amd.c 18.4 KB
Newer Older
1 2
/*
 *  AMD CPU Microcode Update Driver for Linux
3 4 5 6
 *
 *  This driver allows to upgrade microcode on F10h AMD
 *  CPUs and later.
 *
7
 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8
 *	          2013-2016 Borislav Petkov <bp@alien8.de>
9 10 11 12
 *
 *  Author: Peter Oruba <peter.oruba@amd.com>
 *
 *  Based on work by:
A
Andrew Morton 已提交
13
 *  Tigran Aivazian <aivazian.tigran@gmail.com>
14
 *
15 16 17 18 19
 *  early loader:
 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 *  Author: Jacob Shin <jacob.shin@amd.com>
 *  Fixes: Borislav Petkov <bp@suse.de>
20
 *
21
 *  Licensed under the terms of the GNU General Public
22
 *  License version 2. See file COPYING for details.
I
Ingo Molnar 已提交
23
 */
24
#define pr_fmt(fmt) "microcode: " fmt
25

26
#include <linux/earlycpio.h>
I
Ingo Molnar 已提交
27 28 29
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
30
#include <linux/initrd.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel.h>
32 33
#include <linux/pci.h>

34
#include <asm/microcode_amd.h>
35
#include <asm/microcode.h>
I
Ingo Molnar 已提交
36
#include <asm/processor.h>
37 38
#include <asm/setup.h>
#include <asm/cpu.h>
I
Ingo Molnar 已提交
39
#include <asm/msr.h>
40

D
Dmitry Adamushko 已提交
41
static struct equiv_cpu_entry *equiv_cpu_table;
42

43 44
/*
 * This points to the current valid container of microcode patches which we will
45 46
 * save from the initrd/builtin before jettisoning its contents. @mc is the
 * microcode patch we found to match.
47
 */
48
struct cont_desc {
49
	struct microcode_amd *mc;
50
	u32		     cpuid_1_eax;
51 52 53
	u32		     psize;
	u8		     *data;
	size_t		     size;
54
};
55 56

static u32 ucode_new_rev;
57
static u8 amd_ucode_patch[PATCH_MAX_SIZE];
58

59 60
/*
 * Microcode patch container file is prepended to the initrd in cpio
61
 * format. See Documentation/x86/microcode.txt
62 63 64
 */
static const char
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
65

66
static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
67
{
68 69 70
	for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
		if (sig == equiv_table->installed_cpu)
			return equiv_table->equiv_cpu;
71
	}
72

73 74 75
	return 0;
}

76
/*
77
 * This scans the ucode blob for the proper container as we can have multiple
78 79
 * containers glued together. Returns the equivalence ID from the equivalence
 * table or 0 if none found.
80 81
 * Returns the amount of bytes consumed while scanning. @desc contains all the
 * data we're going to use in later stages of the application.
82
 */
83
static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
84 85
{
	struct equiv_cpu_entry *eq;
86 87 88 89 90 91 92 93
	ssize_t orig_size = size;
	u32 *hdr = (u32 *)ucode;
	u16 eq_id;
	u8 *buf;

	/* Am I looking at an equivalence table header? */
	if (hdr[0] != UCODE_MAGIC ||
	    hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE ||
94
	    hdr[2] == 0)
95
		return CONTAINER_HDR_SZ;
96

97
	buf = ucode;
98

99
	eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
100

101
	/* Find the equivalence ID of our CPU in this table: */
102
	eq_id = find_equiv_id(eq, desc->cpuid_1_eax);
103

104 105
	buf  += hdr[2] + CONTAINER_HDR_SZ;
	size -= hdr[2] + CONTAINER_HDR_SZ;
106

107 108 109 110 111 112 113
	/*
	 * Scan through the rest of the container to find where it ends. We do
	 * some basic sanity-checking too.
	 */
	while (size > 0) {
		struct microcode_amd *mc;
		u32 patch_size;
114

115
		hdr = (u32 *)buf;
116

117 118
		if (hdr[0] != UCODE_UCODE_TYPE)
			break;
119

120 121 122 123
		/* Sanity-check patch size. */
		patch_size = hdr[1];
		if (patch_size > PATCH_MAX_SIZE)
			break;
124

125 126 127
		/* Skip patch section header: */
		buf  += SECTION_HDR_SIZE;
		size -= SECTION_HDR_SIZE;
128

129 130 131 132
		mc = (struct microcode_amd *)buf;
		if (eq_id == mc->hdr.processor_rev_id) {
			desc->psize = patch_size;
			desc->mc = mc;
133 134
		}

135 136
		buf  += patch_size;
		size -= patch_size;
137 138
	}

139 140 141 142 143 144 145 146
	/*
	 * If we have found a patch (desc->mc), it means we're looking at the
	 * container which has a patch for this CPU so return 0 to mean, @ucode
	 * already points to the proper container. Otherwise, we return the size
	 * we scanned so that we can advance to the next container in the
	 * buffer.
	 */
	if (desc->mc) {
147 148
		desc->data = ucode;
		desc->size = orig_size - size;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

		return 0;
	}

	return orig_size - size;
}

/*
 * Scan the ucode blob for the proper container as we can have multiple
 * containers glued together.
 */
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
{
	ssize_t rem = size;

	while (rem >= 0) {
		ssize_t s = parse_container(ucode, rem, desc);
		if (!s)
			return;

		ucode += s;
		rem   -= s;
	}
172 173
}

174
static int __apply_microcode_amd(struct microcode_amd *mc)
175 176 177
{
	u32 rev, dummy;

178
	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
179 180 181

	/* verify patch application was successful */
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
182
	if (rev != mc->hdr.patch_id)
183 184 185 186 187 188 189 190 191 192 193 194 195
		return -1;

	return 0;
}

/*
 * Early load occurs before we can vmalloc(). So we look for the microcode
 * patch container file in initrd, traverse equivalent cpu table, look for a
 * matching microcode patch, and update, all in initrd memory in place.
 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 * kernel heap memory.
196
 *
197
 * Returns true if container found (sets @desc), false otherwise.
198
 */
199
static bool
200
apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
201
{
202
	struct cont_desc desc = { 0 };
203
	u8 (*patch)[PATCH_MAX_SIZE];
204
	struct microcode_amd *mc;
205
	u32 rev, dummy, *new_rev;
206
	bool ret = false;
207 208 209 210 211 212 213 214

#ifdef CONFIG_X86_32
	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
	new_rev = &ucode_new_rev;
	patch	= &amd_ucode_patch;
#endif
215

216 217
	desc.cpuid_1_eax = cpuid_1_eax;

218
	scan_containers(ucode, size, &desc);
219

220 221 222
	mc = desc.mc;
	if (!mc)
		return ret;
223

224
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
225 226
	if (rev >= mc->hdr.patch_id)
		return ret;
227

228 229 230
	if (!__apply_microcode_amd(mc)) {
		*new_rev = mc->hdr.patch_id;
		ret      = true;
231

232 233
		if (save_patch)
			memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
234
	}
235

236
	return ret;
237 238
}

239
static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
240 241 242 243 244 245 246 247 248 249 250 251 252 253
{
#ifdef CONFIG_X86_64
	char fw_name[36] = "amd-ucode/microcode_amd.bin";

	if (family >= 0x15)
		snprintf(fw_name, sizeof(fw_name),
			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);

	return get_builtin_firmware(cp, fw_name);
#else
	return false;
#endif
}

254
static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
255
{
256
	struct ucode_cpu_info *uci;
257
	struct cpio_data cp;
258 259
	const char *path;
	bool use_pa;
260

261 262 263 264 265 266 267 268 269
	if (IS_ENABLED(CONFIG_X86_32)) {
		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
		path	= (const char *)__pa_nodebug(ucode_path);
		use_pa	= true;
	} else {
		uci     = ucode_cpu_info;
		path	= ucode_path;
		use_pa	= false;
	}
270

271
	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
272
		cp = find_microcode_in_initrd(path, use_pa);
273

274 275
	/* Needed in load_microcode_amd() */
	uci->cpu_sig.sig = cpuid_1_eax;
276

277
	*ret = cp;
278 279
}

280
void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
281
{
282
	struct cpio_data cp = { };
283

284
	__load_ucode_amd(cpuid_1_eax, &cp);
285
	if (!(cp.data && cp.size))
286 287
		return;

288
	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
289
}
290

291
void load_ucode_amd_ap(unsigned int cpuid_1_eax)
292 293
{
	struct microcode_amd *mc;
294 295
	struct cpio_data cp;
	u32 *new_rev, rev, dummy;
296

297
	if (IS_ENABLED(CONFIG_X86_32)) {
298 299
		mc	= (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
		new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
300
	} else {
301 302
		mc	= (struct microcode_amd *)amd_ucode_patch;
		new_rev = &ucode_new_rev;
303 304
	}

305
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
306

307 308 309 310
	/* Check whether we have saved a new patch already: */
	if (*new_rev && rev < mc->hdr.patch_id) {
		if (!__apply_microcode_amd(mc)) {
			*new_rev = mc->hdr.patch_id;
311 312 313
			return;
		}
	}
314

315 316
	__load_ucode_amd(cpuid_1_eax, &cp);
	if (!(cp.data && cp.size))
317 318
		return;

319
	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
320 321
}

322
static enum ucode_state
323
load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
324

325
int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
326
{
327
	struct cont_desc desc = { 0 };
328
	enum ucode_state ret;
329
	struct cpio_data cp;
330

331 332 333
	cp = find_microcode_in_initrd(ucode_path, false);
	if (!(cp.data && cp.size))
		return -EINVAL;
334

335
	desc.cpuid_1_eax = cpuid_1_eax;
336

337
	scan_containers(cp.data, cp.size, &desc);
338
	if (!desc.mc)
339
		return -EINVAL;
340

341
	ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
342
	if (ret > UCODE_UPDATED)
343
		return -EINVAL;
344

345
	return 0;
346 347 348 349 350
}

void reload_ucode_amd(void)
{
	struct microcode_amd *mc;
351
	u32 rev, dummy;
352 353 354

	mc = (struct microcode_amd *)amd_ucode_patch;

355 356
	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);

357
	if (rev < mc->hdr.patch_id) {
358 359
		if (!__apply_microcode_amd(mc)) {
			ucode_new_rev = mc->hdr.patch_id;
360
			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
361 362 363
		}
	}
}
364
static u16 __find_equiv_id(unsigned int cpu)
365 366
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
367
	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
}

static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
	int i = 0;

	BUG_ON(!equiv_cpu_table);

	while (equiv_cpu_table[i].equiv_cpu != 0) {
		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
			return equiv_cpu_table[i].installed_cpu;
		i++;
	}
	return 0;
}

384 385 386 387 388 389 390
/*
 * a small, trivial cache of per-family ucode patches
 */
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
	struct ucode_patch *p;

391
	list_for_each_entry(p, &microcode_cache, plist)
392 393 394 395 396 397 398 399 400
		if (p->equiv_cpu == equiv_cpu)
			return p;
	return NULL;
}

static void update_cache(struct ucode_patch *new_patch)
{
	struct ucode_patch *p;

401
	list_for_each_entry(p, &microcode_cache, plist) {
402
		if (p->equiv_cpu == new_patch->equiv_cpu) {
403
			if (p->patch_id >= new_patch->patch_id) {
404
				/* we already have the latest patch */
405 406
				kfree(new_patch->data);
				kfree(new_patch);
407
				return;
408
			}
409 410 411 412 413 414 415 416

			list_replace(&p->plist, &new_patch->plist);
			kfree(p->data);
			kfree(p);
			return;
		}
	}
	/* no patch found, add it */
417
	list_add_tail(&new_patch->plist, &microcode_cache);
418 419 420 421
}

static void free_cache(void)
{
422
	struct ucode_patch *p, *tmp;
423

424
	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
425 426 427 428 429 430 431 432 433 434
		__list_del(p->plist.prev, p->plist.next);
		kfree(p->data);
		kfree(p);
	}
}

static struct ucode_patch *find_patch(unsigned int cpu)
{
	u16 equiv_id;

435
	equiv_id = __find_equiv_id(cpu);
436 437 438 439 440 441
	if (!equiv_id)
		return NULL;

	return cache_find_patch(equiv_id);
}

442
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
443
{
444
	struct cpuinfo_x86 *c = &cpu_data(cpu);
445 446
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	struct ucode_patch *p;
447

448
	csig->sig = cpuid_eax(0x00000001);
449
	csig->rev = c->microcode;
450 451 452 453 454 455 456 457 458

	/*
	 * a patch could have been loaded early, set uci->mc so that
	 * mc_bp_resume() can call apply_microcode()
	 */
	p = find_patch(cpu);
	if (p && (p->patch_id == csig->rev))
		uci->mc = p->data;

459 460
	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);

461
	return 0;
462 463
}

464
static unsigned int verify_patch_size(u8 family, u32 patch_size,
465
				      unsigned int size)
466
{
467 468 469 470 471
	u32 max_size;

#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
472
#define F16H_MPB_MAX_SIZE 3458
473
#define F17H_MPB_MAX_SIZE 3200
474

475
	switch (family) {
476 477 478 479 480 481
	case 0x14:
		max_size = F14H_MPB_MAX_SIZE;
		break;
	case 0x15:
		max_size = F15H_MPB_MAX_SIZE;
		break;
482 483 484
	case 0x16:
		max_size = F16H_MPB_MAX_SIZE;
		break;
485 486 487
	case 0x17:
		max_size = F17H_MPB_MAX_SIZE;
		break;
488 489 490 491 492 493 494 495 496 497 498 499 500
	default:
		max_size = F1XH_MPB_MAX_SIZE;
		break;
	}

	if (patch_size > min_t(u32, size, max_size)) {
		pr_err("patch size mismatch\n");
		return 0;
	}

	return patch_size;
}

501
static enum ucode_state apply_microcode_amd(int cpu)
502
{
503
	struct cpuinfo_x86 *c = &cpu_data(cpu);
504 505 506
	struct microcode_amd *mc_amd;
	struct ucode_cpu_info *uci;
	struct ucode_patch *p;
507
	u32 rev, dummy;
508 509

	BUG_ON(raw_smp_processor_id() != cpu);
510

511
	uci = ucode_cpu_info + cpu;
512

513 514
	p = find_patch(cpu);
	if (!p)
515
		return UCODE_NFOUND;
516

517 518 519
	mc_amd  = p->data;
	uci->mc = p->data;

520
	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
521

522 523 524
	/* need to apply patch? */
	if (rev >= mc_amd->hdr.patch_id) {
		c->microcode = rev;
525
		uci->cpu_sig.rev = rev;
526
		return UCODE_OK;
527 528
	}

529
	if (__apply_microcode_amd(mc_amd)) {
530
		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
531
			cpu, mc_amd->hdr.patch_id);
532
		return UCODE_ERROR;
533 534 535
	}
	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
		mc_amd->hdr.patch_id);
536

537 538
	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
	c->microcode = mc_amd->hdr.patch_id;
539

540
	return UCODE_UPDATED;
541 542
}

543
static int install_equiv_cpu_table(const u8 *buf)
544
{
545 546 547
	unsigned int *ibuf = (unsigned int *)buf;
	unsigned int type = ibuf[1];
	unsigned int size = ibuf[2];
548

549
	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
550 551
		pr_err("empty section/"
		       "invalid type field in container file section header\n");
552
		return -EINVAL;
553 554
	}

555
	equiv_cpu_table = vmalloc(size);
556
	if (!equiv_cpu_table) {
557
		pr_err("failed to allocate equivalent CPU table\n");
558
		return -ENOMEM;
559 560
	}

561
	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
562

563 564
	/* add header length */
	return size + CONTAINER_HDR_SZ;
565 566
}

D
Dmitry Adamushko 已提交
567
static void free_equiv_cpu_table(void)
568
{
569 570
	vfree(equiv_cpu_table);
	equiv_cpu_table = NULL;
D
Dmitry Adamushko 已提交
571
}
572

573
static void cleanup(void)
D
Dmitry Adamushko 已提交
574
{
575 576 577 578 579 580 581 582 583 584 585
	free_equiv_cpu_table();
	free_cache();
}

/*
 * We return the current size even if some of the checks failed so that
 * we can skip over the next patch. If we return a negative value, we
 * signal a grave error like a memory allocation has failed and the
 * driver cannot continue functioning normally. In such cases, we tear
 * down everything we've used up so far and exit.
 */
586
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
{
	struct microcode_header_amd *mc_hdr;
	struct ucode_patch *patch;
	unsigned int patch_size, crnt_size, ret;
	u32 proc_fam;
	u16 proc_id;

	patch_size  = *(u32 *)(fw + 4);
	crnt_size   = patch_size + SECTION_HDR_SIZE;
	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
	proc_id	    = mc_hdr->processor_rev_id;

	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
	if (!proc_fam) {
		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
		return crnt_size;
	}

	/* check if patch is for the current family */
	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
607
	if (proc_fam != family)
608 609 610 611 612 613 614 615
		return crnt_size;

	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
			mc_hdr->patch_id);
		return crnt_size;
	}

616
	ret = verify_patch_size(family, patch_size, leftover);
617 618 619 620 621 622 623 624 625 626 627
	if (!ret) {
		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
		return crnt_size;
	}

	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
	if (!patch) {
		pr_err("Patch allocation failure.\n");
		return -EINVAL;
	}

628
	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
629 630 631 632 633 634 635 636 637 638
	if (!patch->data) {
		pr_err("Patch data allocation failure.\n");
		kfree(patch);
		return -EINVAL;
	}

	INIT_LIST_HEAD(&patch->plist);
	patch->patch_id  = mc_hdr->patch_id;
	patch->equiv_cpu = proc_id;

639 640 641
	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
		 __func__, patch->patch_id, proc_id);

642 643 644 645 646 647
	/* ... and add to cache. */
	update_cache(patch);

	return crnt_size;
}

648 649
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
					     size_t size)
650 651 652 653 654
{
	enum ucode_state ret = UCODE_ERROR;
	unsigned int leftover;
	u8 *fw = (u8 *)data;
	int crnt_size = 0;
655
	int offset;
656

657
	offset = install_equiv_cpu_table(data);
658
	if (offset < 0) {
659
		pr_err("failed to create equivalent cpu table\n");
660
		return ret;
661
	}
662
	fw += offset;
D
Dmitry Adamushko 已提交
663 664
	leftover = size - offset;

665
	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
666
		pr_err("invalid type field in container file section header\n");
667 668
		free_equiv_cpu_table();
		return ret;
669
	}
D
Dmitry Adamushko 已提交
670

671
	while (leftover) {
672
		crnt_size = verify_and_add_patch(family, fw, leftover);
673 674
		if (crnt_size < 0)
			return ret;
675

676 677
		fw	 += crnt_size;
		leftover -= crnt_size;
678
	}
D
Dmitry Adamushko 已提交
679

680
	return UCODE_OK;
D
Dmitry Adamushko 已提交
681 682
}

683
static enum ucode_state
684
load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
685
{
686
	struct ucode_patch *p;
687 688 689 690 691
	enum ucode_state ret;

	/* free old equiv table */
	free_equiv_cpu_table();

692
	ret = __load_microcode_amd(family, data, size);
693
	if (ret != UCODE_OK) {
694
		cleanup();
695 696
		return ret;
	}
697

698 699 700 701 702 703 704 705
	p = find_patch(0);
	if (!p) {
		return ret;
	} else {
		if (boot_cpu_data.microcode == p->patch_id)
			return ret;

		ret = UCODE_NEW;
706
	}
707 708 709 710 711 712 713 714

	/* save BSP's matching patch for early load */
	if (!save)
		return ret;

	memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
	memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE));

715 716 717
	return ret;
}

718 719 720 721 722 723 724 725
/*
 * AMD microcode firmware naming convention, up to family 15h they are in
 * the legacy file:
 *
 *    amd-ucode/microcode_amd.bin
 *
 * This legacy file is always smaller than 2K in size.
 *
726
 * Beginning with family 15h, they are in family-specific firmware files:
727 728 729 730 731 732 733
 *
 *    amd-ucode/microcode_amd_fam15h.bin
 *    amd-ucode/microcode_amd_fam16h.bin
 *    ...
 *
 * These might be larger than 2K.
 */
734 735
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
					      bool refresh_fw)
D
Dmitry Adamushko 已提交
736
{
737 738
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct cpuinfo_x86 *c = &cpu_data(cpu);
739
	bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
740 741 742 743
	enum ucode_state ret = UCODE_NFOUND;
	const struct firmware *fw;

	/* reload ucode container only on the boot cpu */
744
	if (!refresh_fw || !bsp)
745
		return UCODE_OK;
746 747 748

	if (c->x86 >= 0x15)
		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
D
Dmitry Adamushko 已提交
749

750
	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
751
		pr_debug("failed to load file %s\n", fw_name);
752
		goto out;
753
	}
D
Dmitry Adamushko 已提交
754

755 756
	ret = UCODE_ERROR;
	if (*(u32 *)fw->data != UCODE_MAGIC) {
757
		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
758
		goto fw_release;
759 760
	}

761
	ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
D
Dmitry Adamushko 已提交
762

763
 fw_release:
764
	release_firmware(fw);
765

766
 out:
D
Dmitry Adamushko 已提交
767 768 769
	return ret;
}

770 771
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
D
Dmitry Adamushko 已提交
772
{
773
	return UCODE_ERROR;
774 775 776 777 778 779
}

static void microcode_fini_cpu_amd(int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

780
	uci->mc = NULL;
781 782 783
}

static struct microcode_ops microcode_amd_ops = {
D
Dmitry Adamushko 已提交
784
	.request_microcode_user           = request_microcode_user,
785
	.request_microcode_fw             = request_microcode_amd,
786 787 788 789 790
	.collect_cpu_info                 = collect_cpu_info_amd,
	.apply_microcode                  = apply_microcode_amd,
	.microcode_fini_cpu               = microcode_fini_cpu_amd,
};

791
struct microcode_ops * __init init_amd_microcode(void)
792
{
793
	struct cpuinfo_x86 *c = &boot_cpu_data;
794 795

	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
796
		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
797 798 799
		return NULL;
	}

800 801 802 803
	if (ucode_new_rev)
		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
			     ucode_new_rev);

804
	return &microcode_amd_ops;
805
}
806 807 808

void __exit exit_amd_microcode(void)
{
809
	cleanup();
810
}