
176
	select HAVE_FUTEX_CMPXCHG if FUTEX
177
	select MMU_GATHER_RCU_TABLE_FREE
178
	select HAVE_RSEQ
179
	select HAVE_STACKPROTECTOR
180
	select HAVE_SYSCALL_TRACEPOINTS
181
	select HAVE_KPROBES
182
	select HAVE_KRETPROBES
183
	select HAVE_GENERIC_VDSO
184
	select IOMMU_DMA if IOMMU_SUPPORT
185
	select IRQ_DOMAIN
186
	select IRQ_FORCED_THREADING
187
	select MODULES_USE_ELF_RELA
188
	select NEED_DMA_MAP_STATE
189
	select NEED_SG_DMA_LENGTH
190 191
	select OF
	select OF_EARLY_FLATTREE
192
	select PCI_DOMAINS_GENERIC if PCI
193
	select PCI_ECAM if (ACPI && PCI)
194
	select PCI_SYSCALL if PCI
195 196
	select POWER_RESET
	select POWER_SUPPLY
197
	select SPARSE_IRQ
198
	select SWIOTLB
199
	select SYSCTL_EXCEPTION_TRACE
200
	select THREAD_INFO_IN_TASK
201 202 203 204 205 206 207 208 209
	help
	  ARM 64-bit (AArch64) Linux support.

config 64BIT
	def_bool y

config MMU
	def_bool y

210 211 212 213 214 215
config ARM64_PAGE_SHIFT
	int
	default 16 if ARM64_64K_PAGES
	default 14 if ARM64_16K_PAGES
	default 12

216
config ARM64_CONT_PTE_SHIFT
217 218 219 220 221
	int
	default 5 if ARM64_64K_PAGES
	default 7 if ARM64_16K_PAGES
	default 4

222 223 224 225 226 227
config ARM64_CONT_PMD_SHIFT
	int
	default 5 if ARM64_64K_PAGES
	default 5 if ARM64_16K_PAGES
	default 4

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
config ARCH_MMAP_RND_BITS_MIN
       default 14 if ARM64_64K_PAGES
       default 16 if ARM64_16K_PAGES
       default 18

# max bits determined by the following formula:
#  VA_BITS - PAGE_SHIFT - 3
config ARCH_MMAP_RND_BITS_MAX
       default 19 if ARM64_VA_BITS=36
       default 24 if ARM64_VA_BITS=39
       default 27 if ARM64_VA_BITS=42
       default 30 if ARM64_VA_BITS=47
       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
       default 33 if ARM64_VA_BITS=48
       default 14 if ARM64_64K_PAGES
       default 16 if ARM64_16K_PAGES
       default 18

config ARCH_MMAP_RND_COMPAT_BITS_MIN
       default 7 if ARM64_64K_PAGES
       default 9 if ARM64_16K_PAGES
       default 11

config ARCH_MMAP_RND_COMPAT_BITS_MAX
       default 16

255
config NO_IOPORT_MAP
256
	def_bool y if !PCI
257 258 259 260

config STACKTRACE_SUPPORT
	def_bool y

261 262 263 264
config ILLEGAL_POINTER_VALUE
	hex
	default 0xdead000000000000

265 266 267 268 269 270
config LOCKDEP_SUPPORT
	def_bool y

config TRACE_IRQFLAGS_SUPPORT
	def_bool y

271 272 273 274 275 276 277 278
config GENERIC_BUG
	def_bool y
	depends on BUG

config GENERIC_BUG_RELATIVE_POINTERS
	def_bool y
	depends on GENERIC_BUG

279 280 281 282 283 284 285 286 287
config GENERIC_HWEIGHT
	def_bool y

config GENERIC_CSUM
        def_bool y

config GENERIC_CALIBRATE_DELAY
	def_bool y

288 289 290 291
config ZONE_DMA
	bool "Support DMA zone" if EXPERT
	default y

292
config ZONE_DMA32
293 294
	bool "Support DMA32 zone" if EXPERT
	default y
295

296 297 298
config ARCH_ENABLE_MEMORY_HOTPLUG
	def_bool y

299 300 301
config ARCH_ENABLE_MEMORY_HOTREMOVE
	def_bool y

302 303 304
config SMP
	def_bool y

305 306 307
config KERNEL_MODE_NEON
	def_bool y

308 309 310
config FIX_EARLYCON_MEM
	def_bool y

311 312
config PGTABLE_LEVELS
	int
S
Suzuki K. Poulose 已提交
313
	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
314
	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
315
	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
316
	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
317 318
	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
319

320 321 322
config ARCH_SUPPORTS_UPROBES
	def_bool y

323 324 325
config ARCH_PROC_KCORE_TEXT
	def_bool y

326 327 328
config BROKEN_GAS_INST
	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)

329 330 331
config KASAN_SHADOW_OFFSET
	hex
	depends on KASAN
332
	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
333 334 335 336
	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
337
	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
338 339 340 341 342 343
	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
	default 0xffffffffffffffff

344
source "arch/arm64/Kconfig.platforms"
345 346 347

menu "Kernel Features"

348 349
menu "ARM errata workarounds via the alternatives framework"

350
config ARM64_WORKAROUND_CLEAN_CACHE
351
	bool
352

353 354 355
config ARM64_ERRATUM_826319
	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
	default y
356
	select ARM64_WORKAROUND_CLEAN_CACHE
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
	  AXI master interface and an L2 cache.

	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
	  and is unable to accept a certain write via this interface, it will
	  not progress on read data presented on the read data channel and the
	  system can deadlock.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_827319
	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
	default y
378
	select ARM64_WORKAROUND_CLEAN_CACHE
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
	  master interface and an L2 cache.

	  Under certain conditions this erratum can cause a clean line eviction
	  to occur at the same time as another transaction to the same address
	  on the AMBA 5 CHI interface, which can cause data corruption if the
	  interconnect reorders the two transactions.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_824069
	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
	default y
400
	select ARM64_WORKAROUND_CLEAN_CACHE
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
	  to a coherent interconnect.

	  If a Cortex-A53 processor is executing a store or prefetch for
	  write instruction at the same time as a processor in another
	  cluster is executing a cache maintenance operation to the same
	  address, then this erratum might cause a clean cache line to be
	  incorrectly marked as dirty.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this option does not necessarily enable the
	  workaround, as it depends on the alternative framework, which will
	  only patch the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_819472
	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
	default y
423
	select ARM64_WORKAROUND_CLEAN_CACHE
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
	  present when it is connected to a coherent interconnect.

	  If the processor is executing a load and store exclusive sequence at
	  the same time as a processor in another cluster is executing a cache
	  maintenance operation to the same address, then this erratum might
	  cause data corruption.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_832075
	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
	default y
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 832075 on Cortex-A57 parts up to r1p2.

	  Affected Cortex-A57 parts might deadlock when exclusive load/store
	  instructions to Write-Back memory are mixed with Device loads.

	  The workaround is to promote device loads to use Load-Acquire
	  semantics.
	  Please note that this does not necessarily enable the workaround,
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_834220
	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
	depends on KVM
	default y
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 834220 on Cortex-A57 parts up to r1p2.

	  Affected Cortex-A57 parts might report a Stage 2 translation
	  fault as the result of a Stage 1 fault for load crossing a
	  page boundary when there is a permission or device memory
	  alignment fault at Stage 1 and a translation fault at Stage 2.

	  The workaround is to verify that the Stage 1 translation
	  doesn't generate a fault before handling the Stage 2 fault.
	  Please note that this does not necessarily enable the workaround,
476 477 478 479 480
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
config ARM64_ERRATUM_845719
	bool "Cortex-A53: 845719: a load might read incorrect data"
	depends on COMPAT
	default y
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 845719 on Cortex-A53 parts up to r0p4.

	  When running a compat (AArch32) userspace on an affected Cortex-A53
	  part, a load at EL0 from a virtual address that matches the bottom 32
	  bits of the virtual address used by a recent load at (AArch64) EL1
	  might return incorrect data.

	  The workaround is to write the contextidr_el1 register on exception
	  return to a 32-bit task.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

502 503 504
config ARM64_ERRATUM_843419
	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
	default y
505
	select ARM64_MODULE_PLTS if MODULES
506
	help
507
	  This option links the kernel with '--fix-cortex-a53-843419' and
508 509 510
	  enables PLT support to replace certain ADRP instructions, which can
	  cause subsequent memory accesses to use an incorrect address on
	  Cortex-A53 parts up to r0p4.
511 512 513

	  If unsure, say Y.

514 515 516 517
config ARM64_ERRATUM_1024718
	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
	default y
	help
518
	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
519 520 521

	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
	  update of the hardware dirty bit when the DBM/AP bits are updated
522
	  without a break-before-make. The workaround is to disable the usage
523
	  of hardware DBM locally on the affected cores. CPUs not affected by
524
	  this erratum will continue to use the feature.
525 526 527

	  If unsure, say Y.

528
config ARM64_ERRATUM_1418040
529
	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
530
	default y
531
	depends on COMPAT
532
	help
533
	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
534
	  errata 1188873 and 1418040.
535

536
	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
537 538
	  cause register corruption when accessing the timer registers
	  from AArch32 userspace.
539 540 541

	  If unsure, say Y.

542
config ARM64_WORKAROUND_SPECULATIVE_AT
543 544
	bool

545
config ARM64_ERRATUM_1165522
546
	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
547
	default y
548
	select ARM64_WORKAROUND_SPECULATIVE_AT
549
	help
550
	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
551 552 553 554 555 556 557

	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
	  corrupted TLBs by speculating an AT instruction during a guest
	  context switch.

	  If unsure, say Y.

558 559 560 561 562 563 564 565 566 567 568 569 570
config ARM64_ERRATUM_1319367
	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
	default y
	select ARM64_WORKAROUND_SPECULATIVE_AT
	help
	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
	  and A72 erratum 1319367

	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
	  speculating an AT instruction during a guest context switch.

	  If unsure, say Y.

571
config ARM64_ERRATUM_1530923
572
	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
573
	default y
574
	select ARM64_WORKAROUND_SPECULATIVE_AT
575 576 577 578 579 580 581 582
	help
	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.

	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
	  corrupted TLBs by speculating an AT instruction during a guest
	  context switch.

	  If unsure, say Y.
583

584 585 586
config ARM64_WORKAROUND_REPEAT_TLBI
	bool

587 588 589 590 591
config ARM64_ERRATUM_1286807
	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
	default y
	select ARM64_WORKAROUND_REPEAT_TLBI
	help
592
	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
593 594 595 596 597 598 599 600 601 602

	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
	  address for a cacheable mapping of a location is being
	  accessed by a core while another core is remapping the virtual
	  address to a new physical page using the recommended
	  break-before-make sequence, then under very rare circumstances
	  TLBI+DSB completes before a read using the translation being
	  invalidated has been observed by other observers. The
	  workaround repeats the TLBI+DSB operation.

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
config ARM64_ERRATUM_1463225
	bool "Cortex-A76: Software Step might prevent interrupt recognition"
	default y
	help
	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.

	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
	  of a system call instruction (SVC) can prevent recognition of
	  subsequent interrupts when software stepping is disabled in the
	  exception handler of the system call and either kernel debugging
	  is enabled or VHE is in use.

	  Work around the erratum by triggering a dummy step exception
	  when handling a system call from a task that is being stepped
	  in a VHE configuration of the kernel.

	  If unsure, say Y.

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
config ARM64_ERRATUM_1542419
	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
	default y
	help
	  This option adds a workaround for ARM Neoverse-N1 erratum
	  1542419.

	  Affected Neoverse-N1 cores could execute a stale instruction when
	  modified by another CPU. The workaround depends on a firmware
	  counterpart.

	  Workaround the issue by hiding the DIC feature from EL0. This
	  forces user-space to perform cache maintenance.

	  If unsure, say Y.

637 638 639 640
config CAVIUM_ERRATUM_22375
	bool "Cavium erratum 22375, 24313"
	default y
	help
641
	  Enable workaround for errata 22375 and 24313.
642 643

	  This implements two gicv3-its errata workarounds for ThunderX. Both
644
	  with a small impact affecting only ITS table allocation.
645 646 647 648 649 650 651 652 653

	    erratum 22375: only alloc 8MB table size
	    erratum 24313: ignore memory access type

	  The fixes are in ITS initialization and basically ignore memory access
	  type and table size provided by the TYPER and BASER registers.

	  If unsure, say Y.

654 655 656 657 658 659 660 661 662
config CAVIUM_ERRATUM_23144
	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
	depends on NUMA
	default y
	help
	  ITS SYNC command hang for cross node io and collections/cpu mapping.

	  If unsure, say Y.

663 664 665 666 667 668 669 670 671 672
config CAVIUM_ERRATUM_23154
	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
	default y
	help
	  The gicv3 of ThunderX requires a modified version for
	  reading the IAR status to ensure data synchronization
	  (access to icc_iar1_el1 is not sync'ed before and after).

	  If unsure, say Y.

673 674 675 676 677 678 679 680 681 682 683
config CAVIUM_ERRATUM_27456
	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
	default y
	help
	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
	  instructions may cause the icache to become corrupted if it
	  contains data for a non-current ASID.  The fix is to
	  invalidate the icache when changing the mm context.

	  If unsure, say Y.

684 685 686 687 688 689 690 691 692 693 694
config CAVIUM_ERRATUM_30115
	bool "Cavium erratum 30115: Guest may disable interrupts in host"
	default y
	help
	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
	  1.2, and T83 Pass 1.0, KVM guest execution may disable
	  interrupts in host. Trapping both GICv3 group-0 and group-1
	  accesses sidesteps the issue.

	  If unsure, say Y.

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
config CAVIUM_TX2_ERRATUM_219
	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
	default y
	help
	  On Cavium ThunderX2, a load, store or prefetch instruction between a
	  TTBR update and the corresponding context synchronizing operation can
	  cause a spurious Data Abort to be delivered to any hardware thread in
	  the CPU core.

	  Work around the issue by avoiding the problematic code sequence and
	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
	  trap handler performs the corresponding register access, skips the
	  instruction and ensures context synchronization by virtue of the
	  exception return.

	  If unsure, say Y.

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
config FUJITSU_ERRATUM_010001
	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
	default y
	help
	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
	  This fault occurs under a specific hardware condition when a
	  load/store instruction performs an address translation using:
	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.

	  The workaround is to ensure these bits are clear in TCR_ELx.
	  The workaround only affects the Fujitsu-A64FX.

	  If unsure, say Y.

config HISILICON_ERRATUM_161600802
	bool "Hip07 161600802: Erroneous redistributor VLPI base"
	default y
	help
	  The HiSilicon Hip07 SoC uses the wrong redistributor base
	  when issued ITS commands such as VMOVP and VMAPP, and requires
	  a 128kB offset to be applied to the target address in this commands.

	  If unsure, say Y.

741 742 743 744 745
config QCOM_FALKOR_ERRATUM_1003
	bool "Falkor E1003: Incorrect translation due to ASID change"
	default y
	help
	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
746 747 748 749 750
	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
	  then only for entries in the walk cache, since the leaf translation
	  is unchanged. Work around the erratum by invalidating the walk cache
	  entries for the trampoline before entering the kernel proper.
751

752 753 754
config QCOM_FALKOR_ERRATUM_1009
	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
	default y
755
	select ARM64_WORKAROUND_REPEAT_TLBI
756 757 758 759 760 761 762
	help
	  On Falkor v1, the CPU may prematurely complete a DSB following a
	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
	  one more time to fix the issue.

	  If unsure, say Y.

763 764 765 766 767 768 769 770 771 772
config QCOM_QDF2400_ERRATUM_0065
	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
	default y
	help
	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).

	  If unsure, say Y.

773 774 775 776 777 778 779 780 781 782
config QCOM_FALKOR_ERRATUM_E1041
	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
	default y
	help
	  Falkor CPU may speculatively fetch instructions from an improper
	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.

	  If unsure, say Y.

783 784
config SOCIONEXT_SYNQUACER_PREITS
	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
785 786
	default y
	help
787 788
	  Socionext Synquacer SoCs implement a separate h/w block to generate
	  MSI doorbell writes with non-zero values for the device ID.
789 790 791

	  If unsure, say Y.

792 793 794
endmenu


795 796 797 798 799 800 801 802 803 804 805
choice
	prompt "Page size"
	default ARM64_4K_PAGES
	help
	  Page size (translation granule) configuration.

config ARM64_4K_PAGES
	bool "4KB"
	help
	  This feature enables 4KB pages support.

806 807 808 809 810 811 812
config ARM64_16K_PAGES
	bool "16KB"
	help
	  The system will use 16KB pages support. AArch32 emulation
	  requires applications compiled with 16K (or a multiple of 16K)
	  aligned segments.

813
config ARM64_64K_PAGES
814
	bool "64KB"
815 816 817
	help
	  This feature enables 64KB pages support (4KB by default)
	  allowing only two levels of page tables and faster TLB
818 819
	  look-up. AArch32 emulation requires applications compiled
	  with 64K aligned segments.
820

821 822 823 824 825
endchoice

choice
	prompt "Virtual address space size"
	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
826
	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
827 828 829 830 831 832
	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
	help
	  Allows choosing one of multiple possible virtual address
	  space sizes. The level of translation table is determined by
	  a combination of page size and virtual address space size.

S
Suzuki K. Poulose 已提交
833
config ARM64_VA_BITS_36
834
	bool "36-bit" if EXPERT
S
Suzuki K. Poulose 已提交
835 836
	depends on ARM64_16K_PAGES

837 838 839 840 841 842 843 844
config ARM64_VA_BITS_39
	bool "39-bit"
	depends on ARM64_4K_PAGES

config ARM64_VA_BITS_42
	bool "42-bit"
	depends on ARM64_64K_PAGES

845 846 847 848
config ARM64_VA_BITS_47
	bool "47-bit"
	depends on ARM64_16K_PAGES

849 850 851
config ARM64_VA_BITS_48
	bool "48-bit"

852 853
config ARM64_VA_BITS_52
	bool "52-bit"
854 855 856
	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
	help
	  Enable 52-bit virtual addressing for userspace when explicitly
857 858 859
	  requested via a hint to mmap(). The kernel will also use 52-bit
	  virtual addresses for its own mappings (provided HW support for
	  this feature is available, otherwise it reverts to 48-bit).
860 861 862 863 864 865 866 867

	  NOTE: Enabling 52-bit virtual addressing in conjunction with
	  ARMv8.3 Pointer Authentication will result in the PAC being
	  reduced from 7 bits to 3 bits, which may have a significant
	  impact on its susceptibility to brute-force attacks.

	  If unsure, select 48-bit virtual addressing instead.

868 869
endchoice

870 871
config ARM64_FORCE_52BIT
	bool "Force 52-bit virtual addresses for userspace"
872
	depends on ARM64_VA_BITS_52 && EXPERT
873 874 875 876 877 878 879 880 881 882
	help
	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
	  to maintain compatibility with older software by providing 48-bit VAs
	  unless a hint is supplied to mmap.

	  This configuration option disables the 48-bit compatibility logic, and
	  forces all userspace addresses to be 52-bit on HW that supports it. One
	  should only enable this configuration option for stress testing userspace
	  memory management code. If unsure say N here.

883 884
config ARM64_VA_BITS
	int
S
Suzuki K. Poulose 已提交
885
	default 36 if ARM64_VA_BITS_36
886 887
	default 39 if ARM64_VA_BITS_39
	default 42 if ARM64_VA_BITS_42
888
	default 47 if ARM64_VA_BITS_47
889 890
	default 48 if ARM64_VA_BITS_48
	default 52 if ARM64_VA_BITS_52
891

892 893 894 895 896 897 898 899 900 901
choice
	prompt "Physical address space size"
	default ARM64_PA_BITS_48
	help
	  Choose the maximum physical address range that the kernel will
	  support.

config ARM64_PA_BITS_48
	bool "48-bit"

902 903 904 905 906 907 908 909 910 911 912 913
config ARM64_PA_BITS_52
	bool "52-bit (ARMv8.2)"
	depends on ARM64_64K_PAGES
	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
	help
	  Enable support for a 52-bit physical address space, introduced as
	  part of the ARMv8.2-LPA extension.

	  With this enabled, the kernel will also continue to work on CPUs that
	  do not support ARMv8.2-LPA, but with some added memory overhead (and
	  minor performance overhead).

914 915 916 917 918
endchoice

config ARM64_PA_BITS
	int
	default 48 if ARM64_PA_BITS_48
919
	default 52 if ARM64_PA_BITS_52
920

921 922 923 924 925 926 927 928
choice
	prompt "Endianness"
	default CPU_LITTLE_ENDIAN
	help
	  Select the endianness of data accesses performed by the CPU. Userspace
	  applications will need to be compiled and linked for the endianness
	  that is selected here.

929 930 931
config CPU_BIG_ENDIAN
       bool "Build big-endian kernel"
       help
932 933 934 935 936 937 938 939 940
	  Say Y if you plan on running a kernel with a big-endian userspace.

config CPU_LITTLE_ENDIAN
	bool "Build little-endian kernel"
	help
	  Say Y if you plan on running a kernel with a little-endian userspace.
	  This is usually the case for distributions targeting arm64.

endchoice
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955
config SCHED_MC
	bool "Multi-core scheduler support"
	help
	  Multi-core scheduler support improves the CPU scheduler's decision
	  making when dealing with multi-core CPU chips at a cost of slightly
	  increased overhead in some places. If unsure say N here.

config SCHED_SMT
	bool "SMT scheduler support"
	help
	  Improves the CPU scheduler's decision making when dealing with
	  MultiThreading at a cost of slightly increased overhead in some
	  places. If unsure say N here.

956
config NR_CPUS
957 958
	int "Maximum number of CPUs (2-4096)"
	range 2 4096
959
	default "256"
960

961 962
config HOTPLUG_CPU
	bool "Support for hot-pluggable CPUs"
963
	select GENERIC_IRQ_MIGRATION
964 965 966 967
	help
	  Say Y here to experiment with turning CPUs off and on.  CPUs
	  can be controlled through /sys/devices/system/cpu.

968 969
# Common NUMA Features
config NUMA
970
	bool "NUMA Memory Allocation and Scheduler Support"
971 972
	select ACPI_NUMA if ACPI
	select OF_NUMA
973
	help
974
	  Enable NUMA (Non-Uniform Memory Access) support.
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

	  The kernel will try to allocate memory used by a CPU on the
	  local memory of the CPU and add some more
	  NUMA awareness to the kernel.

config NODES_SHIFT
	int "Maximum NUMA Nodes (as a power of 2)"
	range 1 10
	default "2"
	depends on NEED_MULTIPLE_NODES
	help
	  Specify the maximum number of NUMA Nodes available on the target
	  system.  Increases memory reserved to accommodate various tables.

config USE_PERCPU_NUMA_NODE_ID
	def_bool y
	depends on NUMA

993 994 995 996 997 998 999 1000
config HAVE_SETUP_PER_CPU_AREA
	def_bool y
	depends on NUMA

config NEED_PER_CPU_EMBED_FIRST_CHUNK
	def_bool y
	depends on NUMA

1001 1002 1003
config HOLES_IN_ZONE
	def_bool y

1004
source "kernel/Kconfig.hz"
1005

1006 1007 1008
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
	def_bool y

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
config ARCH_SPARSEMEM_ENABLE
	def_bool y
	select SPARSEMEM_VMEMMAP_ENABLE

config ARCH_SPARSEMEM_DEFAULT
	def_bool ARCH_SPARSEMEM_ENABLE

config ARCH_SELECT_MEMORY_MODEL
	def_bool ARCH_SPARSEMEM_ENABLE

1019
config ARCH_FLATMEM_ENABLE
1020
	def_bool !NUMA
1021

1022
config HAVE_ARCH_PFN_VALID
1023
	def_bool y
1024 1025

config HW_PERF_EVENTS
1026 1027
	def_bool y
	depends on ARM_PMU
1028

1029 1030 1031 1032 1033
config SYS_SUPPORTS_HUGETLBFS
	def_bool y

config ARCH_WANT_HUGE_PMD_SHARE

1034 1035 1036
config ARCH_HAS_CACHE_LINE_SIZE
	def_bool y

1037 1038 1039
config ARCH_ENABLE_SPLIT_PMD_PTLOCK
	def_bool y if PGTABLE_LEVELS > 2

1040 1041 1042 1043
# Supported by clang >= 7.0
config CC_HAVE_SHADOW_CALL_STACK
	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)

1044 1045
config SECCOMP
	bool "Enable seccomp to safely compute untrusted bytecode"
1046
	help
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	  This kernel feature is useful for number crunching applications
	  that may need to compute untrusted bytecode during their
	  execution. By using pipes or other transports made available to
	  the process as file descriptors supporting the read/write
	  syscalls, it's possible to isolate those applications in
	  their own address space using seccomp. Once seccomp is
	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
	  and the task is only allowed to execute a few safe syscalls
	  defined by each seccomp mode.

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
config PARAVIRT
	bool "Enable paravirtualization code"
	help
	  This changes the kernel so it can modify itself when it is run
	  under a hypervisor, potentially improving performance significantly
	  over full virtualization.

config PARAVIRT_TIME_ACCOUNTING
	bool "Paravirtual steal time accounting"
	select PARAVIRT
	help
	  Select this option to enable fine granularity task steal time
	  accounting. Time spent executing other tasks in parallel with
	  the current vCPU is discounted from the vCPU power. To account for
	  that, there can be a small performance impact.

	  If in doubt, say N here.

1075 1076 1077 1078
config KEXEC
	depends on PM_SLEEP_SMP
	select KEXEC_CORE
	bool "kexec system call"
1079
	help
1080 1081 1082 1083 1084
	  kexec is a system call that implements the ability to shutdown your
	  current kernel, and to start another kernel.  It is like a reboot
	  but it is independent of the system firmware.   And like a reboot
	  you can start any kernel with it, not just Linux.

1085 1086 1087 1088 1089 1090 1091 1092 1093
config KEXEC_FILE
	bool "kexec file based system call"
	select KEXEC_CORE
	help
	  This is new version of kexec system call. This system call is
	  file based and takes file descriptors as system call argument
	  for kernel and initramfs as opposed to list of segments as
	  accepted by previous system call.

1094
config KEXEC_SIG
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	bool "Verify kernel signature during kexec_file_load() syscall"
	depends on KEXEC_FILE
	help
	  Select this option to verify a signature with loaded kernel
	  image. If configured, any attempt of loading a image without
	  valid signature will fail.

	  In addition to that option, you need to enable signature
	  verification for the corresponding kernel image type being
	  loaded in order for this to work.

config KEXEC_IMAGE_VERIFY_SIG
	bool "Enable Image signature verification support"
	default y
1109
	depends on KEXEC_SIG
1110 1111 1112 1113 1114
	depends on EFI && SIGNED_PE_FILE_VERIFICATION
	help
	  Enable Image signature verification support.

comment "Support for PE file signature verification disabled"
1115
	depends on KEXEC_SIG
1116 1117
	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION

1118 1119 1120 1121 1122 1123 1124 1125 1126
config CRASH_DUMP
	bool "Build kdump crash kernel"
	help
	  Generate crash dump after being started by kexec. This should
	  be normally only set in special crash dump kernels which are
	  loaded in the main kernel with kexec-tools into a specially
	  reserved region and then later executed after a crash by
	  kdump/kexec.

1127
	  For more details see Documentation/admin-guide/kdump/kdump.rst
1128

1129 1130 1131 1132 1133
config XEN_DOM0
	def_bool y
	depends on XEN

config XEN
1134
	bool "Xen guest support on ARM64"
1135
	depends on ARM64 && OF
1136
	select SWIOTLB_XEN
1137
	select PARAVIRT
1138 1139 1140
	help
	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.

1141 1142 1143
config FORCE_MAX_ZONEORDER
	int
	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1144
	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1145
	default "11"
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	help
	  The kernel memory allocator divides physically contiguous memory
	  blocks into "zones", where each zone is a power of two number of
	  pages.  This option selects the largest power of two that the kernel
	  keeps in the memory allocator.  If you need to allocate very large
	  blocks of physically contiguous memory, then you may need to
	  increase this value.

	  This config option is actually maximum order plus one. For example,
	  a value of 11 means that the largest free memory block is 2^10 pages.

	  We make sure that we can allocate upto a HugePage size for each configuration.
	  Hence we have :
		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2

	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
	  4M allocations matching the default size used by generic code.
1163

1164
config UNMAP_KERNEL_AT_EL0
1165
	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1166 1167
	default y
	help
1168 1169 1170 1171 1172
	  Speculation attacks against some high-performance processors can
	  be used to bypass MMU permission checks and leak kernel data to
	  userspace. This can be defended against by unmapping the kernel
	  when running in userspace, mapping it back in on exception entry
	  via a trampoline page in the vector table.
1173 1174 1175

	  If unsure, say Y.

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
config RODATA_FULL_DEFAULT_ENABLED
	bool "Apply r/o permissions of VM areas also to their linear aliases"
	default y
	help
	  Apply read-only attributes of VM areas to the linear alias of
	  the backing pages as well. This prevents code or read-only data
	  from being modified (inadvertently or intentionally) via another
	  mapping of the same memory page. This additional enhancement can
	  be turned off at runtime by passing rodata=[off|on] (and turned on
	  with rodata=full if this option is set to 'n')

	  This requires the linear region to be mapped down to pages,
	  which may adversely affect performance in some cases.

1190 1191 1192 1193 1194 1195 1196 1197
config ARM64_SW_TTBR0_PAN
	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
	help
	  Enabling this option prevents the kernel from accessing
	  user-space memory directly by pointing TTBR0_EL1 to a reserved
	  zeroed area and reserved ASID. The user access routines
	  restore the valid TTBR0_EL1 temporarily.

1198 1199 1200 1201 1202 1203 1204
config ARM64_TAGGED_ADDR_ABI
	bool "Enable the tagged user addresses syscall ABI"
	default y
	help
	  When this option is enabled, user applications can opt in to a
	  relaxed ABI via prctl() allowing tagged addresses to be passed
	  to system calls as pointer arguments. For details, see
1205
	  Documentation/arm64/tagged-address-abi.rst.
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
menuconfig COMPAT
	bool "Kernel support for 32-bit EL0"
	depends on ARM64_4K_PAGES || EXPERT
	select COMPAT_BINFMT_ELF if BINFMT_ELF
	select HAVE_UID16
	select OLD_SIGSUSPEND3
	select COMPAT_OLD_SIGACTION
	help
	  This option enables support for a 32-bit EL0 running under a 64-bit
	  kernel at EL1. AArch32-specific components such as system calls,
	  the user helper functions, VFP support and the ptrace interface are
	  handled appropriately by the kernel.

	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
	  that you will only be able to execute AArch32 binaries that were compiled
	  with page size aligned segments.

	  If you want to execute 32-bit userspace applications, say Y.

if COMPAT

config KUSER_HELPERS
1229
	bool "Enable kuser helpers page for 32-bit applications"
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	default y
	help
	  Warning: disabling this option may break 32-bit user programs.

	  Provide kuser helpers to compat tasks. The kernel provides
	  helper code to userspace in read only form at a fixed location
	  to allow userspace to be independent of the CPU type fitted to
	  the system. This permits binaries to be run on ARMv4 through
	  to ARMv8 without modification.

1240
	  See Documentation/arm/kernel_user_helpers.rst for details.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	  However, the fixed address nature of these helpers can be used
	  by ROP (return orientated programming) authors when creating
	  exploits.

	  If all of the binaries and libraries which run on your platform
	  are built specifically for your platform, and make no use of
	  these helpers, then you can turn this option off to hinder
	  such exploits. However, in that case, if a binary or library
	  relying on those helpers is run, it will not function correctly.

	  Say N here only if you are absolutely certain that you do not
	  need these helpers; otherwise, the safe option is to say Y.

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
config COMPAT_VDSO
	bool "Enable vDSO for 32-bit applications"
	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
	select GENERIC_COMPAT_VDSO
	default y
	help
	  Place in the process address space of 32-bit applications an
	  ELF shared object providing fast implementations of gettimeofday
	  and clock_gettime.

	  You must have a 32-bit build of glibc 2.22 or later for programs
	  to seamlessly take advantage of this.
1267

1268 1269 1270 1271 1272 1273 1274 1275
config THUMB2_COMPAT_VDSO
	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
	depends on COMPAT_VDSO
	default y
	help
	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
	  otherwise with '-marm'.

1276 1277
menuconfig ARMV8_DEPRECATED
	bool "Emulate deprecated/obsolete ARMv8 instructions"
1278
	depends on SYSCTL
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	help
	  Legacy software support may require certain instructions
	  that have been deprecated or obsoleted in the architecture.

	  Enable this config to enable selective emulation of these
	  features.

	  If unsure, say Y

if ARMV8_DEPRECATED

config SWP_EMULATION
	bool "Emulate SWP/SWPB instructions"
	help
	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
	  they are always undefined. Say Y here to enable software
	  emulation of these instructions for userspace using LDXR/STXR.
1296 1297
	  This feature can be controlled at runtime with the abi.swp
	  sysctl which is disabled by default.
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	  In some older versions of glibc [<=2.8] SWP is used during futex
	  trylock() operations with the assumption that the code will not
	  be preempted. This invalid assumption may be more likely to fail
	  with SWP emulation enabled, leading to deadlock of the user
	  application.

	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
	  on an external transaction monitoring block called a global
	  monitor to maintain update atomicity. If your system does not
	  implement a global monitor, this option can cause programs that
	  perform SWP operations to uncached memory to deadlock.

	  If unsure, say Y

config CP15_BARRIER_EMULATION
	bool "Emulate CP15 Barrier instructions"
	help
	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
	  strongly recommended to use the ISB, DSB, and DMB
	  instructions instead.

	  Say Y here to enable software emulation of these
	  instructions for AArch32 userspace code. When this option is
	  enabled, CP15 barrier usage is traced which can help
1324 1325
	  identify software that needs updating. This feature can be
	  controlled at runtime with the abi.cp15_barrier sysctl.
1326 1327 1328

	  If unsure, say Y

1329 1330 1331 1332 1333 1334 1335
config SETEND_EMULATION
	bool "Emulate SETEND instruction"
	help
	  The SETEND instruction alters the data-endianness of the
	  AArch32 EL0, and is deprecated in ARMv8.

	  Say Y here to enable software emulation of the instruction
1336 1337
	  for AArch32 userspace code. This feature can be controlled
	  at runtime with the abi.setend sysctl.
1338 1339 1340 1341 1342 1343 1344

	  Note: All the cpus on the system must have mixed endian support at EL0
	  for this feature to be enabled. If a new CPU - which doesn't support mixed
	  endian - is hotplugged in after this feature has been enabled, there could
	  be unexpected results in the applications.

	  If unsure, say Y
1345 1346
endif

1347
endif
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
menu "ARMv8.1 architectural features"

config ARM64_HW_AFDBM
	bool "Support for hardware updates of the Access and Dirty page flags"
	default y
	help
	  The ARMv8.1 architecture extensions introduce support for
	  hardware updates of the access and dirty information in page
	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
	  capable processors, accesses to pages with PTE_AF cleared will
	  set this bit instead of raising an access flag fault.
	  Similarly, writes to read-only pages with the DBM bit set will
	  clear the read-only bit (AP[2]) instead of raising a
	  permission fault.

	  Kernels built with this configuration option enabled continue
	  to work on pre-ARMv8.1 hardware and the performance impact is
	  minimal. If unsure, say Y.

config ARM64_PAN
	bool "Enable support for Privileged Access Never (PAN)"
	default y
	help
	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
	 prevents the kernel or hypervisor from accessing user-space (EL0)
	 memory directly.

	 Choosing this option will cause any unprotected (not using
	 copy_to_user et al) memory access to fail with a permission fault.

	 The feature is detected at runtime, and will remain as a 'nop'
	 instruction if the cpu does not implement the feature.

config ARM64_LSE_ATOMICS
1383 1384 1385 1386 1387
	bool
	default ARM64_USE_LSE_ATOMICS
	depends on $(as-instr,.arch_extension lse)

config ARM64_USE_LSE_ATOMICS
1388
	bool "Atomic instructions"
1389
	depends on JUMP_LABEL
1390
	default y
1391 1392 1393 1394 1395 1396 1397 1398
	help
	  As part of the Large System Extensions, ARMv8.1 introduces new
	  atomic instructions that are designed specifically to scale in
	  very large systems.

	  Say Y here to make use of these instructions for the in-kernel
	  atomic routines. This incurs a small overhead on CPUs that do
	  not support these instructions and requires the kernel to be
1399 1400
	  built with binutils >= 2.25 in order for the new instructions
	  to be used.
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
config ARM64_VHE
	bool "Enable support for Virtualization Host Extensions (VHE)"
	default y
	help
	  Virtualization Host Extensions (VHE) allow the kernel to run
	  directly at EL2 (instead of EL1) on processors that support
	  it. This leads to better performance for KVM, as they reduce
	  the cost of the world switch.

	  Selecting this option allows the VHE feature to be detected
	  at runtime, and does not affect processors that do not
	  implement this feature.

1415 1416
endmenu

1417 1418
menu "ARMv8.2 architectural features"

1419 1420 1421 1422 1423 1424
config ARM64_UAO
	bool "Enable support for User Access Override (UAO)"
	default y
	help
	  User Access Override (UAO; part of the ARMv8.2 Extensions)
	  causes the 'unprivileged' variant of the load/store instructions to
1425
	  be overridden to be privileged.
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

	  This option changes get_user() and friends to use the 'unprivileged'
	  variant of the load/store instructions. This ensures that user-space
	  really did have access to the supplied memory. When addr_limit is
	  set to kernel memory the UAO bit will be set, allowing privileged
	  access to kernel memory.

	  Choosing this option will cause copy_to_user() et al to use user-space
	  memory permissions.

	  The feature is detected at runtime, the kernel will use the
	  regular load/store instructions if the cpu does not implement the
	  feature.

1440 1441 1442
config ARM64_PMEM
	bool "Enable support for persistent memory"
	select ARCH_HAS_PMEM_API
1443
	select ARCH_HAS_UACCESS_FLUSHCACHE
1444 1445 1446 1447 1448 1449 1450 1451
	help
	  Say Y to enable support for the persistent memory API based on the
	  ARMv8.2 DCPoP feature.

	  The feature is detected at runtime, and the kernel will use DC CVAC
	  operations if DC CVAP is not supported (following the behaviour of
	  DC CVAP itself if the system does not define a point of persistence).

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
config ARM64_RAS_EXTN
	bool "Enable support for RAS CPU Extensions"
	default y
	help
	  CPUs that support the Reliability, Availability and Serviceability
	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
	  errors, classify them and report them to software.

	  On CPUs with these extensions system software can use additional
	  barriers to determine if faults are pending and read the
	  classification from a new set of registers.

	  Selecting this feature will allow the kernel to use these barriers
	  and access the new registers if the system supports the extension.
	  Platform RAS features may additionally depend on firmware support.

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
config ARM64_CNP
	bool "Enable support for Common Not Private (CNP) translations"
	default y
	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
	help
	  Common Not Private (CNP) allows translation table entries to
	  be shared between different PEs in the same inner shareable
	  domain, so the hardware can use this fact to optimise the
	  caching of such entries in the TLB.

	  Selecting this option allows the CNP feature to be detected
	  at runtime, and does not affect PEs that do not implement
	  this feature.

1482 1483
endmenu

1484 1485 1486 1487 1488
menu "ARMv8.3 architectural features"

config ARM64_PTR_AUTH
	bool "Enable support for pointer authentication"
	default y
1489
	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1490
	# Modern compilers insert a .note.gnu.property section note for PAC
1491
	# which is only understood by binutils starting with version 2.33.1.
1492
	depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100)
1493
	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1494
	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	help
	  Pointer authentication (part of the ARMv8.3 Extensions) provides
	  instructions for signing and authenticating pointers against secret
	  keys, which can be used to mitigate Return Oriented Programming (ROP)
	  and other attacks.

	  This option enables these instructions at EL0 (i.e. for userspace).
	  Choosing this option will cause the kernel to initialise secret keys
	  for each process at exec() time, with these keys being
	  context-switched along with the process.

1506 1507 1508 1509 1510 1511 1512
	  If the compiler supports the -mbranch-protection or
	  -msign-return-address flag (e.g. GCC 7 or later), then this option
	  will also cause the kernel itself to be compiled with return address
	  protection. In this case, and if the target hardware is known to
	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
	  disabled with minimal loss of protection.

1513
	  The feature is detected at runtime. If the feature is not present in
1514
	  hardware it will not be advertised to userspace/KVM guest nor will it
1515
	  be enabled.
1516

1517 1518 1519 1520 1521 1522
	  If the feature is present on the boot CPU but not on a late CPU, then
	  the late CPU will be parked. Also, if the boot CPU does not have
	  address auth and the late CPU has then the late CPU will still boot
	  but with the feature disabled. On such a system, this option should
	  not be selected.

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	  This feature works with FUNCTION_GRAPH_TRACER option only if
	  DYNAMIC_FTRACE_WITH_REGS is enabled.

config CC_HAS_BRANCH_PROT_PAC_RET
	# GCC 9 or later, clang 8 or later
	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)

config CC_HAS_SIGN_RETURN_ADDRESS
	# GCC 7, 8
	def_bool $(cc-option,-msign-return-address=all)

config AS_HAS_PAC
1535
	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1536

1537 1538 1539
config AS_HAS_CFI_NEGATE_RA_STATE
	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)

1540 1541
endmenu

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
menu "ARMv8.4 architectural features"

config ARM64_AMU_EXTN
	bool "Enable support for the Activity Monitors Unit CPU extension"
	default y
	help
	  The activity monitors extension is an optional extension introduced
	  by the ARMv8.4 CPU architecture. This enables support for version 1
	  of the activity monitors architecture, AMUv1.

	  To enable the use of this extension on CPUs that implement it, say Y.

	  Note that for architectural reasons, firmware _must_ implement AMU
	  support when running on CPUs that present the activity monitors
	  extension. The required support is present in:
	    * Version 1.5 and later of the ARM Trusted Firmware

	  For kernels that have this configuration enabled but boot with broken
	  firmware, you may need to say N here until the firmware is fixed.
	  Otherwise you may experience firmware panics or lockups when
	  accessing the counter registers. Even if you are not observing these
	  symptoms, the values returned by the register reads might not
	  correctly reflect reality. Most commonly, the value read will be 0,
	  indicating that the counter is not enabled.

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
config AS_HAS_ARMV8_4
	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)

config ARM64_TLB_RANGE
	bool "Enable support for tlbi range feature"
	default y
	depends on AS_HAS_ARMV8_4
	help
	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
	  range of input addresses.

	  The feature introduces new assembly instructions, and they were
	  support when binutils >= 2.30.

1581 1582
endmenu

1583 1584
menu "ARMv8.5 architectural features"

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
config ARM64_BTI
	bool "Branch Target Identification support"
	default y
	help
	  Branch Target Identification (part of the ARMv8.5 Extensions)
	  provides a mechanism to limit the set of locations to which computed
	  branch instructions such as BR or BLR can jump.

	  To make use of BTI on CPUs that support it, say Y.

	  BTI is intended to provide complementary protection to other control
	  flow integrity protection mechanisms, such as the Pointer
	  authentication mechanism provided as part of the ARMv8.3 Extensions.
	  For this reason, it does not make sense to enable this option without
	  also enabling support for pointer authentication.  Thus, when
	  enabling this option you should also select ARM64_PTR_AUTH=y.

	  Userspace binaries must also be specifically compiled to make use of
	  this mechanism.  If you say N here or the hardware does not support
	  BTI, such binaries can still run, but you get no additional
	  enforcement of branch destinations.

1607 1608 1609 1610 1611 1612
config ARM64_BTI_KERNEL
	bool "Use Branch Target Identification for kernel"
	default y
	depends on ARM64_BTI
	depends on ARM64_PTR_AUTH
	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1613 1614
	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	depends on !(CC_IS_CLANG && GCOV_KERNEL)
	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
	help
	  Build the kernel with Branch Target Identification annotations
	  and enable enforcement of this for kernel code. When this option
	  is enabled and the system supports BTI all kernel code including
	  modular code must have BTI enabled.

config CC_HAS_BRANCH_PROT_PAC_RET_BTI
	# GCC 9 or later, clang 8 or later
	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)

1627 1628 1629 1630
config ARM64_E0PD
	bool "Enable support for E0PD"
	default y
	help
1631 1632 1633 1634 1635
	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
	  that EL0 accesses made via TTBR1 always fault in constant time,
	  providing similar benefits to KASLR as those provided by KPTI, but
	  with lower overhead and without disrupting legitimate access to
	  kernel memory such as SPE.
1636

1637
	  This option enables E0PD for TTBR1 where available.
1638

1639 1640 1641 1642 1643 1644 1645 1646
config ARCH_RANDOM
	bool "Enable support for random number generation"
	default y
	help
	  Random number generation (part of the ARMv8.5 Extensions)
	  provides a high bandwidth, cryptographically secure
	  hardware random number generator.

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
config ARM64_AS_HAS_MTE
	# Initial support for MTE went in binutils 2.32.0, checked with
	# ".arch armv8.5-a+memtag" below. However, this was incomplete
	# as a late addition to the final architecture spec (LDGM/STGM)
	# is only supported in the newer 2.32.x and 2.33 binutils
	# versions, hence the extra "stgm" instruction check below.
	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])

config ARM64_MTE
	bool "Memory Tagging Extension support"
	default y
	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
	select ARCH_USES_HIGH_VMA_FLAGS
	help
	  Memory Tagging (part of the ARMv8.5 Extensions) provides
	  architectural support for run-time, always-on detection of
	  various classes of memory error to aid with software debugging
	  to eliminate vulnerabilities arising from memory-unsafe
	  languages.

	  This option enables the support for the Memory Tagging
	  Extension at EL0 (i.e. for userspace).

	  Selecting this option allows the feature to be detected at
	  runtime. Any secondary CPU not implementing this feature will
	  not be allowed a late bring-up.

	  Userspace binaries that want to use this feature must
	  explicitly opt in. The mechanism for the userspace is
	  described in:

	  Documentation/arm64/memory-tagging-extension.rst.

1680 1681
endmenu

1682 1683 1684
config ARM64_SVE
	bool "ARM Scalable Vector Extension support"
	default y
1685
	depends on !KVM || ARM64_VHE
1686 1687 1688 1689 1690 1691 1692 1693
	help
	  The Scalable Vector Extension (SVE) is an extension to the AArch64
	  execution state which complements and extends the SIMD functionality
	  of the base architecture to support much larger vectors and to enable
	  additional vectorisation opportunities.

	  To enable use of this extension on CPUs that implement it, say Y.

1694 1695 1696
	  On CPUs that support the SVE2 extensions, this option will enable
	  those too.

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	  Note that for architectural reasons, firmware _must_ implement SVE
	  support when running on SVE capable hardware.  The required support
	  is present in:

	    * version 1.5 and later of the ARM Trusted Firmware
	    * the AArch64 boot wrapper since commit 5e1261e08abf
	      ("bootwrapper: SVE: Enable SVE for EL2 and below").

	  For other firmware implementations, consult the firmware documentation
	  or vendor.

	  If you need the kernel to boot on SVE-capable hardware with broken
	  firmware, you may need to say N here until you get your firmware
	  fixed.  Otherwise, you may experience firmware panics or lockups when
	  booting the kernel.  If unsure and you are not observing these
	  symptoms, you should assume that it is safe to say Y.
1713

1714 1715 1716 1717 1718 1719
	  CPUs that support SVE are architecturally required to support the
	  Virtualization Host Extensions (VHE), so the kernel makes no
	  provision for supporting SVE alongside KVM without VHE enabled.
	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
	  KVM in the same kernel image.

1720
config ARM64_MODULE_PLTS
1721
	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1722
	depends on MODULES
1723
	select HAVE_MOD_ARCH_SPECIFIC
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	help
	  Allocate PLTs when loading modules so that jumps and calls whose
	  targets are too far away for their relative offsets to be encoded
	  in the instructions themselves can be bounced via veneers in the
	  module's PLT. This allows modules to be allocated in the generic
	  vmalloc area after the dedicated module memory area has been
	  exhausted.

	  When running with address space randomization (KASLR), the module
	  region itself may be too far away for ordinary relative jumps and
	  calls, and so in that case, module PLTs are required and cannot be
	  disabled.

	  Specific errata workaround(s) might also force module PLTs to be
	  enabled (ARM64_ERRATUM_843419).
1739

1740 1741
config ARM64_PSEUDO_NMI
	bool "Support for NMI-like interrupts"
1742
	select ARM_GIC_V3
1743 1744 1745
	help
	  Adds support for mimicking Non-Maskable Interrupts through the use of
	  GIC interrupt priority. This support requires version 3 or later of
1746
	  ARM GIC.
1747 1748 1749 1750 1751 1752 1753

	  This high priority configuration for interrupts needs to be
	  explicitly enabled by setting the kernel parameter
	  "irqchip.gicv3_pseudo_nmi" to 1.

	  If unsure, say N

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
if ARM64_PSEUDO_NMI
config ARM64_DEBUG_PRIORITY_MASKING
	bool "Debug interrupt priority masking"
	help
	  This adds runtime checks to functions enabling/disabling
	  interrupts when using priority masking. The additional checks verify
	  the validity of ICC_PMR_EL1 when calling concerned functions.

	  If unsure, say N
endif

1765
config RELOCATABLE
1766
	bool "Build a relocatable kernel image" if EXPERT
1767
	select ARCH_HAS_RELR
1768
	default y
1769 1770 1771 1772 1773 1774 1775 1776 1777
	help
	  This builds the kernel as a Position Independent Executable (PIE),
	  which retains all relocation metadata required to relocate the
	  kernel binary at runtime to a different virtual address than the
	  address it was linked at.
	  Since AArch64 uses the RELA relocation format, this requires a
	  relocation pass at runtime even if the kernel is loaded at the
	  same address it was linked at.

1778 1779
config RANDOMIZE_BASE
	bool "Randomize the address of the kernel image"
1780
	select ARM64_MODULE_PLTS if MODULES
1781 1782 1783 1784 1785 1786 1787 1788 1789
	select RELOCATABLE
	help
	  Randomizes the virtual address at which the kernel image is
	  loaded, as a security feature that deters exploit attempts
	  relying on knowledge of the location of kernel internals.

	  It is the bootloader's job to provide entropy, by passing a
	  random u64 value in /chosen/kaslr-seed at kernel entry.

1790 1791 1792 1793 1794
	  When booting via the UEFI stub, it will invoke the firmware's
	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
	  to the kernel proper. In addition, it will randomise the physical
	  location of the kernel Image as well.

1795 1796 1797
	  If unsure, say N.

config RANDOMIZE_MODULE_REGION_FULL
1798
	bool "Randomize the module region over a 4 GB range"
1799
	depends on RANDOMIZE_BASE
1800 1801
	default y
	help
1802 1803
	  Randomizes the location of the module region inside a 4 GB window
	  covering the core kernel. This way, it is less likely for modules
1804 1805 1806 1807 1808 1809 1810 1811
	  to leak information about the location of core kernel data structures
	  but it does imply that function calls between modules and the core
	  kernel will need to be resolved via veneers in the module PLT.

	  When this option is not set, the module region will be randomized over
	  a limited range that contains the [_stext, _etext] interval of the
	  core kernel, so branch relocations are always in range.

1812 1813 1814 1815 1816 1817 1818
config CC_HAVE_STACKPROTECTOR_SYSREG
	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)

config STACKPROTECTOR_PER_TASK
	def_bool y
	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG

1819 1820 1821 1822
endmenu

menu "Boot options"

1823 1824 1825 1826 1827 1828 1829 1830 1831
config ARM64_ACPI_PARKING_PROTOCOL
	bool "Enable support for the ARM64 ACPI parking protocol"
	depends on ACPI
	help
	  Enable support for the ARM64 ACPI parking protocol. If disabled
	  the kernel will not allow booting through the ARM64 ACPI parking
	  protocol even if the corresponding data is present in the ACPI
	  MADT table.

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
config CMDLINE
	string "Default kernel command string"
	default ""
	help
	  Provide a set of default command-line options at build time by
	  entering them here. As a minimum, you should specify the the
	  root device (e.g. root=/dev/nfs).

config CMDLINE_FORCE
	bool "Always use the default kernel command string"
1842
	depends on CMDLINE != ""
1843 1844 1845 1846 1847 1848
	help
	  Always use the default kernel command string, even if the boot
	  loader passes other arguments to the kernel.
	  This is useful if you cannot or don't want to change the
	  command-line options your boot loader passes to the kernel.

1849 1850 1851
config EFI_STUB
	bool

1852 1853 1854
config EFI
	bool "UEFI runtime support"
	depends on OF && !CPU_BIG_ENDIAN
1855
	depends on KERNEL_MODE_NEON
1856
	select ARCH_SUPPORTS_ACPI
1857 1858 1859
	select LIBFDT
	select UCS2_STRING
	select EFI_PARAMS_FROM_FDT
1860
	select EFI_RUNTIME_WRAPPERS
1861
	select EFI_STUB
1862
	select EFI_GENERIC_STUB
1863 1864 1865 1866
	default y
	help
	  This option provides support for runtime services provided
	  by UEFI firmware (such as non-volatile variables, realtime
M
Mark Salter 已提交
1867 1868 1869
          clock, and platform reset). A UEFI stub is also provided to
	  allow the kernel to be booted as an EFI application. This
	  is only useful on systems that have UEFI firmware.
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
config DMI
	bool "Enable support for SMBIOS (DMI) tables"
	depends on EFI
	default y
	help
	  This enables SMBIOS/DMI feature for systems.

	  This option is only useful on systems that have UEFI firmware.
	  However, even with this option, the resultant kernel should
	  continue to boot on existing non-UEFI platforms.

1882 1883 1884 1885 1886 1887
endmenu

config SYSVIPC_COMPAT
	def_bool y
	depends on COMPAT && SYSVIPC

1888 1889 1890 1891
config ARCH_ENABLE_HUGEPAGE_MIGRATION
	def_bool y
	depends on HUGETLB_PAGE && MIGRATION

1892 1893 1894 1895
config ARCH_ENABLE_THP_MIGRATION
	def_bool y
	depends on TRANSPARENT_HUGEPAGE

1896 1897 1898 1899
menu "Power management options"

source "kernel/power/Kconfig"

1900 1901 1902 1903 1904 1905 1906 1907
config ARCH_HIBERNATION_POSSIBLE
	def_bool y
	depends on CPU_PM

config ARCH_HIBERNATION_HEADER
	def_bool y
	depends on HIBERNATION

1908 1909 1910 1911 1912
config ARCH_SUSPEND_POSSIBLE
	def_bool y

endmenu

1913 1914 1915 1916
menu "CPU Power Management"

source "drivers/cpuidle/Kconfig"

1917 1918 1919 1920
source "drivers/cpufreq/Kconfig"

endmenu

1921 1922
source "drivers/firmware/Kconfig"

1923 1924
source "drivers/acpi/Kconfig"

1925 1926
source "arch/arm64/kvm/Kconfig"

1927 1928 1929
if CRYPTO
source "arch/arm64/crypto/Kconfig"
endif
反馈
建议
客服 返回
顶部