ohci.c 74.1 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
S
Stefan Richter 已提交
23
#include <linux/device.h>
A
Andrew Morton 已提交
24
#include <linux/dma-mapping.h>
25
#include <linux/firewire.h>
S
Stefan Richter 已提交
26
#include <linux/firewire-constants.h>
S
Stefan Richter 已提交
27
#include <linux/gfp.h>
28 29
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
30
#include <linux/io.h>
31
#include <linux/kernel.h>
S
Stefan Richter 已提交
32
#include <linux/list.h>
A
Al Viro 已提交
33
#include <linux/mm.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/pci.h>
37
#include <linux/pci_ids.h>
S
Stefan Richter 已提交
38
#include <linux/spinlock.h>
S
Stefan Richter 已提交
39
#include <linux/string.h>
A
Andrew Morton 已提交
40

S
Stefan Richter 已提交
41
#include <asm/byteorder.h>
S
Stefan Richter 已提交
42
#include <asm/page.h>
43
#include <asm/system.h>
44

45 46 47 48
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

49 50
#include "core.h"
#include "ohci.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
65 66 67 68 69 70 71 72 73 74

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
100 101 102 103 104 105 106 107 108 109 110 111 112

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

113
struct context {
S
Stefan Richter 已提交
114
	struct fw_ohci *ohci;
115
	u32 regs;
116
	int total_allocation;
S
Stefan Richter 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
142 143 144

	descriptor_callback_t callback;

S
Stefan Richter 已提交
145
	struct tasklet_struct tasklet;
146 147
};

148 149 150 151 152 153
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 155 156

struct iso_context {
	struct fw_iso_context base;
157
	struct context context;
158
	int excess_bytes;
159 160
	void *header;
	size_t header_length;
161 162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
169
	int node_id;
170
	int generation;
171
	int request_generation;	/* for timestamping incoming requests */
172
	unsigned quirks;
173

174 175 176 177
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
178 179 180 181
	spinlock_t lock;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
182 183
	struct context at_request_ctx;
	struct context at_response_ctx;
184 185 186

	u32 it_context_mask;
	struct iso_context *it_context_list;
187
	u64 ir_context_channels;
188 189
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
190 191 192 193 194 195 196 197 198 199 200 201

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
202 203
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

221
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 223 224 225 226 227 228
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
229
#define OHCI_TCODE_PHY_PACKET		0x0e
230
#define OHCI_VERSION_1_1		0x010010
231

232 233
static char ohci_driver_name[] = KBUILD_MODNAME;

234 235
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

236 237 238
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
239
#define QUIRK_NO_1394A			8
240 241 242 243 244

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
	unsigned short vendor, device, flags;
} ohci_quirks[] = {
245
	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
246 247
							    QUIRK_RESET_PACKET |
							    QUIRK_NO_1394A},
248 249 250 251 252 253 254
	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
};

255 256 257 258 259 260 261
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
262
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
263 264
	")");

265 266
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

267
#define OHCI_PARAM_DEBUG_AT_AR		1
268
#define OHCI_PARAM_DEBUG_SELFIDS	2
269 270
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
271 272 273 274 275

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
276 277 278
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
279 280 281 282
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
283 284 285 286 287 288
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
289 290
		return;

291
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
292 293 294 295 296 297 298 299 300
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
301
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
302 303 304 305 306 307
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
308
		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
309
		    OHCI1394_regAccessFail | OHCI1394_busReset)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

327
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
328 329 330 331
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

332 333
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
334 335 336

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
337 338 339 340 341 342
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
343
		else
344 345 346 347
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

395
	if (evt == OHCI1394_evt_bus_reset) {
396 397
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
398 399 400
		return;
	}

401
	if (header[0] == ~header[1]) {
402 403
		fw_notify("A%c %s, %s, %08x\n",
		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
422
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
423 424
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
425 426 427 428 429 430
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
431 432
		break;
	default:
433 434 435 436 437 438
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
439 440 441 442 443 444
	}
}

#else

#define log_irqs(evt)
445
#define log_selfids(node_id, generation, self_id_count, sid)
446 447 448 449
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
450
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
451 452 453 454
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
455
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
456 457 458 459
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
460
static inline void flush_writes(const struct fw_ohci *ohci)
461 462 463 464 465
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

466
static int read_phy_reg(struct fw_card *card, int addr, u32 *value)
467 468
{
	struct fw_ohci *ohci = fw_ohci(card);
469
	u32 val;
470 471

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
472
	flush_writes(ohci);
473 474 475
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
476
		fw_error("failed to read phy reg bits\n");
477 478 479
		return -EBUSY;
	}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	*value = OHCI1394_PhyControl_ReadData(val);

	return 0;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 old;
	int err;

	err = read_phy_reg(card, addr, &old);
	if (err < 0)
		return err;

496 497 498 499 500 501 502
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

503 504 505 506 507 508 509
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static int read_paged_phy_reg(struct fw_card *card,
			      int page, int addr, u32 *value)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 reg;
	int err;

	err = ohci_update_phy_reg(card, 7, PHY_PAGE_SELECT, page << 5);
	if (err < 0)
		return err;
	flush_writes(ohci);
	msleep(2);
	reg = reg_read(ohci, OHCI1394_PhyControl);
	if ((reg & OHCI1394_PhyControl_WritePending) != 0) {
		fw_error("failed to write phy reg bits\n");
		return -EBUSY;
	}

	return read_phy_reg(card, addr, value);
}

531
static int ar_context_add_page(struct ar_context *ctx)
532
{
533 534
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
535
	dma_addr_t uninitialized_var(ab_bus);
536 537
	size_t offset;

538
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
539 540 541
	if (ab == NULL)
		return -ENOMEM;

542
	ab->next = NULL;
543
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
544 545 546
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
547 548 549 550 551 552
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

553
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
554 555 556
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

557
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
558
	flush_writes(ctx->ohci);
559 560

	return 0;
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static void ar_context_release(struct ar_context *ctx)
{
	struct ar_buffer *ab, *ab_next;
	size_t offset;
	dma_addr_t ab_bus;

	for (ab = ctx->current_buffer; ab; ab = ab_next) {
		ab_next = ab->next;
		offset = offsetof(struct ar_buffer, data);
		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
				  ab, ab_bus);
	}
}

578 579
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
580
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
581 582 583 584
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

585
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
586 587
{
	struct fw_ohci *ohci = ctx->ohci;
588 589
	struct fw_packet p;
	u32 status, length, tcode;
590
	int evt;
591

592 593 594
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
595 596 597 598 599

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
600
		p.header[3] = (__force __u32) buffer[3];
601
		p.header_length = 16;
602
		p.payload_length = 0;
603 604 605
		break;

	case TCODE_READ_BLOCK_REQUEST :
606
		p.header[3] = cond_le32_to_cpu(buffer[3]);
607 608 609 610 611
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
612 613 614
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
615
		p.header[3] = cond_le32_to_cpu(buffer[3]);
616
		p.header_length = 16;
617
		p.payload_length = p.header[3] >> 16;
618 619 620 621
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
622
	case OHCI_TCODE_PHY_PACKET:
623
		p.header_length = 12;
624
		p.payload_length = 0;
625
		break;
626 627 628 629 630

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
631
	}
632

633 634 635 636
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
637
	status = cond_le32_to_cpu(buffer[length]);
638
	evt    = (status >> 16) & 0x1f;
639

640
	p.ack        = evt - 16;
641 642 643
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
644

645
	log_ar_at_event('R', p.speed, p.header, evt);
646

647 648
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
649 650 651 652 653
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
654
	 * request.
655 656 657 658
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
659
	 */
660
	if (evt == OHCI1394_evt_bus_reset) {
661
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
662 663
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
664
		fw_core_handle_request(&ohci->card, &p);
665
	} else {
666
		fw_core_handle_response(&ohci->card, &p);
667
	}
668

669 670
	return buffer + length + 1;
}
671

672 673 674 675 676 677 678 679 680 681 682 683 684
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
685 686
		dma_addr_t start_bus;
		void *start;
687

688 689
		/*
		 * This descriptor is finished and we may have a
690
		 * packet split across this and the next buffer. We
691 692
		 * reuse the page for reassembling the split packet.
		 */
693 694

		offset = offsetof(struct ar_buffer, data);
695 696
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
697 698 699 700 701 702 703 704 705 706 707 708 709 710

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

711
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
712
				  start, start_bus);
713 714 715 716 717 718 719 720 721
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
722 723
}

724 725
static int ar_context_init(struct ar_context *ctx,
			   struct fw_ohci *ohci, u32 regs)
726
{
727
	struct ar_buffer ab;
728

729 730 731
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
732 733
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

734 735 736 737 738
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

739 740 741 742 743 744 745 746 747 748
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
749
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
750 751

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
752
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
753
	flush_writes(ctx->ohci);
754
}
S
Stefan Richter 已提交
755

756
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
757 758 759 760 761 762 763 764 765 766 767 768 769
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

770 771 772 773 774 775
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
776
	struct descriptor_buffer *desc;
777

778 779 780
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
781
	while (last->branch_address != 0) {
782
		struct descriptor_buffer *old_desc = desc;
783 784
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
785 786 787 788 789 790 791 792 793
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
794
		last = find_branch_descriptor(d, z);
795 796 797 798

		if (!ctx->callback(ctx, d, last))
			break;

799 800 801 802 803 804 805 806 807 808
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
809 810 811
	}
}

812 813 814 815
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
816
static int context_add_buffer(struct context *ctx)
817 818
{
	struct descriptor_buffer *desc;
819
	dma_addr_t uninitialized_var(bus_addr);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

845 846
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
847 848 849
{
	ctx->ohci = ohci;
	ctx->regs = regs;
850 851 852 853
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
854 855
		return -ENOMEM;

856 857 858
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

859 860 861
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

862 863
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
864
	 * branch address and looks like it's been sent.  That way we
865
	 * have a descriptor to append DMA programs to.
866
	 */
867 868 869 870 871 872
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
873 874 875 876

	return 0;
}

877
static void context_release(struct context *ctx)
878 879
{
	struct fw_card *card = &ctx->ohci->card;
880
	struct descriptor_buffer *desc, *tmp;
881

882 883 884 885
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
886 887
}

888
/* Must be called with ohci->lock held */
889 890
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
891
{
892 893 894 895 896 897 898 899 900
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
901

902 903 904 905 906 907 908 909 910 911
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
912

913
	d = desc->buffer + desc->used / sizeof(*d);
914
	memset(d, 0, z * sizeof(*d));
915
	*d_bus = desc->buffer_bus + desc->used;
916 917 918 919

	return d;
}

920
static void context_run(struct context *ctx, u32 extra)
921 922 923
{
	struct fw_ohci *ohci = ctx->ohci;

924
	reg_write(ohci, COMMAND_PTR(ctx->regs),
925
		  le32_to_cpu(ctx->last->branch_address));
926 927
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
928 929 930 931 932 933 934
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
935
	struct descriptor_buffer *desc = ctx->buffer_tail;
936

937
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
938

939 940 941
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
942

943
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
944 945 946 947 948 949
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
950
	int i;
951

952
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
953
	flush_writes(ctx->ohci);
954

955
	for (i = 0; i < 10; i++) {
956
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
957
		if ((reg & CONTEXT_ACTIVE) == 0)
958
			return;
959

960
		mdelay(1);
961
	}
962
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
963
}
964

965 966 967
struct driver_data {
	struct fw_packet *packet;
};
968

969 970
/*
 * This function apppends a packet to the DMA queue for transmission.
971
 * Must always be called with the ochi->lock held to ensure proper
972 973
 * generation handling and locking around packet queue manipulation.
 */
974 975
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
976 977
{
	struct fw_ohci *ohci = ctx->ohci;
978
	dma_addr_t d_bus, uninitialized_var(payload_bus);
979 980 981
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
982
	int z, tcode;
983
	u32 reg;
984

985 986 987 988
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
989 990
	}

991
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
992 993
	d[0].res_count = cpu_to_le16(packet->timestamp);

994 995
	/*
	 * The DMA format for asyncronous link packets is different
996 997
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
998 999
	 * which we need to prepend an extra quadlet.
	 */
1000 1001

	header = (__le32 *) &d[1];
1002 1003 1004
	switch (packet->header_length) {
	case 16:
	case 12:
1005 1006 1007 1008 1009
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1010 1011 1012

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
1013
			header[3] = cpu_to_le32(packet->header[3]);
1014
		else
1015 1016 1017
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1018 1019 1020
		break;

	case 8:
1021 1022 1023 1024 1025
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		break;

	case 4:
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1039 1040
	}

1041 1042
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1043
	packet->driver_data = driver_data;
1044

1045 1046 1047 1048
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1049
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1050 1051 1052
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1053 1054
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1055 1056 1057 1058 1059

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1060
	} else {
1061 1062
		last = &d[0];
		z = 2;
1063 1064
	}

1065 1066 1067
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1082
		if (packet->payload_mapped)
1083 1084
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1085 1086 1087 1088 1089
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1090

1091
	/* If the context isn't already running, start it up. */
1092
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1093
	if ((reg & CONTEXT_RUN) == 0)
1094 1095 1096
		context_run(ctx, 0);

	return 0;
1097 1098
}

1099 1100 1101
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1102
{
1103
	struct driver_data *driver_data;
1104
	struct fw_packet *packet;
1105
	struct fw_ohci *ohci = context->ohci;
1106 1107
	int evt;

1108 1109 1110
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1111

1112 1113 1114 1115 1116
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1117

1118
	if (packet->payload_mapped)
1119
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1120 1121
				 packet->payload_length, DMA_TO_DEVICE);

1122 1123
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1124

1125 1126
	log_ar_at_event('T', packet->speed, packet->header, evt);

1127 1128 1129 1130 1131
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1132

1133
	case OHCI1394_evt_flushed:
1134 1135 1136 1137
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1138 1139
		packet->ack = RCODE_GENERATION;
		break;
1140

1141
	case OHCI1394_evt_missing_ack:
1142 1143 1144 1145
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1146 1147
		packet->ack = RCODE_NO_ACK;
		break;
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1158

1159 1160 1161 1162
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1163

1164
	packet->callback(packet, &ohci->card, packet->ack);
1165

1166
	return 1;
1167 1168
}

1169 1170 1171 1172 1173
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1174

1175 1176
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1177 1178 1179 1180
{
	struct fw_packet response;
	int tcode, length, i;

1181
	tcode = HEADER_GET_TCODE(packet->header[0]);
1182
	if (TCODE_IS_BLOCK_PACKET(tcode))
1183
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1202 1203
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1204 1205 1206 1207 1208 1209
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1210 1211
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1212
	payload = packet->payload;
1213
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1239
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1240 1241 1242 1243
 out:
	fw_core_handle_response(&ohci->card, &response);
}

1244
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1245 1246 1247 1248
{
	u64 offset;
	u32 csr;

1249 1250 1251 1252
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1253 1254 1255

	offset =
		((unsigned long long)
1256
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1277 1278 1279 1280 1281

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1282
}
1283

1284
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1285 1286
{
	unsigned long flags;
1287
	int ret;
1288 1289 1290

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1291
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1292
	    ctx->ohci->generation == packet->generation) {
1293 1294 1295
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1296
	}
1297

1298
	ret = at_context_queue_packet(ctx, packet);
1299 1300
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1301
	if (ret < 0)
1302
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1303

1304 1305 1306 1307 1308
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1309
	int self_id_count, i, j, reg;
1310 1311
	int generation, new_generation;
	unsigned long flags;
1312 1313
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1314 1315 1316

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1317
		fw_notify("node ID not valid, new bus reset in progress\n");
1318 1319
		return;
	}
1320 1321 1322 1323 1324 1325
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1326

1327 1328 1329 1330 1331
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1332 1333
	/*
	 * The count in the SelfIDCount register is the number of
1334 1335
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1336 1337
	 * bit extra to get the actual number of self IDs.
	 */
1338 1339
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1340 1341 1342
		fw_notify("inconsistent self IDs\n");
		return;
	}
1343
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1344
	rmb();
1345 1346

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1347 1348 1349 1350
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1351 1352
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1353
	}
1354
	rmb();
1355

1356 1357
	/*
	 * Check the consistency of the self IDs we just read.  The
1358 1359 1360 1361 1362 1363 1364 1365 1366
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1367 1368
	 * of self IDs.
	 */
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1381 1382
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1383 1384
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1385
	if (ohci->quirks & QUIRK_RESET_PACKET)
1386 1387
		ohci->request_generation = generation;

1388 1389
	/*
	 * This next bit is unrelated to the AT context stuff but we
1390 1391 1392 1393
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1394 1395
	 * next_config_rom pointer so a new udpate can take place.
	 */
1396 1397

	if (ohci->next_config_rom != NULL) {
1398 1399 1400 1401
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1402 1403 1404 1405
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1406 1407
		/*
		 * Restore config_rom image and manually update
1408 1409
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1410 1411
		 * do that last.
		 */
1412 1413
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1414 1415 1416
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1417 1418
	}

1419 1420 1421 1422 1423
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1424 1425
	spin_unlock_irqrestore(&ohci->lock, flags);

1426 1427 1428 1429
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1430 1431
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1432

1433
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1434 1435 1436 1437 1438 1439
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1440
	u32 event, iso_event;
1441 1442 1443 1444
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1445
	if (!event || !~event)
1446 1447
		return IRQ_NONE;

1448 1449
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1450
	log_irqs(event);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1467
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1468 1469 1470 1471
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1472
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1473 1474 1475
		iso_event &= ~(1 << i);
	}

1476
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1477 1478 1479 1480
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1481
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1482 1483 1484
		iso_event &= ~(1 << i);
	}

1485 1486 1487 1488
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1489 1490 1491
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1492 1493 1494 1495 1496 1497 1498
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1510 1511 1512
	return IRQ_HANDLED;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
	u32 reg, phy_compliance;
	int clear, set, offset;

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
	if (read_phy_reg(&ohci->card, 2, &reg) < 0)
		return -EIO;
	if ((reg & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		if (read_paged_phy_reg(&ohci->card, 1, 8, &phy_compliance) < 0)
			return -EIO;
		if (phy_compliance >= 1)
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
	if (ohci_update_phy_reg(&ohci->card, 5, clear, set) < 0)
		return -EIO;
	flush_writes(ohci);
	msleep(2);

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

1589 1590
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
1591 1592 1593
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1594
	u32 lps;
1595
	int i, err;
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1607 1608
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1609 1610 1611 1612 1613
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1625 1626 1627 1628

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1629
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1630 1631
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1653
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1654
		  OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1655
		  OHCI1394_masterIntEnable);
1656 1657
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1658

1659 1660 1661 1662
	err = configure_1394a_enhancements(ohci);
	if (err < 0)
		return err;

1663 1664 1665 1666 1667
	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1668 1669
	/*
	 * When the link is not yet enabled, the atomic config rom
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1687 1688 1689 1690 1691 1692 1693
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1694

1695
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1696 1697 1698 1699 1700 1701 1702 1703
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1704

1705
	ohci->next_header = ohci->next_config_rom[0];
1706 1707
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1708 1709
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1710 1711 1712 1713 1714
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1715
			IRQF_SHARED, ohci_driver_name, ohci)) {
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1728 1729 1730 1731
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1732 1733 1734 1735 1736 1737

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

1738
static int ohci_set_config_rom(struct fw_card *card,
1739
			       const __be32 *config_rom, size_t length)
1740 1741 1742
{
	struct fw_ohci *ohci;
	unsigned long flags;
1743
	int ret = -EBUSY;
1744
	__be32 *next_config_rom;
1745
	dma_addr_t uninitialized_var(next_config_rom_bus);
1746 1747 1748

	ohci = fw_ohci(card);

1749 1750
	/*
	 * When the OHCI controller is enabled, the config rom update
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

1788
		copy_config_rom(ohci->next_config_rom, config_rom, length);
1789 1790 1791 1792 1793 1794

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1795
		ret = 0;
1796 1797 1798 1799
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1800 1801
	/*
	 * Now initiate a bus reset to have the changes take
1802 1803 1804
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1805 1806
	 * takes effect.
	 */
1807
	if (ret == 0)
1808
		fw_core_initiate_bus_reset(&ohci->card, 1);
1809 1810 1811
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1812

1813
	return ret;
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1830 1831 1832
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1833 1834
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
1835
	int ret = -ENOENT;
1836

1837
	tasklet_disable(&ctx->tasklet);
1838

1839 1840
	if (packet->ack != 0)
		goto out;
1841

1842
	if (packet->payload_mapped)
1843 1844 1845
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

1846
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1847 1848 1849
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
1850
	ret = 0;
1851 1852
 out:
	tasklet_enable(&ctx->tasklet);
1853

1854
	return ret;
1855 1856
}

1857 1858
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
1859
{
1860 1861 1862
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1863 1864
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1865
	int n, ret = 0;
1866

1867 1868 1869 1870
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1871 1872 1873 1874

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
1875
		ret = -ESTALE;
1876 1877 1878
		goto out;
	}

1879 1880 1881 1882
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1883 1884 1885 1886 1887 1888 1889

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1890 1891
	flush_writes(ohci);
 out:
1892
	spin_unlock_irqrestore(&ohci->lock, flags);
1893 1894

	return ret;
1895
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1896
}
S
Stefan Richter 已提交
1897

1898
static u32 cycle_timer_ticks(u32 cycle_timer)
1899 1900 1901 1902 1903 1904
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);
1905

1906 1907 1908
	return ticks;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
1924
static u32 ohci_get_cycle_time(struct fw_card *card)
1925 1926
{
	struct fw_ohci *ohci = fw_ohci(card);
1927 1928 1929
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
1930
	int i;
1931

1932 1933
	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

1934
	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1935 1936
		i = 0;
		c1 = c2;
1937 1938
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
1939 1940
			c0 = c1;
			c1 = c2;
1941 1942 1943 1944 1945 1946
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
1947 1948 1949
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
1950
	}
1951

1952
	return c2;
1953 1954
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

1977 1978 1979 1980 1981 1982
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1983
	struct descriptor *pd;
1984
	__le32 *ir_header;
1985
	void *p;
1986

1987 1988 1989 1990 1991
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1992 1993 1994
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

1995 1996
	p = last + 1;
	copy_iso_headers(ctx, p);
1997

1998 1999
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

2010 2011 2012
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2013
{
2014 2015
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2016 2017
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2018

2019 2020 2021 2022 2023
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2024 2025
		return 0;

2026 2027 2028 2029 2030 2031 2032 2033 2034
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2035
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2036 2037 2038 2039
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}
2040
	return 1;
2041 2042
}

2043
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2044
				int type, int channel, size_t header_size)
2045 2046 2047
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
2048
	descriptor_callback_t callback;
2049
	u64 *channels, dont_care = ~0ULL;
2050
	u32 *mask, regs;
2051
	unsigned long flags;
2052
	int index, ret = -ENOMEM;
2053 2054

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2055
		channels = &dont_care;
2056 2057
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
2058
		callback = handle_it_packet;
2059
	} else {
2060
		channels = &ohci->ir_context_channels;
S
Stefan Richter 已提交
2061 2062
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
2063
		callback = handle_ir_packet_per_buffer;
2064 2065 2066
	}

	spin_lock_irqsave(&ohci->lock, flags);
2067 2068 2069
	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
	if (index >= 0) {
		*channels &= ~(1ULL << channel);
2070
		*mask &= ~(1 << index);
2071
	}
2072 2073 2074 2075 2076
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
2077 2078 2079 2080 2081
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

2082
	ctx = &list[index];
2083
	memset(ctx, 0, sizeof(*ctx));
2084 2085 2086 2087 2088
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

2089 2090
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2091
		goto out_with_header;
2092 2093

	return &ctx->base;
2094 2095 2096 2097 2098 2099 2100 2101

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

2102
	return ERR_PTR(ret);
2103 2104
}

2105 2106
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2107
{
S
Stefan Richter 已提交
2108
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2109
	struct fw_ohci *ohci = ctx->context.ohci;
2110
	u32 control, match;
2111 2112
	int index;

2113 2114
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
2115 2116 2117
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2118
				(cycle & 0x7fff) << 16;
2119

2120 2121
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2122
		context_run(&ctx->context, match);
2123 2124
	} else {
		index = ctx - ohci->ir_context_list;
2125
		control = IR_CONTEXT_ISOCH_HEADER;
2126 2127 2128 2129 2130
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2131

2132 2133
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2134
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2135
		context_run(&ctx->context, control);
2136
	}
2137 2138 2139 2140

	return 0;
}

2141 2142 2143
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2144
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

2160 2161 2162
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2163
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2164 2165 2166
	unsigned long flags;
	int index;

2167 2168
	ohci_stop_iso(base);
	context_release(&ctx->context);
2169
	free_page((unsigned long)ctx->header);
2170

2171 2172 2173 2174 2175 2176 2177 2178
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2179
		ohci->ir_context_channels |= 1ULL << base->channel;
2180 2181 2182 2183 2184
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2185 2186 2187 2188
static int ohci_queue_iso_transmit(struct fw_iso_context *base,
				   struct fw_iso_packet *packet,
				   struct fw_iso_buffer *buffer,
				   unsigned long payload)
2189
{
S
Stefan Richter 已提交
2190
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2191
	struct descriptor *d, *last, *pd;
2192 2193
	struct fw_iso_packet *p;
	__le32 *header;
2194
	dma_addr_t d_bus, page_bus;
2195 2196
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2197
	int page, end_page, i, length, offset;
2198 2199

	p = packet;
2200
	payload_index = payload;
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2219
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2220

2221 2222 2223
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2224 2225

	if (!p->skip) {
2226
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2227
		d[0].req_count = cpu_to_le16(8);
2228 2229 2230 2231 2232 2233 2234 2235
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2236 2237

		header = (__le32 *) &d[1];
2238 2239 2240 2241 2242
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2243
		header[1] =
2244
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2245 2246 2247 2248 2249
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2250
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2263 2264 2265

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2266 2267 2268 2269 2270

		payload_index += length;
	}

	if (p->interrupt)
2271
		irq = DESCRIPTOR_IRQ_ALWAYS;
2272
	else
2273
		irq = DESCRIPTOR_NO_IRQ;
2274

2275
	last = z == 2 ? d : d + z - 1;
2276 2277 2278
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2279
				     irq);
2280

2281
	context_append(&ctx->context, d, z, header_z);
2282 2283 2284

	return 0;
}
S
Stefan Richter 已提交
2285

2286 2287 2288 2289
static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					struct fw_iso_packet *packet,
					struct fw_iso_buffer *buffer,
					unsigned long payload)
2290 2291
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2292
	struct descriptor *d, *pd;
2293
	struct fw_iso_packet *p = packet;
2294 2295
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2296 2297
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2298 2299

	/*
2300 2301
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2302 2303
	 */
	packet_count = p->header_length / ctx->base.header_size;
2304
	header_size  = max(ctx->base.header_size, (size_t)8);
2305 2306 2307 2308 2309

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2310
	payload_per_buffer = p->payload_length / packet_count;
2311 2312 2313

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2314
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2315
		d = context_get_descriptors(&ctx->context,
2316
				z + header_z, &d_bus);
2317 2318 2319
		if (d == NULL)
			return -ENOMEM;

2320 2321 2322 2323
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2324 2325
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2326
		d->transfer_status = 0;
2327 2328
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2329
		rest = payload_per_buffer;
2330
		pd = d;
2331
		for (j = 1; j < z; j++) {
2332
			pd++;
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2352 2353 2354
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2355
		if (p->interrupt && i == packet_count - 1)
2356 2357 2358 2359 2360 2361 2362 2363
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2364 2365 2366 2367
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
2368
{
2369
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2370
	unsigned long flags;
2371
	int ret;
2372

2373
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2374
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2375
		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2376
	else
2377 2378
		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
							buffer, payload);
2379 2380
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

2381
	return ret;
2382 2383
}

2384
static const struct fw_card_driver ohci_driver = {
2385 2386 2387 2388 2389
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2390
	.cancel_packet		= ohci_cancel_packet,
2391
	.enable_phys_dma	= ohci_enable_phys_dma,
2392
	.get_cycle_time		= ohci_get_cycle_time,
2393 2394 2395 2396

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2397
	.start_iso		= ohci_start_iso,
2398
	.stop_iso		= ohci_stop_iso,
2399 2400
};

2401
#ifdef CONFIG_PPC_PMAC
2402 2403
static void ohci_pmac_on(struct pci_dev *dev)
{
2404 2405 2406 2407 2408 2409 2410 2411
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2428 2429
#endif /* CONFIG_PPC_PMAC */

2430 2431
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
2432 2433
{
	struct fw_ohci *ohci;
2434
	u32 bus_options, max_receive, link_speed, version;
2435
	u64 guid;
2436
	int i, err, n_ir, n_it;
2437 2438
	size_t size;

2439
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2440
	if (ohci == NULL) {
2441 2442
		err = -ENOMEM;
		goto fail;
2443 2444 2445 2446
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2447 2448
	ohci_pmac_on(dev);

2449 2450
	err = pci_enable_device(dev);
	if (err) {
2451
		fw_error("Failed to enable OHCI hardware\n");
2452
		goto fail_free;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2464 2465
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2466
		fw_error("MMIO resource unavailable\n");
2467
		goto fail_disable;
2468 2469 2470 2471 2472
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2473 2474
		err = -ENXIO;
		goto fail_iomem;
2475 2476
	}

2477 2478 2479 2480 2481 2482 2483
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
		if (ohci_quirks[i].vendor == dev->vendor &&
		    (ohci_quirks[i].device == dev->device ||
		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
2484 2485
	if (param_quirks)
		ohci->quirks = param_quirks;
2486

2487 2488 2489 2490 2491 2492
	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2493
	context_init(&ohci->at_request_ctx, ohci,
2494
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2495

2496
	context_init(&ohci->at_response_ctx, ohci,
2497
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2498 2499

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2500 2501
	ohci->ir_context_channels = ~0ULL;
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2502
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2503 2504
	n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * n_ir;
2505
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2506 2507

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2508
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2509
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2510 2511
	n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * n_it;
2512
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2513 2514

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2515
		err = -ENOMEM;
2516
		goto fail_contexts;
2517 2518 2519 2520 2521 2522 2523 2524
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
2525
		err = -ENOMEM;
2526
		goto fail_contexts;
2527 2528 2529 2530 2531 2532 2533 2534
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2535
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2536
	if (err)
2537
		goto fail_self_id;
2538

2539 2540 2541 2542 2543
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
		  n_ir, n_it, ohci->quirks);
2544

2545
	return 0;
2546 2547 2548 2549

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2550
 fail_contexts:
2551
	kfree(ohci->ir_context_list);
2552 2553 2554 2555 2556
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
	context_release(&ohci->at_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	ar_context_release(&ohci->ar_request_ctx);
2557 2558 2559 2560 2561
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2562 2563
 fail_free:
	kfree(&ohci->card);
2564
	ohci_pmac_off(dev);
2565 2566 2567
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
2568 2569

	return err;
2570 2571 2572 2573 2574 2575 2576
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2577 2578
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2579 2580
	fw_core_remove_card(&ohci->card);

2581 2582 2583 2584
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2585 2586 2587

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2588 2589 2590 2591 2592 2593 2594

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
2595 2596
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
2597 2598 2599 2600
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
2601 2602 2603 2604 2605
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2606
	kfree(&ohci->card);
2607
	ohci_pmac_off(dev);
2608

2609 2610 2611
	fw_notify("Removed fw-ohci device.\n");
}

2612
#ifdef CONFIG_PM
2613
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2614
{
2615
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2616 2617 2618
	int err;

	software_reset(ohci);
2619 2620
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2621
	if (err) {
2622
		fw_error("pci_save_state failed\n");
2623 2624
		return err;
	}
2625
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2626 2627
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2628
	ohci_pmac_off(dev);
2629

2630 2631 2632
	return 0;
}

2633
static int pci_resume(struct pci_dev *dev)
2634
{
2635
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2636 2637
	int err;

2638 2639 2640 2641
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2642
	if (err) {
2643
		fw_error("pci_enable_device failed\n");
2644 2645 2646
		return err;
	}

2647
	return ohci_enable(&ohci->card, NULL, 0);
2648 2649 2650
}
#endif

2651
static const struct pci_device_id pci_table[] = {
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2663 2664 2665 2666
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2667 2668 2669 2670 2671 2672
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2673 2674 2675 2676 2677
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);