Kconfig 73.8 KB
Newer Older
1
# SPDX-License-Identifier: GPL-2.0-only
C
Catalin Marinas 已提交
2 3
config ARM64
	def_bool y
4
	select ACPI_CCA_REQUIRED if ACPI
5
	select ACPI_GENERIC_GSI if ACPI
F
Fu Wei 已提交
6
	select ACPI_GTDT if ACPI
7
	select ACPI_IORT if ACPI
8
	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9
	select ACPI_MCFG if (ACPI && PCI)
10
	select ACPI_SPCR_TABLE if ACPI
11
	select ACPI_PPTT if ACPI
12
	select ARCH_HAS_DEBUG_WX
13
	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14
	select ARCH_BINFMT_ELF_STATE
15
	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16
	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17 18
	select ARCH_ENABLE_MEMORY_HOTPLUG
	select ARCH_ENABLE_MEMORY_HOTREMOVE
19
	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20
	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21
	select ARCH_HAS_CACHE_LINE_SIZE
22
	select ARCH_HAS_CURRENT_STACK_POINTER
23
	select ARCH_HAS_DEBUG_VIRTUAL
24
	select ARCH_HAS_DEBUG_VM_PGTABLE
25
	select ARCH_HAS_DMA_PREP_COHERENT
26
	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27
	select ARCH_HAS_FAST_MULTIPLIER
28
	select ARCH_HAS_FORTIFY_SOURCE
29
	select ARCH_HAS_GCOV_PROFILE_ALL
30
	select ARCH_HAS_GIGANTIC_PAGE
31
	select ARCH_HAS_KCOV
32
	select ARCH_HAS_KEEPINITRD
33
	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34
	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35
	select ARCH_HAS_PTE_DEVMAP
36
	select ARCH_HAS_PTE_SPECIAL
37
	select ARCH_HAS_SETUP_DMA_OPS
38
	select ARCH_HAS_SET_DIRECT_MAP
39
	select ARCH_HAS_SET_MEMORY
40
	select ARCH_STACKWALK
41 42
	select ARCH_HAS_STRICT_KERNEL_RWX
	select ARCH_HAS_STRICT_MODULE_RWX
43 44
	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
	select ARCH_HAS_SYNC_DMA_FOR_CPU
M
Mark Rutland 已提交
45
	select ARCH_HAS_SYSCALL_WRAPPER
46
	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47
	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
K
Kefeng Wang 已提交
48
	select ARCH_HAS_ZONE_DMA_SET if EXPERT
49
	select ARCH_HAVE_ELF_PROT
50
	select ARCH_HAVE_NMI_SAFE_CMPXCHG
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	select ARCH_INLINE_READ_LOCK if !PREEMPTION
	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
77
	select ARCH_KEEP_MEMBLOCK
78
	select ARCH_USE_CMPXCHG_LOCKREF
79
	select ARCH_USE_GNU_PROPERTY
80
	select ARCH_USE_MEMTEST
81
	select ARCH_USE_QUEUED_RWLOCKS
82
	select ARCH_USE_QUEUED_SPINLOCKS
83
	select ARCH_USE_SYM_ANNOTATIONS
84
	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
85
	select ARCH_SUPPORTS_HUGETLBFS
86
	select ARCH_SUPPORTS_MEMORY_FAILURE
87
	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
S
Sami Tolvanen 已提交
88 89
	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
	select ARCH_SUPPORTS_LTO_CLANG_THIN
90
	select ARCH_SUPPORTS_CFI_CLANG
91
	select ARCH_SUPPORTS_ATOMIC_RMW
92
	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
93
	select ARCH_SUPPORTS_NUMA_BALANCING
94
	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
95
	select ARCH_WANT_DEFAULT_BPF_JIT
96
	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
97
	select ARCH_WANT_FRAME_POINTERS
98
	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
99
	select ARCH_WANT_LD_ORPHAN_WARN
100
	select ARCH_WANTS_NO_INSTR
101
	select ARCH_HAS_UBSAN_SANITIZE_ALL
102
	select ARM_AMBA
103
	select ARM_ARCH_TIMER
104
	select ARM_GIC
A
AKASHI Takahiro 已提交
105
	select AUDIT_ARCH_COMPAT_GENERIC
106
	select ARM_GIC_V2M if PCI
107
	select ARM_GIC_V3
108
	select ARM_GIC_V3_ITS if PCI
109
	select ARM_PSCI_FW
110
	select BUILDTIME_TABLE_SORT
111
	select CLONE_BACKWARDS
112
	select COMMON_CLK
113
	select CPU_PM if (SUSPEND || CPU_IDLE)
114
	select CRC32
115
	select DCACHE_WORD_ACCESS
116
	select DMA_DIRECT_REMAP
117
	select EDAC_SUPPORT
118
	select FRAME_POINTER
119
	select GENERIC_ALLOCATOR
120
	select GENERIC_ARCH_TOPOLOGY
121
	select GENERIC_CLOCKEVENTS_BROADCAST
122
	select GENERIC_CPU_AUTOPROBE
123
	select GENERIC_CPU_VULNERABILITIES
M
Mark Salter 已提交
124
	select GENERIC_EARLY_IOREMAP
L
Leo Yan 已提交
125
	select GENERIC_IDLE_POLL_SETUP
126
	select GENERIC_IRQ_IPI
C
Catalin Marinas 已提交
127 128
	select GENERIC_IRQ_PROBE
	select GENERIC_IRQ_SHOW
129
	select GENERIC_IRQ_SHOW_LEVEL
130
	select GENERIC_LIB_DEVMEM_IS_ALLOWED
A
Arnd Bergmann 已提交
131
	select GENERIC_PCI_IOMAP
132
	select GENERIC_PTDUMP
133
	select GENERIC_SCHED_CLOCK
C
Catalin Marinas 已提交
134 135
	select GENERIC_SMP_IDLE_THREAD
	select GENERIC_TIME_VSYSCALL
136
	select GENERIC_GETTIMEOFDAY
137
	select GENERIC_VDSO_TIME_NS
C
Catalin Marinas 已提交
138
	select HARDIRQS_SW_RESEND
139
	select HAVE_MOVE_PMD
140
	select HAVE_MOVE_PUD
141
	select HAVE_PCI
142
	select HAVE_ACPI_APEI if (ACPI && EFI)
143
	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
A
AKASHI Takahiro 已提交
144
	select HAVE_ARCH_AUDITSYSCALL
145
	select HAVE_ARCH_BITREVERSE
146
	select HAVE_ARCH_COMPILER_H
147
	select HAVE_ARCH_HUGE_VMAP
148
	select HAVE_ARCH_JUMP_LABEL
149
	select HAVE_ARCH_JUMP_LABEL_RELATIVE
150
	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
151
	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
152
	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
153
	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
K
Kefeng Wang 已提交
154 155
	# Some instrumentation may be unsound, hence EXPERT
	select HAVE_ARCH_KCSAN if EXPERT
156
	select HAVE_ARCH_KFENCE
V
Vijaya Kumar K 已提交
157
	select HAVE_ARCH_KGDB
158 159
	select HAVE_ARCH_MMAP_RND_BITS
	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
160
	select HAVE_ARCH_PREL32_RELOCATIONS
161
	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
A
AKASHI Takahiro 已提交
162
	select HAVE_ARCH_SECCOMP_FILTER
163
	select HAVE_ARCH_STACKLEAK
164
	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
C
Catalin Marinas 已提交
165
	select HAVE_ARCH_TRACEHOOK
166
	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
167
	select HAVE_ARCH_VMAP_STACK
168
	select HAVE_ARM_SMCCC
169
	select HAVE_ASM_MODVERSIONS
170
	select HAVE_EBPF_JIT
171
	select HAVE_C_RECORDMCOUNT
172
	select HAVE_CMPXCHG_DOUBLE
173
	select HAVE_CMPXCHG_LOCAL
174
	select HAVE_CONTEXT_TRACKING
175
	select HAVE_DEBUG_KMEMLEAK
L
Laura Abbott 已提交
176
	select HAVE_DMA_CONTIGUOUS
177
	select HAVE_DYNAMIC_FTRACE
T
Torsten Duwe 已提交
178 179
	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
		if $(cc-option,-fpatchable-function-entry=2)
180 181
	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
		if DYNAMIC_FTRACE_WITH_REGS
182
	select HAVE_EFFICIENT_UNALIGNED_ACCESS
183
	select HAVE_FAST_GUP
184
	select HAVE_FTRACE_MCOUNT_RECORD
A
AKASHI Takahiro 已提交
185
	select HAVE_FUNCTION_TRACER
186
	select HAVE_FUNCTION_ERROR_INJECTION
A
AKASHI Takahiro 已提交
187
	select HAVE_FUNCTION_GRAPH_TRACER
E
Emese Revfy 已提交
188
	select HAVE_GCC_PLUGINS
C
Catalin Marinas 已提交
189
	select HAVE_HW_BREAKPOINT if PERF_EVENTS
190
	select HAVE_IRQ_TIME_ACCOUNTING
191
	select HAVE_KVM
192
	select HAVE_NMI
193
	select HAVE_PATA_PLATFORM
C
Catalin Marinas 已提交
194
	select HAVE_PERF_EVENTS
195 196
	select HAVE_PERF_REGS
	select HAVE_PERF_USER_STACK_DUMP
M
Mark Rutland 已提交
197
	select HAVE_PREEMPT_DYNAMIC_KEY
198
	select HAVE_REGS_AND_STACK_ACCESS_API
199
	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
200
	select HAVE_FUNCTION_ARG_ACCESS_API
201
	select MMU_GATHER_RCU_TABLE_FREE
202
	select HAVE_RSEQ
203
	select HAVE_STACKPROTECTOR
204
	select HAVE_SYSCALL_TRACEPOINTS
205
	select HAVE_KPROBES
206
	select HAVE_KRETPROBES
207
	select HAVE_GENERIC_VDSO
R
Robin Murphy 已提交
208
	select IOMMU_DMA if IOMMU_SUPPORT
C
Catalin Marinas 已提交
209
	select IRQ_DOMAIN
210
	select IRQ_FORCED_THREADING
211
	select KASAN_VMALLOC if KASAN
212
	select MODULES_USE_ELF_RELA
213
	select NEED_DMA_MAP_STATE
214
	select NEED_SG_DMA_LENGTH
C
Catalin Marinas 已提交
215 216
	select OF
	select OF_EARLY_FLATTREE
217
	select PCI_DOMAINS_GENERIC if PCI
218
	select PCI_ECAM if (ACPI && PCI)
219
	select PCI_SYSCALL if PCI
220 221
	select POWER_RESET
	select POWER_SUPPLY
C
Catalin Marinas 已提交
222
	select SPARSE_IRQ
223
	select SWIOTLB
224
	select SYSCTL_EXCEPTION_TRACE
225
	select THREAD_INFO_IN_TASK
226
	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
227
	select TRACE_IRQFLAGS_SUPPORT
C
Catalin Marinas 已提交
228 229 230 231 232 233 234 235 236
	help
	  ARM 64-bit (AArch64) Linux support.

config 64BIT
	def_bool y

config MMU
	def_bool y

237 238 239 240 241 242
config ARM64_PAGE_SHIFT
	int
	default 16 if ARM64_64K_PAGES
	default 14 if ARM64_16K_PAGES
	default 12

G
Gavin Shan 已提交
243
config ARM64_CONT_PTE_SHIFT
244 245 246 247 248
	int
	default 5 if ARM64_64K_PAGES
	default 7 if ARM64_16K_PAGES
	default 4

G
Gavin Shan 已提交
249 250 251 252 253 254
config ARM64_CONT_PMD_SHIFT
	int
	default 5 if ARM64_64K_PAGES
	default 5 if ARM64_16K_PAGES
	default 4

255
config ARCH_MMAP_RND_BITS_MIN
256 257 258
	default 14 if ARM64_64K_PAGES
	default 16 if ARM64_16K_PAGES
	default 18
259 260 261 262

# max bits determined by the following formula:
#  VA_BITS - PAGE_SHIFT - 3
config ARCH_MMAP_RND_BITS_MAX
263 264 265 266 267 268 269 270 271 272
	default 19 if ARM64_VA_BITS=36
	default 24 if ARM64_VA_BITS=39
	default 27 if ARM64_VA_BITS=42
	default 30 if ARM64_VA_BITS=47
	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
	default 33 if ARM64_VA_BITS=48
	default 14 if ARM64_64K_PAGES
	default 16 if ARM64_16K_PAGES
	default 18
273 274

config ARCH_MMAP_RND_COMPAT_BITS_MIN
275 276 277
	default 7 if ARM64_64K_PAGES
	default 9 if ARM64_16K_PAGES
	default 11
278 279

config ARCH_MMAP_RND_COMPAT_BITS_MAX
280
	default 16
281

282
config NO_IOPORT_MAP
283
	def_bool y if !PCI
C
Catalin Marinas 已提交
284 285 286 287

config STACKTRACE_SUPPORT
	def_bool y

288 289 290 291
config ILLEGAL_POINTER_VALUE
	hex
	default 0xdead000000000000

C
Catalin Marinas 已提交
292 293 294
config LOCKDEP_SUPPORT
	def_bool y

295 296 297 298 299 300 301 302
config GENERIC_BUG
	def_bool y
	depends on BUG

config GENERIC_BUG_RELATIVE_POINTERS
	def_bool y
	depends on GENERIC_BUG

C
Catalin Marinas 已提交
303 304 305 306
config GENERIC_HWEIGHT
	def_bool y

config GENERIC_CSUM
307
	def_bool y
C
Catalin Marinas 已提交
308 309 310 311

config GENERIC_CALIBRATE_DELAY
	def_bool y

312 313 314
config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
	def_bool y

315 316 317
config SMP
	def_bool y

318 319 320
config KERNEL_MODE_NEON
	def_bool y

321 322 323
config FIX_EARLYCON_MEM
	def_bool y

324 325
config PGTABLE_LEVELS
	int
S
Suzuki K. Poulose 已提交
326
	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
327
	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
328
	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
329
	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
330 331
	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
332

P
Pratyush Anand 已提交
333 334 335
config ARCH_SUPPORTS_UPROBES
	def_bool y

336 337 338
config ARCH_PROC_KCORE_TEXT
	def_bool y

339 340 341
config BROKEN_GAS_INST
	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)

342 343
config KASAN_SHADOW_OFFSET
	hex
344
	depends on KASAN_GENERIC || KASAN_SW_TAGS
345 346 347 348 349 350 351 352 353 354
	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
355 356
	default 0xffffffffffffffff

O
Olof Johansson 已提交
357
source "arch/arm64/Kconfig.platforms"
C
Catalin Marinas 已提交
358 359 360

menu "Kernel Features"

361 362
menu "ARM errata workarounds via the alternatives framework"

363
config ARM64_WORKAROUND_CLEAN_CACHE
364
	bool
365

366 367 368
config ARM64_ERRATUM_826319
	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
	default y
369
	select ARM64_WORKAROUND_CLEAN_CACHE
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
	  AXI master interface and an L2 cache.

	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
	  and is unable to accept a certain write via this interface, it will
	  not progress on read data presented on the read data channel and the
	  system can deadlock.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_827319
	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
	default y
391
	select ARM64_WORKAROUND_CLEAN_CACHE
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
	  master interface and an L2 cache.

	  Under certain conditions this erratum can cause a clean line eviction
	  to occur at the same time as another transaction to the same address
	  on the AMBA 5 CHI interface, which can cause data corruption if the
	  interconnect reorders the two transactions.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_824069
	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
	default y
413
	select ARM64_WORKAROUND_CLEAN_CACHE
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
	  to a coherent interconnect.

	  If a Cortex-A53 processor is executing a store or prefetch for
	  write instruction at the same time as a processor in another
	  cluster is executing a cache maintenance operation to the same
	  address, then this erratum might cause a clean cache line to be
	  incorrectly marked as dirty.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this option does not necessarily enable the
	  workaround, as it depends on the alternative framework, which will
	  only patch the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_819472
	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
	default y
436
	select ARM64_WORKAROUND_CLEAN_CACHE
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
	  present when it is connected to a coherent interconnect.

	  If the processor is executing a load and store exclusive sequence at
	  the same time as a processor in another cluster is executing a cache
	  maintenance operation to the same address, then this erratum might
	  cause data corruption.

	  The workaround promotes data cache clean instructions to
	  data cache clean-and-invalidate.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_832075
	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
	default y
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 832075 on Cortex-A57 parts up to r1p2.

	  Affected Cortex-A57 parts might deadlock when exclusive load/store
	  instructions to Write-Back memory are mixed with Device loads.

	  The workaround is to promote device loads to use Load-Acquire
	  semantics.
	  Please note that this does not necessarily enable the workaround,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

config ARM64_ERRATUM_834220
	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
	depends on KVM
	default y
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 834220 on Cortex-A57 parts up to r1p2.

	  Affected Cortex-A57 parts might report a Stage 2 translation
	  fault as the result of a Stage 1 fault for load crossing a
	  page boundary when there is a permission or device memory
	  alignment fault at Stage 1 and a translation fault at Stage 2.

	  The workaround is to verify that the Stage 1 translation
	  doesn't generate a fault before handling the Stage 2 fault.
	  Please note that this does not necessarily enable the workaround,
489 490 491 492 493
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
config ARM64_ERRATUM_845719
	bool "Cortex-A53: 845719: a load might read incorrect data"
	depends on COMPAT
	default y
	help
	  This option adds an alternative code sequence to work around ARM
	  erratum 845719 on Cortex-A53 parts up to r0p4.

	  When running a compat (AArch32) userspace on an affected Cortex-A53
	  part, a load at EL0 from a virtual address that matches the bottom 32
	  bits of the virtual address used by a recent load at (AArch64) EL1
	  might return incorrect data.

	  The workaround is to write the contextidr_el1 register on exception
	  return to a 32-bit task.
	  Please note that this does not necessarily enable the workaround,
	  as it depends on the alternative framework, which will only patch
	  the kernel if an affected CPU is detected.

	  If unsure, say Y.

515 516 517
config ARM64_ERRATUM_843419
	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
	default y
518
	select ARM64_MODULE_PLTS if MODULES
519
	help
520
	  This option links the kernel with '--fix-cortex-a53-843419' and
521 522 523
	  enables PLT support to replace certain ADRP instructions, which can
	  cause subsequent memory accesses to use an incorrect address on
	  Cortex-A53 parts up to r0p4.
524 525 526

	  If unsure, say Y.

527 528 529
config ARM64_LD_HAS_FIX_ERRATUM_843419
	def_bool $(ld-option,--fix-cortex-a53-843419)

530 531 532 533
config ARM64_ERRATUM_1024718
	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
	default y
	help
534
	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
535

536
	  Affected Cortex-A55 cores (all revisions) could cause incorrect
537
	  update of the hardware dirty bit when the DBM/AP bits are updated
538
	  without a break-before-make. The workaround is to disable the usage
539
	  of hardware DBM locally on the affected cores. CPUs not affected by
540
	  this erratum will continue to use the feature.
541 542 543

	  If unsure, say Y.

544
config ARM64_ERRATUM_1418040
545
	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
546
	default y
547
	depends on COMPAT
548
	help
549
	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
550
	  errata 1188873 and 1418040.
551

552
	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
553 554
	  cause register corruption when accessing the timer registers
	  from AArch32 userspace.
555 556 557

	  If unsure, say Y.

558
config ARM64_WORKAROUND_SPECULATIVE_AT
559 560
	bool

561
config ARM64_ERRATUM_1165522
562
	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
563
	default y
564
	select ARM64_WORKAROUND_SPECULATIVE_AT
565
	help
566
	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
567 568 569 570 571 572 573

	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
	  corrupted TLBs by speculating an AT instruction during a guest
	  context switch.

	  If unsure, say Y.

574 575 576 577 578 579 580 581 582 583 584 585 586
config ARM64_ERRATUM_1319367
	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
	default y
	select ARM64_WORKAROUND_SPECULATIVE_AT
	help
	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
	  and A72 erratum 1319367

	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
	  speculating an AT instruction during a guest context switch.

	  If unsure, say Y.

587
config ARM64_ERRATUM_1530923
588
	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
589
	default y
590
	select ARM64_WORKAROUND_SPECULATIVE_AT
591 592 593 594 595 596 597 598
	help
	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.

	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
	  corrupted TLBs by speculating an AT instruction during a guest
	  context switch.

	  If unsure, say Y.
599

600 601 602
config ARM64_WORKAROUND_REPEAT_TLBI
	bool

603 604 605 606 607
config ARM64_ERRATUM_1286807
	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
	default y
	select ARM64_WORKAROUND_REPEAT_TLBI
	help
608
	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
609 610 611 612 613 614 615 616 617 618

	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
	  address for a cacheable mapping of a location is being
	  accessed by a core while another core is remapping the virtual
	  address to a new physical page using the recommended
	  break-before-make sequence, then under very rare circumstances
	  TLBI+DSB completes before a read using the translation being
	  invalidated has been observed by other observers. The
	  workaround repeats the TLBI+DSB operation.

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
config ARM64_ERRATUM_1463225
	bool "Cortex-A76: Software Step might prevent interrupt recognition"
	default y
	help
	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.

	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
	  of a system call instruction (SVC) can prevent recognition of
	  subsequent interrupts when software stepping is disabled in the
	  exception handler of the system call and either kernel debugging
	  is enabled or VHE is in use.

	  Work around the erratum by triggering a dummy step exception
	  when handling a system call from a task that is being stepped
	  in a VHE configuration of the kernel.

	  If unsure, say Y.

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
config ARM64_ERRATUM_1542419
	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
	default y
	help
	  This option adds a workaround for ARM Neoverse-N1 erratum
	  1542419.

	  Affected Neoverse-N1 cores could execute a stale instruction when
	  modified by another CPU. The workaround depends on a firmware
	  counterpart.

	  Workaround the issue by hiding the DIC feature from EL0. This
	  forces user-space to perform cache maintenance.

	  If unsure, say Y.

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
config ARM64_ERRATUM_1508412
	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
	default y
	help
	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.

	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
	  of a store-exclusive or read of PAR_EL1 and a load with device or
	  non-cacheable memory attributes. The workaround depends on a firmware
	  counterpart.

	  KVM guests must also have the workaround implemented or they can
	  deadlock the system.

	  Work around the issue by inserting DMB SY barriers around PAR_EL1
	  register reads and warning KVM users. The DMB barrier is sufficient
	  to prevent a speculative PAR_EL1 read.

	  If unsure, say Y.

673 674 675
config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
	bool

676 677
config ARM64_ERRATUM_2051678
	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
678
	default y
679 680 681 682 683 684 685 686
	help
	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
	  Affected Coretex-A510 might not respect the ordering rules for
	  hardware update of the page table's dirty bit. The workaround
	  is to not enable the feature on affected CPUs.

	  If unsure, say Y.

687 688
config ARM64_ERRATUM_2077057
	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
689
	default y
690 691 692 693 694 695 696 697 698 699 700 701 702 703
	help
	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
	  expected, but a Pointer Authentication trap is taken instead. The
	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.

	  This can only happen when EL2 is stepping EL1.

	  When these conditions occur, the SPSR_EL2 value is unchanged from the
	  previous guest entry, and can be restored from the in-memory copy.

	  If unsure, say Y.

704
config ARM64_ERRATUM_2119858
705
	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
706 707 708 709
	default y
	depends on CORESIGHT_TRBE
	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
	help
710
	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
711

712
	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
	  the event of a WRAP event.

	  Work around the issue by always making sure we move the TRBPTR_EL1 by
	  256 bytes before enabling the buffer and filling the first 256 bytes of
	  the buffer with ETM ignore packets upon disabling.

	  If unsure, say Y.

config ARM64_ERRATUM_2139208
	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
	default y
	depends on CORESIGHT_TRBE
	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
	help
	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.

	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
	  the event of a WRAP event.

	  Work around the issue by always making sure we move the TRBPTR_EL1 by
	  256 bytes before enabling the buffer and filling the first 256 bytes of
	  the buffer with ETM ignore packets upon disabling.

	  If unsure, say Y.

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
	bool

config ARM64_ERRATUM_2054223
	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
	default y
	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
	help
	  Enable workaround for ARM Cortex-A710 erratum 2054223

	  Affected cores may fail to flush the trace data on a TSB instruction, when
	  the PE is in trace prohibited state. This will cause losing a few bytes
	  of the trace cached.

	  Workaround is to issue two TSB consecutively on affected cores.

	  If unsure, say Y.

config ARM64_ERRATUM_2067961
	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
	default y
	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
	help
	  Enable workaround for ARM Neoverse-N2 erratum 2067961

	  Affected cores may fail to flush the trace data on a TSB instruction, when
	  the PE is in trace prohibited state. This will cause losing a few bytes
	  of the trace cached.

	  Workaround is to issue two TSB consecutively on affected cores.

	  If unsure, say Y.

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
	bool

config ARM64_ERRATUM_2253138
	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
	depends on CORESIGHT_TRBE
	default y
	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
	help
	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.

	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
	  for TRBE. Under some conditions, the TRBE might generate a write to the next
	  virtually addressed page following the last page of the TRBE address space
	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.

	  Work around this in the driver by always making sure that there is a
	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.

	  If unsure, say Y.

config ARM64_ERRATUM_2224489
795
	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
796 797 798 799
	depends on CORESIGHT_TRBE
	default y
	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
	help
800
	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
801

802
	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
803 804 805 806 807 808 809 810 811
	  for TRBE. Under some conditions, the TRBE might generate a write to the next
	  virtually addressed page following the last page of the TRBE address space
	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.

	  Work around this in the driver by always making sure that there is a
	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.

	  If unsure, say Y.

812 813
config ARM64_ERRATUM_2064142
	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
814
	depends on CORESIGHT_TRBE
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	default y
	help
	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.

	  Affected Cortex-A510 core might fail to write into system registers after the
	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
	  and TRBTRG_EL1 will be ignored and will not be effected.

	  Work around this in the driver by executing TSB CSYNC and DSB after collection
	  is stopped and before performing a system register write to one of the affected
	  registers.

	  If unsure, say Y.

830 831
config ARM64_ERRATUM_2038923
	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
832
	depends on CORESIGHT_TRBE
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	default y
	help
	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.

	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
	  might be corrupted. This happens after TRBE buffer has been enabled by setting
	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
	  execution changes from a context, in which trace is prohibited to one where it
	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
	  the trace buffer state might be corrupted.

	  Work around this in the driver by preventing an inconsistent view of whether the
	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
	  two ISB instructions if no ERET is to take place.

	  If unsure, say Y.

853 854
config ARM64_ERRATUM_1902691
	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
855
	depends on CORESIGHT_TRBE
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	default y
	help
	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.

	  Affected Cortex-A510 core might cause trace data corruption, when being written
	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
	  trace data.

	  Work around this problem in the driver by just preventing TRBE initialization on
	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
	  on such implementations. This will cover the kernel for any firmware that doesn't
	  do this already.

	  If unsure, say Y.

871 872 873 874
config CAVIUM_ERRATUM_22375
	bool "Cavium erratum 22375, 24313"
	default y
	help
875
	  Enable workaround for errata 22375 and 24313.
876 877

	  This implements two gicv3-its errata workarounds for ThunderX. Both
878
	  with a small impact affecting only ITS table allocation.
879 880 881 882 883 884 885 886 887

	    erratum 22375: only alloc 8MB table size
	    erratum 24313: ignore memory access type

	  The fixes are in ITS initialization and basically ignore memory access
	  type and table size provided by the TYPER and BASER registers.

	  If unsure, say Y.

888 889 890 891 892 893 894 895 896
config CAVIUM_ERRATUM_23144
	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
	depends on NUMA
	default y
	help
	  ITS SYNC command hang for cross node io and collections/cpu mapping.

	  If unsure, say Y.

897
config CAVIUM_ERRATUM_23154
898
	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
899 900
	default y
	help
901
	  The ThunderX GICv3 implementation requires a modified version for
902 903 904
	  reading the IAR status to ensure data synchronization
	  (access to icc_iar1_el1 is not sync'ed before and after).

905 906 907 908
	  It also suffers from erratum 38545 (also present on Marvell's
	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
	  spuriously presented to the CPU interface.

909 910
	  If unsure, say Y.

911 912 913 914 915 916 917 918 919 920 921
config CAVIUM_ERRATUM_27456
	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
	default y
	help
	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
	  instructions may cause the icache to become corrupted if it
	  contains data for a non-current ASID.  The fix is to
	  invalidate the icache when changing the mm context.

	  If unsure, say Y.

922 923 924 925 926 927 928 929 930 931 932
config CAVIUM_ERRATUM_30115
	bool "Cavium erratum 30115: Guest may disable interrupts in host"
	default y
	help
	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
	  1.2, and T83 Pass 1.0, KVM guest execution may disable
	  interrupts in host. Trapping both GICv3 group-0 and group-1
	  accesses sidesteps the issue.

	  If unsure, say Y.

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
config CAVIUM_TX2_ERRATUM_219
	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
	default y
	help
	  On Cavium ThunderX2, a load, store or prefetch instruction between a
	  TTBR update and the corresponding context synchronizing operation can
	  cause a spurious Data Abort to be delivered to any hardware thread in
	  the CPU core.

	  Work around the issue by avoiding the problematic code sequence and
	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
	  trap handler performs the corresponding register access, skips the
	  instruction and ensures context synchronization by virtue of the
	  exception return.

	  If unsure, say Y.

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
config FUJITSU_ERRATUM_010001
	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
	default y
	help
	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
	  This fault occurs under a specific hardware condition when a
	  load/store instruction performs an address translation using:
	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.

	  The workaround is to ensure these bits are clear in TCR_ELx.
	  The workaround only affects the Fujitsu-A64FX.

	  If unsure, say Y.

config HISILICON_ERRATUM_161600802
	bool "Hip07 161600802: Erroneous redistributor VLPI base"
	default y
	help
	  The HiSilicon Hip07 SoC uses the wrong redistributor base
	  when issued ITS commands such as VMOVP and VMAPP, and requires
	  a 128kB offset to be applied to the target address in this commands.

	  If unsure, say Y.

979 980 981 982 983
config QCOM_FALKOR_ERRATUM_1003
	bool "Falkor E1003: Incorrect translation due to ASID change"
	default y
	help
	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
984 985 986 987 988
	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
	  then only for entries in the walk cache, since the leaf translation
	  is unchanged. Work around the erratum by invalidating the walk cache
	  entries for the trampoline before entering the kernel proper.
989

990 991 992
config QCOM_FALKOR_ERRATUM_1009
	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
	default y
993
	select ARM64_WORKAROUND_REPEAT_TLBI
994 995 996 997 998 999 1000
	help
	  On Falkor v1, the CPU may prematurely complete a DSB following a
	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
	  one more time to fix the issue.

	  If unsure, say Y.

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
config QCOM_QDF2400_ERRATUM_0065
	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
	default y
	help
	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).

	  If unsure, say Y.

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
config QCOM_FALKOR_ERRATUM_E1041
	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
	default y
	help
	  Falkor CPU may speculatively fetch instructions from an improper
	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.

	  If unsure, say Y.

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
config NVIDIA_CARMEL_CNP_ERRATUM
	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
	default y
	help
	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
	  invalidate shared TLB entries installed by a different core, as it would
	  on standard ARM cores.

	  If unsure, say Y.

1031 1032
config SOCIONEXT_SYNQUACER_PREITS
	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1033 1034
	default y
	help
1035 1036
	  Socionext Synquacer SoCs implement a separate h/w block to generate
	  MSI doorbell writes with non-zero values for the device ID.
1037 1038 1039

	  If unsure, say Y.

1040
endmenu # "ARM errata workarounds via the alternatives framework"
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
choice
	prompt "Page size"
	default ARM64_4K_PAGES
	help
	  Page size (translation granule) configuration.

config ARM64_4K_PAGES
	bool "4KB"
	help
	  This feature enables 4KB pages support.

1053 1054 1055 1056 1057 1058 1059
config ARM64_16K_PAGES
	bool "16KB"
	help
	  The system will use 16KB pages support. AArch32 emulation
	  requires applications compiled with 16K (or a multiple of 16K)
	  aligned segments.

C
Catalin Marinas 已提交
1060
config ARM64_64K_PAGES
1061
	bool "64KB"
C
Catalin Marinas 已提交
1062 1063 1064
	help
	  This feature enables 64KB pages support (4KB by default)
	  allowing only two levels of page tables and faster TLB
1065 1066
	  look-up. AArch32 emulation requires applications compiled
	  with 64K aligned segments.
C
Catalin Marinas 已提交
1067

1068 1069 1070 1071 1072
endchoice

choice
	prompt "Virtual address space size"
	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1073
	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1074 1075 1076 1077 1078 1079
	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
	help
	  Allows choosing one of multiple possible virtual address
	  space sizes. The level of translation table is determined by
	  a combination of page size and virtual address space size.

S
Suzuki K. Poulose 已提交
1080
config ARM64_VA_BITS_36
1081
	bool "36-bit" if EXPERT
S
Suzuki K. Poulose 已提交
1082 1083
	depends on ARM64_16K_PAGES

1084 1085 1086 1087 1088 1089 1090 1091
config ARM64_VA_BITS_39
	bool "39-bit"
	depends on ARM64_4K_PAGES

config ARM64_VA_BITS_42
	bool "42-bit"
	depends on ARM64_64K_PAGES

1092 1093 1094 1095
config ARM64_VA_BITS_47
	bool "47-bit"
	depends on ARM64_16K_PAGES

1096 1097 1098
config ARM64_VA_BITS_48
	bool "48-bit"

1099 1100
config ARM64_VA_BITS_52
	bool "52-bit"
1101 1102 1103
	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
	help
	  Enable 52-bit virtual addressing for userspace when explicitly
1104 1105 1106
	  requested via a hint to mmap(). The kernel will also use 52-bit
	  virtual addresses for its own mappings (provided HW support for
	  this feature is available, otherwise it reverts to 48-bit).
1107 1108 1109 1110 1111 1112 1113 1114

	  NOTE: Enabling 52-bit virtual addressing in conjunction with
	  ARMv8.3 Pointer Authentication will result in the PAC being
	  reduced from 7 bits to 3 bits, which may have a significant
	  impact on its susceptibility to brute-force attacks.

	  If unsure, select 48-bit virtual addressing instead.

1115 1116
endchoice

1117 1118
config ARM64_FORCE_52BIT
	bool "Force 52-bit virtual addresses for userspace"
1119
	depends on ARM64_VA_BITS_52 && EXPERT
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	help
	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
	  to maintain compatibility with older software by providing 48-bit VAs
	  unless a hint is supplied to mmap.

	  This configuration option disables the 48-bit compatibility logic, and
	  forces all userspace addresses to be 52-bit on HW that supports it. One
	  should only enable this configuration option for stress testing userspace
	  memory management code. If unsure say N here.

1130 1131
config ARM64_VA_BITS
	int
S
Suzuki K. Poulose 已提交
1132
	default 36 if ARM64_VA_BITS_36
1133 1134
	default 39 if ARM64_VA_BITS_39
	default 42 if ARM64_VA_BITS_42
1135
	default 47 if ARM64_VA_BITS_47
1136 1137
	default 48 if ARM64_VA_BITS_48
	default 52 if ARM64_VA_BITS_52
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
choice
	prompt "Physical address space size"
	default ARM64_PA_BITS_48
	help
	  Choose the maximum physical address range that the kernel will
	  support.

config ARM64_PA_BITS_48
	bool "48-bit"

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
config ARM64_PA_BITS_52
	bool "52-bit (ARMv8.2)"
	depends on ARM64_64K_PAGES
	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
	help
	  Enable support for a 52-bit physical address space, introduced as
	  part of the ARMv8.2-LPA extension.

	  With this enabled, the kernel will also continue to work on CPUs that
	  do not support ARMv8.2-LPA, but with some added memory overhead (and
	  minor performance overhead).

1161 1162 1163 1164 1165
endchoice

config ARM64_PA_BITS
	int
	default 48 if ARM64_PA_BITS_48
1166
	default 52 if ARM64_PA_BITS_52
1167

1168 1169 1170 1171 1172 1173 1174 1175
choice
	prompt "Endianness"
	default CPU_LITTLE_ENDIAN
	help
	  Select the endianness of data accesses performed by the CPU. Userspace
	  applications will need to be compiled and linked for the endianness
	  that is selected here.

1176
config CPU_BIG_ENDIAN
1177 1178 1179
	bool "Build big-endian kernel"
	depends on !LD_IS_LLD || LLD_VERSION >= 130000
	help
1180 1181 1182 1183 1184 1185 1186 1187 1188
	  Say Y if you plan on running a kernel with a big-endian userspace.

config CPU_LITTLE_ENDIAN
	bool "Build little-endian kernel"
	help
	  Say Y if you plan on running a kernel with a little-endian userspace.
	  This is usually the case for distributions targeting arm64.

endchoice
1189

1190 1191 1192 1193 1194 1195 1196
config SCHED_MC
	bool "Multi-core scheduler support"
	help
	  Multi-core scheduler support improves the CPU scheduler's decision
	  making when dealing with multi-core CPU chips at a cost of slightly
	  increased overhead in some places. If unsure say N here.

1197 1198 1199 1200 1201 1202 1203 1204 1205
config SCHED_CLUSTER
	bool "Cluster scheduler support"
	help
	  Cluster scheduler support improves the CPU scheduler's decision
	  making when dealing with machines that have clusters of CPUs.
	  Cluster usually means a couple of CPUs which are placed closely
	  by sharing mid-level caches, last-level cache tags or internal
	  busses.

1206 1207 1208 1209 1210 1211 1212
config SCHED_SMT
	bool "SMT scheduler support"
	help
	  Improves the CPU scheduler's decision making when dealing with
	  MultiThreading at a cost of slightly increased overhead in some
	  places. If unsure say N here.

C
Catalin Marinas 已提交
1213
config NR_CPUS
1214 1215
	int "Maximum number of CPUs (2-4096)"
	range 2 4096
M
Mark Rutland 已提交
1216
	default "256"
C
Catalin Marinas 已提交
1217

1218 1219
config HOTPLUG_CPU
	bool "Support for hot-pluggable CPUs"
1220
	select GENERIC_IRQ_MIGRATION
1221 1222 1223 1224
	help
	  Say Y here to experiment with turning CPUs off and on.  CPUs
	  can be controlled through /sys/devices/system/cpu.

1225 1226
# Common NUMA Features
config NUMA
R
Randy Dunlap 已提交
1227
	bool "NUMA Memory Allocation and Scheduler Support"
1228
	select GENERIC_ARCH_NUMA
1229 1230
	select ACPI_NUMA if ACPI
	select OF_NUMA
1231 1232 1233 1234
	select HAVE_SETUP_PER_CPU_AREA
	select NEED_PER_CPU_EMBED_FIRST_CHUNK
	select NEED_PER_CPU_PAGE_FIRST_CHUNK
	select USE_PERCPU_NUMA_NODE_ID
1235
	help
R
Randy Dunlap 已提交
1236
	  Enable NUMA (Non-Uniform Memory Access) support.
1237 1238 1239 1240 1241 1242 1243 1244

	  The kernel will try to allocate memory used by a CPU on the
	  local memory of the CPU and add some more
	  NUMA awareness to the kernel.

config NODES_SHIFT
	int "Maximum NUMA Nodes (as a power of 2)"
	range 1 10
1245
	default "4"
1246
	depends on NUMA
1247 1248 1249 1250
	help
	  Specify the maximum number of NUMA Nodes available on the target
	  system.  Increases memory reserved to accommodate various tables.

1251
source "kernel/Kconfig.hz"
C
Catalin Marinas 已提交
1252 1253 1254 1255

config ARCH_SPARSEMEM_ENABLE
	def_bool y
	select SPARSEMEM_VMEMMAP_ENABLE
1256
	select SPARSEMEM_VMEMMAP
1257

C
Catalin Marinas 已提交
1258
config HW_PERF_EVENTS
1259 1260
	def_bool y
	depends on ARM_PMU
C
Catalin Marinas 已提交
1261

1262
# Supported by clang >= 7.0 or GCC >= 12.0.0
1263 1264 1265
config CC_HAVE_SHADOW_CALL_STACK
	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
config PARAVIRT
	bool "Enable paravirtualization code"
	help
	  This changes the kernel so it can modify itself when it is run
	  under a hypervisor, potentially improving performance significantly
	  over full virtualization.

config PARAVIRT_TIME_ACCOUNTING
	bool "Paravirtual steal time accounting"
	select PARAVIRT
	help
	  Select this option to enable fine granularity task steal time
	  accounting. Time spent executing other tasks in parallel with
	  the current vCPU is discounted from the vCPU power. To account for
	  that, there can be a small performance impact.

	  If in doubt, say N here.

1284 1285 1286 1287
config KEXEC
	depends on PM_SLEEP_SMP
	select KEXEC_CORE
	bool "kexec system call"
1288
	help
1289 1290 1291 1292 1293
	  kexec is a system call that implements the ability to shutdown your
	  current kernel, and to start another kernel.  It is like a reboot
	  but it is independent of the system firmware.   And like a reboot
	  you can start any kernel with it, not just Linux.

A
AKASHI Takahiro 已提交
1294 1295 1296
config KEXEC_FILE
	bool "kexec file based system call"
	select KEXEC_CORE
1297
	select HAVE_IMA_KEXEC if IMA
A
AKASHI Takahiro 已提交
1298 1299 1300 1301 1302 1303
	help
	  This is new version of kexec system call. This system call is
	  file based and takes file descriptors as system call argument
	  for kernel and initramfs as opposed to list of segments as
	  accepted by previous system call.

1304
config KEXEC_SIG
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	bool "Verify kernel signature during kexec_file_load() syscall"
	depends on KEXEC_FILE
	help
	  Select this option to verify a signature with loaded kernel
	  image. If configured, any attempt of loading a image without
	  valid signature will fail.

	  In addition to that option, you need to enable signature
	  verification for the corresponding kernel image type being
	  loaded in order for this to work.

config KEXEC_IMAGE_VERIFY_SIG
	bool "Enable Image signature verification support"
	default y
1319
	depends on KEXEC_SIG
1320 1321 1322 1323 1324
	depends on EFI && SIGNED_PE_FILE_VERIFICATION
	help
	  Enable Image signature verification support.

comment "Support for PE file signature verification disabled"
1325
	depends on KEXEC_SIG
1326 1327
	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION

1328 1329 1330 1331 1332 1333 1334 1335 1336
config CRASH_DUMP
	bool "Build kdump crash kernel"
	help
	  Generate crash dump after being started by kexec. This should
	  be normally only set in special crash dump kernels which are
	  loaded in the main kernel with kexec-tools into a specially
	  reserved region and then later executed after a crash by
	  kdump/kexec.

1337
	  For more details see Documentation/admin-guide/kdump/kdump.rst
1338

1339 1340
config TRANS_TABLE
	def_bool y
1341
	depends on HIBERNATION || KEXEC_CORE
1342

1343 1344 1345 1346 1347
config XEN_DOM0
	def_bool y
	depends on XEN

config XEN
1348
	bool "Xen guest support on ARM64"
1349
	depends on ARM64 && OF
1350
	select SWIOTLB_XEN
1351
	select PARAVIRT
1352 1353 1354
	help
	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.

1355 1356
config FORCE_MAX_ZONEORDER
	int
1357 1358
	default "14" if ARM64_64K_PAGES
	default "12" if ARM64_16K_PAGES
1359
	default "11"
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	help
	  The kernel memory allocator divides physically contiguous memory
	  blocks into "zones", where each zone is a power of two number of
	  pages.  This option selects the largest power of two that the kernel
	  keeps in the memory allocator.  If you need to allocate very large
	  blocks of physically contiguous memory, then you may need to
	  increase this value.

	  This config option is actually maximum order plus one. For example,
	  a value of 11 means that the largest free memory block is 2^10 pages.

	  We make sure that we can allocate upto a HugePage size for each configuration.
	  Hence we have :
		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2

	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
	  4M allocations matching the default size used by generic code.
1377

1378
config UNMAP_KERNEL_AT_EL0
1379
	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1380 1381
	default y
	help
1382 1383 1384 1385 1386
	  Speculation attacks against some high-performance processors can
	  be used to bypass MMU permission checks and leak kernel data to
	  userspace. This can be defended against by unmapping the kernel
	  when running in userspace, mapping it back in on exception entry
	  via a trampoline page in the vector table.
1387 1388 1389

	  If unsure, say Y.

1390 1391 1392 1393 1394 1395 1396 1397 1398
config MITIGATE_SPECTRE_BRANCH_HISTORY
	bool "Mitigate Spectre style attacks against branch history" if EXPERT
	default y
	help
	  Speculation attacks against some high-performance processors can
	  make use of branch history to influence future speculation.
	  When taking an exception from user-space, a sequence of branches
	  or a firmware call overwrites the branch history.

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
config RODATA_FULL_DEFAULT_ENABLED
	bool "Apply r/o permissions of VM areas also to their linear aliases"
	default y
	help
	  Apply read-only attributes of VM areas to the linear alias of
	  the backing pages as well. This prevents code or read-only data
	  from being modified (inadvertently or intentionally) via another
	  mapping of the same memory page. This additional enhancement can
	  be turned off at runtime by passing rodata=[off|on] (and turned on
	  with rodata=full if this option is set to 'n')

	  This requires the linear region to be mapped down to pages,
	  which may adversely affect performance in some cases.

1413 1414 1415 1416 1417 1418 1419 1420
config ARM64_SW_TTBR0_PAN
	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
	help
	  Enabling this option prevents the kernel from accessing
	  user-space memory directly by pointing TTBR0_EL1 to a reserved
	  zeroed area and reserved ASID. The user access routines
	  restore the valid TTBR0_EL1 temporarily.

1421 1422 1423 1424 1425 1426 1427
config ARM64_TAGGED_ADDR_ABI
	bool "Enable the tagged user addresses syscall ABI"
	default y
	help
	  When this option is enabled, user applications can opt in to a
	  relaxed ABI via prctl() allowing tagged addresses to be passed
	  to system calls as pointer arguments. For details, see
1428
	  Documentation/arm64/tagged-address-abi.rst.
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
menuconfig COMPAT
	bool "Kernel support for 32-bit EL0"
	depends on ARM64_4K_PAGES || EXPERT
	select HAVE_UID16
	select OLD_SIGSUSPEND3
	select COMPAT_OLD_SIGACTION
	help
	  This option enables support for a 32-bit EL0 running under a 64-bit
	  kernel at EL1. AArch32-specific components such as system calls,
	  the user helper functions, VFP support and the ptrace interface are
	  handled appropriately by the kernel.

	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
	  that you will only be able to execute AArch32 binaries that were compiled
	  with page size aligned segments.

	  If you want to execute 32-bit userspace applications, say Y.

if COMPAT

config KUSER_HELPERS
1451
	bool "Enable kuser helpers page for 32-bit applications"
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	default y
	help
	  Warning: disabling this option may break 32-bit user programs.

	  Provide kuser helpers to compat tasks. The kernel provides
	  helper code to userspace in read only form at a fixed location
	  to allow userspace to be independent of the CPU type fitted to
	  the system. This permits binaries to be run on ARMv4 through
	  to ARMv8 without modification.

1462
	  See Documentation/arm/kernel_user_helpers.rst for details.
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

	  However, the fixed address nature of these helpers can be used
	  by ROP (return orientated programming) authors when creating
	  exploits.

	  If all of the binaries and libraries which run on your platform
	  are built specifically for your platform, and make no use of
	  these helpers, then you can turn this option off to hinder
	  such exploits. However, in that case, if a binary or library
	  relying on those helpers is run, it will not function correctly.

	  Say N here only if you are absolutely certain that you do not
	  need these helpers; otherwise, the safe option is to say Y.

1477 1478
config COMPAT_VDSO
	bool "Enable vDSO for 32-bit applications"
1479 1480
	depends on !CPU_BIG_ENDIAN
	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1481 1482 1483 1484 1485 1486 1487 1488 1489
	select GENERIC_COMPAT_VDSO
	default y
	help
	  Place in the process address space of 32-bit applications an
	  ELF shared object providing fast implementations of gettimeofday
	  and clock_gettime.

	  You must have a 32-bit build of glibc 2.22 or later for programs
	  to seamlessly take advantage of this.
1490

1491 1492 1493 1494 1495 1496 1497 1498
config THUMB2_COMPAT_VDSO
	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
	depends on COMPAT_VDSO
	default y
	help
	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
	  otherwise with '-marm'.

1499 1500
menuconfig ARMV8_DEPRECATED
	bool "Emulate deprecated/obsolete ARMv8 instructions"
1501
	depends on SYSCTL
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	help
	  Legacy software support may require certain instructions
	  that have been deprecated or obsoleted in the architecture.

	  Enable this config to enable selective emulation of these
	  features.

	  If unsure, say Y

if ARMV8_DEPRECATED

config SWP_EMULATION
	bool "Emulate SWP/SWPB instructions"
	help
	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
	  they are always undefined. Say Y here to enable software
	  emulation of these instructions for userspace using LDXR/STXR.
1519 1520
	  This feature can be controlled at runtime with the abi.swp
	  sysctl which is disabled by default.
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

	  In some older versions of glibc [<=2.8] SWP is used during futex
	  trylock() operations with the assumption that the code will not
	  be preempted. This invalid assumption may be more likely to fail
	  with SWP emulation enabled, leading to deadlock of the user
	  application.

	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
	  on an external transaction monitoring block called a global
	  monitor to maintain update atomicity. If your system does not
	  implement a global monitor, this option can cause programs that
	  perform SWP operations to uncached memory to deadlock.

	  If unsure, say Y

config CP15_BARRIER_EMULATION
	bool "Emulate CP15 Barrier instructions"
	help
	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
	  strongly recommended to use the ISB, DSB, and DMB
	  instructions instead.

	  Say Y here to enable software emulation of these
	  instructions for AArch32 userspace code. When this option is
	  enabled, CP15 barrier usage is traced which can help
1547 1548
	  identify software that needs updating. This feature can be
	  controlled at runtime with the abi.cp15_barrier sysctl.
1549 1550 1551

	  If unsure, say Y

1552 1553 1554 1555 1556 1557 1558
config SETEND_EMULATION
	bool "Emulate SETEND instruction"
	help
	  The SETEND instruction alters the data-endianness of the
	  AArch32 EL0, and is deprecated in ARMv8.

	  Say Y here to enable software emulation of the instruction
1559 1560
	  for AArch32 userspace code. This feature can be controlled
	  at runtime with the abi.setend sysctl.
1561 1562 1563 1564 1565 1566 1567

	  Note: All the cpus on the system must have mixed endian support at EL0
	  for this feature to be enabled. If a new CPU - which doesn't support mixed
	  endian - is hotplugged in after this feature has been enabled, there could
	  be unexpected results in the applications.

	  If unsure, say Y
1568
endif # ARMV8_DEPRECATED
1569

1570
endif # COMPAT
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
menu "ARMv8.1 architectural features"

config ARM64_HW_AFDBM
	bool "Support for hardware updates of the Access and Dirty page flags"
	default y
	help
	  The ARMv8.1 architecture extensions introduce support for
	  hardware updates of the access and dirty information in page
	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
	  capable processors, accesses to pages with PTE_AF cleared will
	  set this bit instead of raising an access flag fault.
	  Similarly, writes to read-only pages with the DBM bit set will
	  clear the read-only bit (AP[2]) instead of raising a
	  permission fault.

	  Kernels built with this configuration option enabled continue
	  to work on pre-ARMv8.1 hardware and the performance impact is
	  minimal. If unsure, say Y.

config ARM64_PAN
	bool "Enable support for Privileged Access Never (PAN)"
	default y
	help
1595 1596 1597
	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
	  prevents the kernel or hypervisor from accessing user-space (EL0)
	  memory directly.
1598

1599 1600
	  Choosing this option will cause any unprotected (not using
	  copy_to_user et al) memory access to fail with a permission fault.
1601

1602 1603
	  The feature is detected at runtime, and will remain as a 'nop'
	  instruction if the cpu does not implement the feature.
1604

1605 1606 1607
config AS_HAS_LDAPR
	def_bool $(as-instr,.arch_extension rcpc)

1608 1609 1610
config AS_HAS_LSE_ATOMICS
	def_bool $(as-instr,.arch_extension lse)

1611
config ARM64_LSE_ATOMICS
1612 1613
	bool
	default ARM64_USE_LSE_ATOMICS
1614
	depends on AS_HAS_LSE_ATOMICS
1615 1616

config ARM64_USE_LSE_ATOMICS
1617
	bool "Atomic instructions"
1618
	depends on JUMP_LABEL
1619
	default y
1620 1621 1622 1623 1624 1625 1626 1627
	help
	  As part of the Large System Extensions, ARMv8.1 introduces new
	  atomic instructions that are designed specifically to scale in
	  very large systems.

	  Say Y here to make use of these instructions for the in-kernel
	  atomic routines. This incurs a small overhead on CPUs that do
	  not support these instructions and requires the kernel to be
1628 1629
	  built with binutils >= 2.25 in order for the new instructions
	  to be used.
1630

1631
endmenu # "ARMv8.1 architectural features"
1632

1633 1634
menu "ARMv8.2 architectural features"

1635
config AS_HAS_ARMV8_2
1636
	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1637 1638

config AS_HAS_SHA3
1639
	def_bool $(as-instr,.arch armv8.2-a+sha3)
1640

R
Robin Murphy 已提交
1641 1642 1643
config ARM64_PMEM
	bool "Enable support for persistent memory"
	select ARCH_HAS_PMEM_API
1644
	select ARCH_HAS_UACCESS_FLUSHCACHE
R
Robin Murphy 已提交
1645 1646 1647 1648 1649 1650 1651 1652
	help
	  Say Y to enable support for the persistent memory API based on the
	  ARMv8.2 DCPoP feature.

	  The feature is detected at runtime, and the kernel will use DC CVAC
	  operations if DC CVAP is not supported (following the behaviour of
	  DC CVAP itself if the system does not define a point of persistence).

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
config ARM64_RAS_EXTN
	bool "Enable support for RAS CPU Extensions"
	default y
	help
	  CPUs that support the Reliability, Availability and Serviceability
	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
	  errors, classify them and report them to software.

	  On CPUs with these extensions system software can use additional
	  barriers to determine if faults are pending and read the
	  classification from a new set of registers.

	  Selecting this feature will allow the kernel to use these barriers
	  and access the new registers if the system supports the extension.
	  Platform RAS features may additionally depend on firmware support.

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
config ARM64_CNP
	bool "Enable support for Common Not Private (CNP) translations"
	default y
	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
	help
	  Common Not Private (CNP) allows translation table entries to
	  be shared between different PEs in the same inner shareable
	  domain, so the hardware can use this fact to optimise the
	  caching of such entries in the TLB.

	  Selecting this option allows the CNP feature to be detected
	  at runtime, and does not affect PEs that do not implement
	  this feature.

1683
endmenu # "ARMv8.2 architectural features"
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
menu "ARMv8.3 architectural features"

config ARM64_PTR_AUTH
	bool "Enable support for pointer authentication"
	default y
	help
	  Pointer authentication (part of the ARMv8.3 Extensions) provides
	  instructions for signing and authenticating pointers against secret
	  keys, which can be used to mitigate Return Oriented Programming (ROP)
	  and other attacks.

	  This option enables these instructions at EL0 (i.e. for userspace).
	  Choosing this option will cause the kernel to initialise secret keys
	  for each process at exec() time, with these keys being
	  context-switched along with the process.

	  The feature is detected at runtime. If the feature is not present in
1702
	  hardware it will not be advertised to userspace/KVM guest nor will it
1703
	  be enabled.
1704

1705 1706 1707 1708 1709 1710
	  If the feature is present on the boot CPU but not on a late CPU, then
	  the late CPU will be parked. Also, if the boot CPU does not have
	  address auth and the late CPU has then the late CPU will still boot
	  but with the feature disabled. On such a system, this option should
	  not be selected.

1711
config ARM64_PTR_AUTH_KERNEL
1712
	bool "Use pointer authentication for kernel"
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	default y
	depends on ARM64_PTR_AUTH
	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
	# Modern compilers insert a .note.gnu.property section note for PAC
	# which is only understood by binutils starting with version 2.33.1.
	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
	help
	  If the compiler supports the -mbranch-protection or
	  -msign-return-address flag (e.g. GCC 7 or later), then this option
	  will cause the kernel itself to be compiled with return address
	  protection. In this case, and if the target hardware is known to
	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
	  disabled with minimal loss of protection.

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	  This feature works with FUNCTION_GRAPH_TRACER option only if
	  DYNAMIC_FTRACE_WITH_REGS is enabled.

config CC_HAS_BRANCH_PROT_PAC_RET
	# GCC 9 or later, clang 8 or later
	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)

config CC_HAS_SIGN_RETURN_ADDRESS
	# GCC 7, 8
	def_bool $(cc-option,-msign-return-address=all)

config AS_HAS_PAC
1741
	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1742

1743 1744 1745
config AS_HAS_CFI_NEGATE_RA_STATE
	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)

1746
endmenu # "ARMv8.3 architectural features"
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
menu "ARMv8.4 architectural features"

config ARM64_AMU_EXTN
	bool "Enable support for the Activity Monitors Unit CPU extension"
	default y
	help
	  The activity monitors extension is an optional extension introduced
	  by the ARMv8.4 CPU architecture. This enables support for version 1
	  of the activity monitors architecture, AMUv1.

	  To enable the use of this extension on CPUs that implement it, say Y.

	  Note that for architectural reasons, firmware _must_ implement AMU
	  support when running on CPUs that present the activity monitors
	  extension. The required support is present in:
	    * Version 1.5 and later of the ARM Trusted Firmware

	  For kernels that have this configuration enabled but boot with broken
	  firmware, you may need to say N here until the firmware is fixed.
	  Otherwise you may experience firmware panics or lockups when
	  accessing the counter registers. Even if you are not observing these
	  symptoms, the values returned by the register reads might not
	  correctly reflect reality. Most commonly, the value read will be 0,
	  indicating that the counter is not enabled.

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
config AS_HAS_ARMV8_4
	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)

config ARM64_TLB_RANGE
	bool "Enable support for tlbi range feature"
	default y
	depends on AS_HAS_ARMV8_4
	help
	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
	  range of input addresses.

	  The feature introduces new assembly instructions, and they were
	  support when binutils >= 2.30.

1787
endmenu # "ARMv8.4 architectural features"
1788

M
Mark Brown 已提交
1789 1790
menu "ARMv8.5 architectural features"

1791 1792 1793
config AS_HAS_ARMV8_5
	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
config ARM64_BTI
	bool "Branch Target Identification support"
	default y
	help
	  Branch Target Identification (part of the ARMv8.5 Extensions)
	  provides a mechanism to limit the set of locations to which computed
	  branch instructions such as BR or BLR can jump.

	  To make use of BTI on CPUs that support it, say Y.

	  BTI is intended to provide complementary protection to other control
	  flow integrity protection mechanisms, such as the Pointer
	  authentication mechanism provided as part of the ARMv8.3 Extensions.
	  For this reason, it does not make sense to enable this option without
	  also enabling support for pointer authentication.  Thus, when
	  enabling this option you should also select ARM64_PTR_AUTH=y.

	  Userspace binaries must also be specifically compiled to make use of
	  this mechanism.  If you say N here or the hardware does not support
	  BTI, such binaries can still run, but you get no additional
	  enforcement of branch destinations.

1816 1817 1818 1819
config ARM64_BTI_KERNEL
	bool "Use Branch Target Identification for kernel"
	default y
	depends on ARM64_BTI
1820
	depends on ARM64_PTR_AUTH_KERNEL
1821
	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1822 1823
	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1824 1825
	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
	help
	  Build the kernel with Branch Target Identification annotations
	  and enable enforcement of this for kernel code. When this option
	  is enabled and the system supports BTI all kernel code including
	  modular code must have BTI enabled.

config CC_HAS_BRANCH_PROT_PAC_RET_BTI
	# GCC 9 or later, clang 8 or later
	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)

M
Mark Brown 已提交
1837 1838 1839 1840
config ARM64_E0PD
	bool "Enable support for E0PD"
	default y
	help
1841 1842 1843 1844 1845
	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
	  that EL0 accesses made via TTBR1 always fault in constant time,
	  providing similar benefits to KASLR as those provided by KPTI, but
	  with lower overhead and without disrupting legitimate access to
	  kernel memory such as SPE.
M
Mark Brown 已提交
1846

1847
	  This option enables E0PD for TTBR1 where available.
M
Mark Brown 已提交
1848

1849 1850 1851 1852 1853 1854 1855 1856
config ARCH_RANDOM
	bool "Enable support for random number generation"
	default y
	help
	  Random number generation (part of the ARMv8.5 Extensions)
	  provides a high bandwidth, cryptographically secure
	  hardware random number generator.

V
Vincenzo Frascino 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
config ARM64_AS_HAS_MTE
	# Initial support for MTE went in binutils 2.32.0, checked with
	# ".arch armv8.5-a+memtag" below. However, this was incomplete
	# as a late addition to the final architecture spec (LDGM/STGM)
	# is only supported in the newer 2.32.x and 2.33 binutils
	# versions, hence the extra "stgm" instruction check below.
	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])

config ARM64_MTE
	bool "Memory Tagging Extension support"
	default y
	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1869
	depends on AS_HAS_ARMV8_5
1870
	depends on AS_HAS_LSE_ATOMICS
1871 1872
	# Required for tag checking in the uaccess routines
	depends on ARM64_PAN
1873
	select ARCH_HAS_SUBPAGE_FAULTS
V
Vincenzo Frascino 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	select ARCH_USES_HIGH_VMA_FLAGS
	help
	  Memory Tagging (part of the ARMv8.5 Extensions) provides
	  architectural support for run-time, always-on detection of
	  various classes of memory error to aid with software debugging
	  to eliminate vulnerabilities arising from memory-unsafe
	  languages.

	  This option enables the support for the Memory Tagging
	  Extension at EL0 (i.e. for userspace).

	  Selecting this option allows the feature to be detected at
	  runtime. Any secondary CPU not implementing this feature will
	  not be allowed a late bring-up.

	  Userspace binaries that want to use this feature must
	  explicitly opt in. The mechanism for the userspace is
	  described in:

	  Documentation/arm64/memory-tagging-extension.rst.

1895
endmenu # "ARMv8.5 architectural features"
M
Mark Brown 已提交
1896

1897 1898 1899 1900 1901 1902 1903
menu "ARMv8.7 architectural features"

config ARM64_EPAN
	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
	default y
	depends on ARM64_PAN
	help
1904 1905
	  Enhanced Privileged Access Never (EPAN) allows Privileged
	  Access Never to be used with Execute-only mappings.
1906

1907 1908 1909
	  The feature is detected at runtime, and will remain disabled
	  if the cpu does not implement the feature.
endmenu # "ARMv8.7 architectural features"
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
config ARM64_SVE
	bool "ARM Scalable Vector Extension support"
	default y
	help
	  The Scalable Vector Extension (SVE) is an extension to the AArch64
	  execution state which complements and extends the SIMD functionality
	  of the base architecture to support much larger vectors and to enable
	  additional vectorisation opportunities.

	  To enable use of this extension on CPUs that implement it, say Y.

1922 1923 1924
	  On CPUs that support the SVE2 extensions, this option will enable
	  those too.

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	  Note that for architectural reasons, firmware _must_ implement SVE
	  support when running on SVE capable hardware.  The required support
	  is present in:

	    * version 1.5 and later of the ARM Trusted Firmware
	    * the AArch64 boot wrapper since commit 5e1261e08abf
	      ("bootwrapper: SVE: Enable SVE for EL2 and below").

	  For other firmware implementations, consult the firmware documentation
	  or vendor.

	  If you need the kernel to boot on SVE-capable hardware with broken
	  firmware, you may need to say N here until you get your firmware
	  fixed.  Otherwise, you may experience firmware panics or lockups when
	  booting the kernel.  If unsure and you are not observing these
	  symptoms, you should assume that it is safe to say Y.
1941

M
Mark Brown 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
config ARM64_SME
	bool "ARM Scalable Matrix Extension support"
	default y
	depends on ARM64_SVE
	help
	  The Scalable Matrix Extension (SME) is an extension to the AArch64
	  execution state which utilises a substantial subset of the SVE
	  instruction set, together with the addition of new architectural
	  register state capable of holding two dimensional matrix tiles to
	  enable various matrix operations.

1953
config ARM64_MODULE_PLTS
1954
	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1955
	depends on MODULES
1956
	select HAVE_MOD_ARCH_SPECIFIC
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	help
	  Allocate PLTs when loading modules so that jumps and calls whose
	  targets are too far away for their relative offsets to be encoded
	  in the instructions themselves can be bounced via veneers in the
	  module's PLT. This allows modules to be allocated in the generic
	  vmalloc area after the dedicated module memory area has been
	  exhausted.

	  When running with address space randomization (KASLR), the module
	  region itself may be too far away for ordinary relative jumps and
	  calls, and so in that case, module PLTs are required and cannot be
	  disabled.

	  Specific errata workaround(s) might also force module PLTs to be
	  enabled (ARM64_ERRATUM_843419).
1972

1973 1974
config ARM64_PSEUDO_NMI
	bool "Support for NMI-like interrupts"
1975
	select ARM_GIC_V3
1976 1977 1978
	help
	  Adds support for mimicking Non-Maskable Interrupts through the use of
	  GIC interrupt priority. This support requires version 3 or later of
1979
	  ARM GIC.
1980 1981 1982 1983 1984 1985 1986

	  This high priority configuration for interrupts needs to be
	  explicitly enabled by setting the kernel parameter
	  "irqchip.gicv3_pseudo_nmi" to 1.

	  If unsure, say N

1987 1988 1989 1990 1991 1992 1993 1994 1995
if ARM64_PSEUDO_NMI
config ARM64_DEBUG_PRIORITY_MASKING
	bool "Debug interrupt priority masking"
	help
	  This adds runtime checks to functions enabling/disabling
	  interrupts when using priority masking. The additional checks verify
	  the validity of ICC_PMR_EL1 when calling concerned functions.

	  If unsure, say N
1996
endif # ARM64_PSEUDO_NMI
1997

1998
config RELOCATABLE
1999
	bool "Build a relocatable kernel image" if EXPERT
2000
	select ARCH_HAS_RELR
2001
	default y
2002 2003 2004 2005 2006 2007 2008 2009 2010
	help
	  This builds the kernel as a Position Independent Executable (PIE),
	  which retains all relocation metadata required to relocate the
	  kernel binary at runtime to a different virtual address than the
	  address it was linked at.
	  Since AArch64 uses the RELA relocation format, this requires a
	  relocation pass at runtime even if the kernel is loaded at the
	  same address it was linked at.

2011 2012
config RANDOMIZE_BASE
	bool "Randomize the address of the kernel image"
2013
	select ARM64_MODULE_PLTS if MODULES
2014 2015 2016 2017 2018 2019 2020 2021 2022
	select RELOCATABLE
	help
	  Randomizes the virtual address at which the kernel image is
	  loaded, as a security feature that deters exploit attempts
	  relying on knowledge of the location of kernel internals.

	  It is the bootloader's job to provide entropy, by passing a
	  random u64 value in /chosen/kaslr-seed at kernel entry.

2023 2024 2025 2026 2027
	  When booting via the UEFI stub, it will invoke the firmware's
	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
	  to the kernel proper. In addition, it will randomise the physical
	  location of the kernel Image as well.

2028 2029 2030
	  If unsure, say N.

config RANDOMIZE_MODULE_REGION_FULL
2031
	bool "Randomize the module region over a 2 GB range"
2032
	depends on RANDOMIZE_BASE
2033 2034
	default y
	help
2035
	  Randomizes the location of the module region inside a 2 GB window
2036
	  covering the core kernel. This way, it is less likely for modules
2037 2038 2039 2040 2041 2042
	  to leak information about the location of core kernel data structures
	  but it does imply that function calls between modules and the core
	  kernel will need to be resolved via veneers in the module PLT.

	  When this option is not set, the module region will be randomized over
	  a limited range that contains the [_stext, _etext] interval of the
2043 2044 2045 2046
	  core kernel, so branch relocations are almost always in range unless
	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
	  particular case of region exhaustion, modules might be able to fall
	  back to a larger 2GB area.
2047

2048 2049 2050 2051 2052 2053 2054
config CC_HAVE_STACKPROTECTOR_SYSREG
	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)

config STACKPROTECTOR_PER_TASK
	def_bool y
	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
# The GPIO number here must be sorted by descending number. In case of
# a multiplatform kernel, we just want the highest value required by the
# selected platforms.
config ARCH_NR_GPIO
        int
        default 2048 if ARCH_APPLE
        default 0
        help
          Maximum number of GPIOs in the system.

          If unsure, leave the default value.

2067
endmenu # "Kernel Features"
C
Catalin Marinas 已提交
2068 2069 2070

menu "Boot options"

2071 2072 2073 2074 2075 2076 2077 2078 2079
config ARM64_ACPI_PARKING_PROTOCOL
	bool "Enable support for the ARM64 ACPI parking protocol"
	depends on ACPI
	help
	  Enable support for the ARM64 ACPI parking protocol. If disabled
	  the kernel will not allow booting through the ARM64 ACPI parking
	  protocol even if the corresponding data is present in the ACPI
	  MADT table.

C
Catalin Marinas 已提交
2080 2081 2082 2083 2084 2085 2086 2087
config CMDLINE
	string "Default kernel command string"
	default ""
	help
	  Provide a set of default command-line options at build time by
	  entering them here. As a minimum, you should specify the the
	  root device (e.g. root=/dev/nfs).

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
choice
	prompt "Kernel command line type" if CMDLINE != ""
	default CMDLINE_FROM_BOOTLOADER
	help
	  Choose how the kernel will handle the provided default kernel
	  command line string.

config CMDLINE_FROM_BOOTLOADER
	bool "Use bootloader kernel arguments if available"
	help
	  Uses the command-line options passed by the boot loader. If
	  the boot loader doesn't provide any, the default kernel command
	  string provided in CMDLINE will be used.

C
Catalin Marinas 已提交
2102 2103 2104 2105 2106 2107 2108 2109
config CMDLINE_FORCE
	bool "Always use the default kernel command string"
	help
	  Always use the default kernel command string, even if the boot
	  loader passes other arguments to the kernel.
	  This is useful if you cannot or don't want to change the
	  command-line options your boot loader passes to the kernel.

2110 2111
endchoice

2112 2113 2114
config EFI_STUB
	bool

M
Mark Salter 已提交
2115 2116 2117
config EFI
	bool "UEFI runtime support"
	depends on OF && !CPU_BIG_ENDIAN
2118
	depends on KERNEL_MODE_NEON
A
Arnd Bergmann 已提交
2119
	select ARCH_SUPPORTS_ACPI
M
Mark Salter 已提交
2120 2121 2122
	select LIBFDT
	select UCS2_STRING
	select EFI_PARAMS_FROM_FDT
2123
	select EFI_RUNTIME_WRAPPERS
2124
	select EFI_STUB
2125
	select EFI_GENERIC_STUB
C
Chester Lin 已提交
2126
	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
M
Mark Salter 已提交
2127 2128 2129 2130
	default y
	help
	  This option provides support for runtime services provided
	  by UEFI firmware (such as non-volatile variables, realtime
2131
	  clock, and platform reset). A UEFI stub is also provided to
M
Mark Salter 已提交
2132 2133
	  allow the kernel to be booted as an EFI application. This
	  is only useful on systems that have UEFI firmware.
M
Mark Salter 已提交
2134

Y
Yi Li 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
config DMI
	bool "Enable support for SMBIOS (DMI) tables"
	depends on EFI
	default y
	help
	  This enables SMBIOS/DMI feature for systems.

	  This option is only useful on systems that have UEFI firmware.
	  However, even with this option, the resultant kernel should
	  continue to boot on existing non-UEFI platforms.

2146
endmenu # "Boot options"
C
Catalin Marinas 已提交
2147 2148 2149 2150 2151

config SYSVIPC_COMPAT
	def_bool y
	depends on COMPAT && SYSVIPC

2152 2153 2154 2155
menu "Power management options"

source "kernel/power/Kconfig"

2156 2157 2158 2159 2160 2161 2162 2163
config ARCH_HIBERNATION_POSSIBLE
	def_bool y
	depends on CPU_PM

config ARCH_HIBERNATION_HEADER
	def_bool y
	depends on HIBERNATION

2164 2165 2166
config ARCH_SUSPEND_POSSIBLE
	def_bool y

2167
endmenu # "Power management options"
2168

2169 2170 2171 2172
menu "CPU Power Management"

source "drivers/cpuidle/Kconfig"

2173 2174
source "drivers/cpufreq/Kconfig"

2175
endmenu # "CPU Power Management"
2176

2177 2178
source "drivers/acpi/Kconfig"

M
Marc Zyngier 已提交
2179 2180
source "arch/arm64/kvm/Kconfig"

2181 2182
if CRYPTO
source "arch/arm64/crypto/Kconfig"
2183
endif # CRYPTO