memory-failure.c 52.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * High level machine check handler. Handles pages reported by the
7
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8
 * failure.
9 10 11
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
12 13
 *
 * Handles page cache pages in various states.	The tricky part
14 15 16 17 18 19
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
20 21 22 23 24 25 26 27
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
28 29 30 31 32 33 34
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
35 36 37 38
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
39
#include <linux/kernel-page-flags.h>
40
#include <linux/sched/signal.h>
41
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
42
#include <linux/ksm.h>
43
#include <linux/rmap.h>
44
#include <linux/export.h>
45 46 47
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
48 49
#include <linux/migrate.h>
#include <linux/suspend.h>
50
#include <linux/slab.h>
51
#include <linux/swapops.h>
52
#include <linux/hugetlb.h>
53
#include <linux/memory_hotplug.h>
54
#include <linux/mm_inline.h>
55
#include <linux/memremap.h>
56
#include <linux/kfifo.h>
57
#include <linux/ratelimit.h>
58
#include <linux/page-isolation.h>
59
#include "internal.h"
60
#include "ras/ras_event.h"
61 62 63 64 65

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

66
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67

68 69
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

70
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
71 72
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
73 74
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
75
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
76 77
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
78 79
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
80 81 82 83 84 85 86 87 88 89 90

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
91
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
133
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
134 135 136 137 138 139 140
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

141
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
142 143 144 145 146 147 148 149
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
150 151
int hwpoison_filter(struct page *p)
{
152 153 154
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
155 156 157
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
158 159 160
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
161 162 163
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
164 165
	return 0;
}
166 167 168 169 170 171 172
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
173 174
EXPORT_SYMBOL_GPL(hwpoison_filter);

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
	short size_shift;
};

204
/*
205 206 207
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
208
 */
209
static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210
{
211 212
	struct task_struct *t = tk->tsk;
	short addr_lsb = tk->size_shift;
213 214
	int ret;

215
	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216
		pfn, t->comm, t->pid);
217

218
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
219
		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
220
				       addr_lsb);
221 222 223 224 225 226 227
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
228
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
229
				      addr_lsb, t);  /* synchronous? */
230
	}
231
	if (ret < 0)
232
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
233
			t->comm, t->pid, ret);
234 235 236
	return ret;
}

237 238 239 240
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
241
void shake_page(struct page *p, int access)
242
{
243 244 245
	if (PageHuge(p))
		return;

246 247 248 249
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
250
		drain_all_pages(page_zone(p));
251 252 253
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
254

255
	/*
256 257
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
258
	 */
259 260
	if (access)
		drop_slab_node(page_to_nid(p));
261 262 263
}
EXPORT_SYMBOL_GPL(shake_page);

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static unsigned long dev_pagemap_mapping_shift(struct page *page,
		struct vm_area_struct *vma)
{
	unsigned long address = vma_address(page, vma);
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	pgd = pgd_offset(vma->vm_mm, address);
	if (!pgd_present(*pgd))
		return 0;
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return 0;
	pud = pud_offset(p4d, address);
	if (!pud_present(*pud))
		return 0;
	if (pud_devmap(*pud))
		return PUD_SHIFT;
	pmd = pmd_offset(pud, address);
	if (!pmd_present(*pmd))
		return 0;
	if (pmd_devmap(*pmd))
		return PMD_SHIFT;
	pte = pte_offset_map(pmd, address);
	if (!pte_present(*pte))
		return 0;
	if (pte_devmap(*pte))
		return PAGE_SHIFT;
	return 0;
}
297 298 299 300 301 302 303 304 305 306 307 308

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
309
		       struct list_head *to_kill)
310 311 312
{
	struct to_kill *tk;

313 314 315 316
	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
	if (!tk) {
		pr_err("Memory failure: Out of memory while machine check handling\n");
		return;
317
	}
318

319
	tk->addr = page_address_in_vma(p, vma);
320 321 322
	if (is_zone_device_page(p))
		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
	else
323
		tk->size_shift = page_shift(compound_head(p));
324 325

	/*
326 327 328 329 330 331 332 333
	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
	 * so "tk->size_shift == 0" effectively checks no mapping on
	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
	 * to a process' address space, it's possible not all N VMAs
	 * contain mappings for the page, but at least one VMA does.
	 * Only deliver SIGBUS with payload derived from the VMA that
	 * has a mapping for the page.
334
	 */
335
	if (tk->addr == -EFAULT) {
336
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
337
			page_to_pfn(p), tsk->comm);
338 339 340
	} else if (tk->size_shift == 0) {
		kfree(tk);
		return;
341
	}
342

343 344 345 346 347 348 349 350 351 352 353 354 355
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
356 357
static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
		unsigned long pfn, int flags)
358 359 360 361
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
362
		if (forcekill) {
363
			/*
364
			 * In case something went wrong with munmapping
365 366 367
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
368
			if (fail || tk->addr == -EFAULT) {
369
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
370
				       pfn, tk->tsk->comm, tk->tsk->pid);
371 372
				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
						 tk->tsk, PIDTYPE_PID);
373 374 375 376 377 378 379 380
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
381
			else if (kill_proc(tk, pfn, flags) < 0)
382
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
383
				       pfn, tk->tsk->comm, tk->tsk->pid);
384 385 386 387 388 389
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

390 391 392 393 394 395 396 397 398
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
399
{
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
418
	if (!tsk->mm)
419
		return NULL;
420
	if (force_early)
421 422 423 424 425 426 427
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
428 429 430 431 432 433
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
434
				int force_early)
435 436 437 438
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
439
	pgoff_t pgoff;
440

441
	av = page_lock_anon_vma_read(page);
442
	if (av == NULL)	/* Not actually mapped anymore */
443 444
		return;

445
	pgoff = page_to_pgoff(page);
446
	read_lock(&tasklist_lock);
447
	for_each_process (tsk) {
448
		struct anon_vma_chain *vmac;
449
		struct task_struct *t = task_early_kill(tsk, force_early);
450

451
		if (!t)
452
			continue;
453 454
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
455
			vma = vmac->vma;
456 457
			if (!page_mapped_in_vma(page, vma))
				continue;
458
			if (vma->vm_mm == t->mm)
459
				add_to_kill(t, page, vma, to_kill);
460 461 462
		}
	}
	read_unlock(&tasklist_lock);
463
	page_unlock_anon_vma_read(av);
464 465 466 467 468 469
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
470
				int force_early)
471 472 473 474 475
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

476
	i_mmap_lock_read(mapping);
477
	read_lock(&tasklist_lock);
478
	for_each_process(tsk) {
479
		pgoff_t pgoff = page_to_pgoff(page);
480
		struct task_struct *t = task_early_kill(tsk, force_early);
481

482
		if (!t)
483
			continue;
484
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
485 486 487 488 489 490 491 492
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
493
			if (vma->vm_mm == t->mm)
494
				add_to_kill(t, page, vma, to_kill);
495 496 497
		}
	}
	read_unlock(&tasklist_lock);
498
	i_mmap_unlock_read(mapping);
499 500 501 502 503
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 */
504 505
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
506 507 508 509 510
{
	if (!page->mapping)
		return;

	if (PageAnon(page))
511
		collect_procs_anon(page, tokill, force_early);
512
	else
513
		collect_procs_file(page, tokill, force_early);
514 515 516
}

static const char *action_name[] = {
517 518 519 520
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
521 522 523
};

static const char * const action_page_types[] = {
524 525 526 527 528 529 530
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
531
	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
532 533 534 535 536 537 538 539 540 541 542 543
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
544
	[MF_MSG_DAX]			= "dax page",
545
	[MF_MSG_UNKNOWN]		= "unknown page",
546 547
};

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
563 564 565 566 567 568 569

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

570 571 572
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
573
		put_page(p);
574 575 576 577 578
		return 0;
	}
	return -EIO;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

612 613 614 615 616 617 618
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
619
	return MF_IGNORED;
620 621 622 623 624 625 626
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
627
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
628
	return MF_FAILED;
629 630 631 632 633 634 635 636 637
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

638 639
	delete_from_lru_cache(p);

640 641 642 643 644
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
645
		return MF_RECOVERED;
646 647 648 649 650 651 652 653 654 655 656 657 658

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
659
		return MF_FAILED;
660 661 662 663 664 665 666
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
667
	return truncate_error_page(p, pfn, mapping);
668 669 670
}

/*
671
 * Dirty pagecache page
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
704
		 * and the page is dropped between then the error
705 706 707 708 709 710 711 712 713 714 715
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
716
		mapping_set_error(mapping, -EIO);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

747
	if (!delete_from_lru_cache(p))
748
		return MF_DELAYED;
749
	else
750
		return MF_FAILED;
751 752 753 754 755
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
756

757
	if (!delete_from_lru_cache(p))
758
		return MF_RECOVERED;
759
	else
760
		return MF_FAILED;
761 762 763 764 765
}

/*
 * Huge pages. Needs work.
 * Issues:
766 767
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
768 769 770
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
771
	int res = 0;
772
	struct page *hpage = compound_head(p);
773
	struct address_space *mapping;
774 775 776 777

	if (!PageHuge(hpage))
		return MF_DELAYED;

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
793
	}
794 795

	return res;
796 797 798 799 800 801 802 803 804
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
805
 * in its live cycle, so all accesses have to be extremely careful.
806 807 808 809 810 811
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
812
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
813 814 815 816 817 818 819 820 821 822 823
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
824
	enum mf_action_page_type type;
825 826
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
827
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
828 829 830 831
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
832 833 834 835 836 837

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
838
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
839

840
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
841

842 843
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
844

845 846
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
847

848 849
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
850

851 852
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
853 854 855 856

	/*
	 * Catchall entry: must be at end.
	 */
857
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
858 859
};

860 861 862 863 864 865 866 867 868 869
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

870 871 872 873
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
874 875
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
876
{
877 878
	trace_memory_failure_event(pfn, type, result);

879
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
880
		pfn, action_page_types[type], action_name[result]);
881 882 883
}

static int page_action(struct page_state *ps, struct page *p,
884
			unsigned long pfn)
885 886
{
	int result;
887
	int count;
888 889

	result = ps->action(p, pfn);
890

891
	count = page_count(p) - 1;
892
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
893
		count--;
894
	if (count > 0) {
895
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
896
		       pfn, action_page_types[ps->type], count);
897
		result = MF_FAILED;
898
	}
899
	action_result(pfn, ps->type, result);
900 901 902 903 904 905

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

906
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
907 908
}

909 910 911 912 913 914 915 916 917 918 919
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

920
	if (!PageHuge(head) && PageTransHuge(head)) {
921 922 923 924 925 926 927
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
928
			pr_err("Memory failure: %#lx: non anonymous thp\n",
929 930 931
				page_to_pfn(page));
			return 0;
		}
932 933
	}

934 935 936 937
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

938 939
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
940 941 942 943
		put_page(head);
	}

	return 0;
944 945 946
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

947 948 949 950
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
951
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
952
				  int flags, struct page **hpagep)
953
{
S
Shaohua Li 已提交
954
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
955 956
	struct address_space *mapping;
	LIST_HEAD(tokill);
957
	bool unmap_success = true;
958
	int kill = 1, forcekill;
959
	struct page *hpage = *hpagep;
960
	bool mlocked = PageMlocked(hpage);
961

962 963 964 965 966
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
967
		return true;
968
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
969
		return true;
970 971 972 973 974

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
975
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
976
		return true;
W
Wu Fengguang 已提交
977

978
	if (PageKsm(p)) {
979
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
980
		return false;
981
	}
982 983

	if (PageSwapCache(p)) {
984 985
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
986 987 988 989 990 991
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
992 993
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
994
	 */
995
	mapping = page_mapping(hpage);
996
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
997 998 999
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
1000 1001 1002
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
1003
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
1017
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (!PageHuge(hpage)) {
		unmap_success = try_to_unmap(hpage, ttu);
	} else {
		/*
		 * For hugetlb pages, try_to_unmap could potentially call
		 * huge_pmd_unshare.  Because of this, take semaphore in
		 * write mode here and set TTU_RMAP_LOCKED to indicate we
		 * have taken the lock at this higer level.
		 *
		 * Note that the call to hugetlb_page_mapping_lock_write
		 * is necessary even if mapping is already set.  It handles
		 * ugliness of potentially having to drop page lock to obtain
		 * i_mmap_rwsem.
		 */
		mapping = hugetlb_page_mapping_lock_write(hpage);

		if (mapping) {
			unmap_success = try_to_unmap(hpage,
						     ttu|TTU_RMAP_LOCKED);
			i_mmap_unlock_write(mapping);
		} else {
			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
				pfn);
			unmap_success = false;
		}
	}
M
Minchan Kim 已提交
1045
	if (!unmap_success)
1046
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1047
		       pfn, page_mapcount(hpage));
1048

1049 1050 1051 1052 1053 1054 1055
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1056 1057 1058 1059
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1060 1061
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1062 1063 1064 1065
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1066
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1067
	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
W
Wu Fengguang 已提交
1068

M
Minchan Kim 已提交
1069
	return unmap_success;
1070 1071
}

1072 1073
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1074 1075
{
	struct page_state *ps;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1095
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1096
{
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	/*
	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
	 * simply disable it. In order to make it work properly, we need
	 * make sure that:
	 *  - conversion of a pud that maps an error hugetlb into hwpoison
	 *    entry properly works, and
	 *  - other mm code walking over page table is aware of pud-aligned
	 *    hwpoison entries.
	 */
	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1155
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1156 1157 1158 1159 1160
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1161
	res = identify_page_state(pfn, p, page_flags);
1162 1163 1164 1165 1166
out:
	unlock_page(head);
	return res;
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
		struct dev_pagemap *pgmap)
{
	struct page *page = pfn_to_page(pfn);
	const bool unmap_success = true;
	unsigned long size = 0;
	struct to_kill *tk;
	LIST_HEAD(tokill);
	int rc = -EBUSY;
	loff_t start;
1177
	dax_entry_t cookie;
1178 1179 1180 1181 1182 1183 1184 1185

	/*
	 * Prevent the inode from being freed while we are interrogating
	 * the address_space, typically this would be handled by
	 * lock_page(), but dax pages do not use the page lock. This
	 * also prevents changes to the mapping of this pfn until
	 * poison signaling is complete.
	 */
1186 1187
	cookie = dax_lock_page(page);
	if (!cookie)
1188 1189 1190 1191 1192 1193 1194
		goto out;

	if (hwpoison_filter(page)) {
		rc = 0;
		goto unlock;
	}

1195
	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		/*
		 * TODO: Handle HMM pages which may need coordination
		 * with device-side memory.
		 */
		goto unlock;
	}

	/*
	 * Use this flag as an indication that the dax page has been
	 * remapped UC to prevent speculative consumption of poison.
	 */
	SetPageHWPoison(page);

	/*
	 * Unlike System-RAM there is no possibility to swap in a
	 * different physical page at a given virtual address, so all
	 * userspace consumption of ZONE_DEVICE memory necessitates
	 * SIGBUS (i.e. MF_MUST_KILL)
	 */
	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);

	list_for_each_entry(tk, &tokill, nd)
		if (tk->size_shift)
			size = max(size, 1UL << tk->size_shift);
	if (size) {
		/*
		 * Unmap the largest mapping to avoid breaking up
		 * device-dax mappings which are constant size. The
		 * actual size of the mapping being torn down is
		 * communicated in siginfo, see kill_proc()
		 */
		start = (page->index << PAGE_SHIFT) & ~(size - 1);
		unmap_mapping_range(page->mapping, start, start + size, 0);
	}
	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
	rc = 0;
unlock:
1234
	dax_unlock_page(page, cookie);
1235 1236 1237 1238 1239 1240 1241
out:
	/* drop pgmap ref acquired in caller */
	put_dev_pagemap(pgmap);
	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
	return rc;
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1259
int memory_failure(unsigned long pfn, int flags)
1260 1261
{
	struct page *p;
1262
	struct page *hpage;
1263
	struct page *orig_head;
1264
	struct dev_pagemap *pgmap;
1265
	int res;
1266
	unsigned long page_flags;
1267 1268

	if (!sysctl_memory_failure_recovery)
1269
		panic("Memory failure on page %lx", pfn);
1270

1271 1272 1273 1274 1275 1276 1277 1278
	p = pfn_to_online_page(pfn);
	if (!p) {
		if (pfn_valid(pfn)) {
			pgmap = get_dev_pagemap(pfn, NULL);
			if (pgmap)
				return memory_failure_dev_pagemap(pfn, flags,
								  pgmap);
		}
1279 1280
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1281
		return -ENXIO;
1282 1283
	}

1284
	if (PageHuge(p))
1285
		return memory_failure_hugetlb(pfn, flags);
1286
	if (TestSetPageHWPoison(p)) {
1287 1288
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1289 1290 1291
		return 0;
	}

1292
	orig_head = hpage = compound_head(p);
1293
	num_poisoned_pages_inc();
1294 1295 1296 1297 1298

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1299
	 * 2) it's part of a non-compound high order page.
1300 1301 1302 1303
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
1304
	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1305
	 */
1306
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1307
		if (is_free_buddy_page(p)) {
1308
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1309 1310
			return 0;
		} else {
1311
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1312 1313
			return -EBUSY;
		}
1314 1315
	}

1316
	if (PageTransHuge(hpage)) {
1317 1318 1319 1320
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1321 1322
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1323
			else
1324 1325
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1326
			if (TestClearPageHWPoison(p))
1327
				num_poisoned_pages_dec();
1328
			put_hwpoison_page(p);
1329 1330
			return -EBUSY;
		}
1331
		unlock_page(p);
1332 1333 1334 1335
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1336 1337 1338
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1339
	 * - to avoid races with __SetPageLocked()
1340 1341 1342 1343
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1344 1345 1346 1347 1348 1349 1350 1351
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1352 1353
	}

1354
	lock_page(p);
W
Wu Fengguang 已提交
1355

1356 1357 1358 1359
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1360
	if (PageCompound(p) && compound_head(p) != orig_head) {
1361
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1362 1363 1364 1365
		res = -EBUSY;
		goto out;
	}

1366 1367 1368 1369 1370 1371 1372
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1373 1374 1375 1376
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1377

W
Wu Fengguang 已提交
1378 1379 1380 1381
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1382
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1383
		num_poisoned_pages_dec();
1384 1385
		unlock_page(p);
		put_hwpoison_page(p);
1386
		return 0;
W
Wu Fengguang 已提交
1387
	}
W
Wu Fengguang 已提交
1388 1389
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1390
			num_poisoned_pages_dec();
1391 1392
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1393 1394
		return 0;
	}
W
Wu Fengguang 已提交
1395

1396
	if (!PageTransTail(p) && !PageLRU(p))
1397 1398
		goto identify_page_state;

1399 1400 1401 1402
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1403 1404 1405 1406
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1407
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1408 1409 1410
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1411
	 */
1412
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1413
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1414 1415 1416
		res = -EBUSY;
		goto out;
	}
1417 1418 1419 1420

	/*
	 * Torn down by someone else?
	 */
1421
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1422
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1423
		res = -EBUSY;
1424 1425 1426
		goto out;
	}

1427
identify_page_state:
1428
	res = identify_page_state(pfn, p, page_flags);
1429
out:
1430
	unlock_page(p);
1431 1432
	return res;
}
1433
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1468
void memory_failure_queue(unsigned long pfn, int flags)
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1479
	if (kfifo_put(&mf_cpu->fifo, entry))
1480 1481
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1482
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1496
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1497 1498 1499 1500 1501 1502
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1503
		if (entry.flags & MF_SOFT_OFFLINE)
1504
			soft_offline_page(entry.pfn, entry.flags);
1505
		else
1506
			memory_failure(entry.pfn, entry.flags);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1526 1527 1528 1529 1530 1531
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1549 1550
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1551 1552 1553 1554 1555 1556 1557 1558

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1559
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1560
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1561 1562 1563
		return 0;
	}

1564
	if (page_count(page) > 1) {
1565
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1566
				 pfn, &unpoison_rs);
1567 1568 1569 1570
		return 0;
	}

	if (page_mapped(page)) {
1571
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1572
				 pfn, &unpoison_rs);
1573 1574 1575 1576
		return 0;
	}

	if (page_mapping(page)) {
1577
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1578
				 pfn, &unpoison_rs);
1579 1580 1581
		return 0;
	}

1582 1583 1584 1585 1586
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1587
	if (!PageHuge(page) && PageTransHuge(page)) {
1588
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1589
				 pfn, &unpoison_rs);
1590
		return 0;
1591 1592
	}

1593
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1594
		if (TestClearPageHWPoison(p))
1595
			num_poisoned_pages_dec();
1596
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1597
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1598 1599 1600
		return 0;
	}

J
Jens Axboe 已提交
1601
	lock_page(page);
W
Wu Fengguang 已提交
1602 1603 1604 1605 1606 1607
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1608
	if (TestClearPageHWPoison(page)) {
1609
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1610
				 pfn, &unpoison_rs);
1611
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1612 1613 1614 1615
		freeit = 1;
	}
	unlock_page(page);

1616
	put_hwpoison_page(page);
1617
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1618
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1619 1620 1621 1622

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1623

1624
static struct page *new_page(struct page *p, unsigned long private)
1625
{
1626
	int nid = page_to_nid(p);
1627

1628
	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1629 1630 1631 1632 1633 1634 1635 1636
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1637
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1638 1639 1640 1641 1642 1643
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1644 1645 1646 1647
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1648
	if (!get_hwpoison_page(p)) {
1649
		if (PageHuge(p)) {
1650
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1651
			ret = 0;
1652
		} else if (is_free_buddy_page(p)) {
1653
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1654 1655
			ret = 0;
		} else {
1656 1657
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1658 1659 1660 1661 1662 1663 1664 1665 1666
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1667 1668 1669 1670
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1671 1672
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1673 1674 1675
		/*
		 * Try to free it.
		 */
1676
		put_hwpoison_page(page);
1677 1678 1679 1680 1681 1682
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1683
		if (ret == 1 && !PageLRU(page)) {
1684
			/* Drop page reference which is from __get_any_page() */
1685
			put_hwpoison_page(page);
1686 1687
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1688 1689 1690 1691 1692 1693
			return -EIO;
		}
	}
	return ret;
}

1694 1695 1696 1697 1698
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1699
	LIST_HEAD(pagelist);
1700

1701 1702 1703 1704 1705
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1706
	if (PageHWPoison(hpage)) {
1707
		unlock_page(hpage);
1708
		put_hwpoison_page(hpage);
1709
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1710
		return -EBUSY;
1711
	}
1712
	unlock_page(hpage);
1713

1714
	ret = isolate_huge_page(hpage, &pagelist);
1715 1716 1717 1718
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1719
	put_hwpoison_page(hpage);
1720
	if (!ret) {
1721 1722 1723 1724
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1725
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1726
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1727
	if (ret) {
1728
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1729
			pfn, ret, page->flags, &page->flags);
1730 1731
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1732 1733
		if (ret > 0)
			ret = -EIO;
1734
	} else {
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		/*
		 * We set PG_hwpoison only when the migration source hugepage
		 * was successfully dissolved, because otherwise hwpoisoned
		 * hugepage remains on free hugepage list, then userspace will
		 * find it as SIGBUS by allocation failure. That's not expected
		 * in soft-offlining.
		 */
		ret = dissolve_free_huge_page(page);
		if (!ret) {
			if (set_hwpoison_free_buddy_page(page))
				num_poisoned_pages_inc();
1746 1747
			else
				ret = -EBUSY;
1748
		}
1749 1750 1751 1752
	}
	return ret;
}

1753 1754 1755 1756
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1757 1758

	/*
1759 1760 1761 1762
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1763
	 */
1764 1765
	lock_page(page);
	wait_on_page_writeback(page);
1766 1767
	if (PageHWPoison(page)) {
		unlock_page(page);
1768
		put_hwpoison_page(page);
1769 1770 1771
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1783
		put_hwpoison_page(page);
1784
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1785
		SetPageHWPoison(page);
1786
		num_poisoned_pages_inc();
1787
		return 0;
1788 1789 1790 1791 1792 1793 1794
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1795 1796 1797 1798
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1799 1800 1801 1802
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1803
	put_hwpoison_page(page);
1804 1805
	if (!ret) {
		LIST_HEAD(pagelist);
1806 1807 1808 1809 1810 1811 1812 1813
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1814
		list_add(&page->lru, &pagelist);
1815
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1816
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1817
		if (ret) {
1818 1819
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1820

1821 1822
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1823 1824 1825 1826
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1827 1828
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1829 1830 1831
	}
	return ret;
}
1832

1833 1834 1835
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
1836
	int mt;
1837 1838 1839
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
1840 1841 1842 1843
		lock_page(page);
		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
			unlock_page(page);
			if (!PageAnon(page))
1844 1845 1846
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1847
			put_hwpoison_page(page);
1848 1849
			return -EBUSY;
		}
1850
		unlock_page(page);
1851 1852
	}

1853 1854 1855 1856 1857 1858 1859 1860 1861
	/*
	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
	 * to free list immediately (not via pcplist) when released after
	 * successful page migration. Otherwise we can't guarantee that the
	 * page is really free after put_page() returns, so
	 * set_hwpoison_free_buddy_page() highly likely fails.
	 */
	mt = get_pageblock_migratetype(page);
	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1862 1863 1864 1865
	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);
1866
	set_pageblock_migratetype(page, mt);
1867 1868 1869
	return ret;
}

1870
static int soft_offline_free_page(struct page *page)
1871
{
1872
	int rc = dissolve_free_huge_page(page);
1873

1874 1875 1876 1877 1878 1879 1880
	if (!rc) {
		if (set_hwpoison_free_buddy_page(page))
			num_poisoned_pages_inc();
		else
			rc = -EBUSY;
	}
	return rc;
1881 1882
}

1883 1884
/**
 * soft_offline_page - Soft offline a page.
1885
 * @pfn: pfn to soft-offline
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
1905
int soft_offline_page(unsigned long pfn, int flags)
1906 1907
{
	int ret;
1908
	struct page *page;
1909

1910 1911 1912 1913 1914
	if (!pfn_valid(pfn))
		return -ENXIO;
	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
	page = pfn_to_online_page(pfn);
	if (!page)
1915 1916
		return -EIO;

1917 1918
	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1919
		if (flags & MF_COUNT_INCREASED)
1920
			put_hwpoison_page(page);
1921 1922 1923
		return -EBUSY;
	}

1924
	get_online_mems();
1925
	ret = get_any_page(page, pfn, flags);
1926
	put_online_mems();
1927

1928 1929 1930
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
1931
		ret = soft_offline_free_page(page);
1932

1933 1934
	return ret;
}