amd.c 21.4 KB
Newer Older
1 2
/*
 *  AMD CPU Microcode Update Driver for Linux
3 4 5 6
 *
 *  This driver allows to upgrade microcode on F10h AMD
 *  CPUs and later.
 *
7
 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8 9 10 11 12 13
 *
 *  Author: Peter Oruba <peter.oruba@amd.com>
 *
 *  Based on work by:
 *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
 *
14 15 16 17 18
 *  early loader:
 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 *  Author: Jacob Shin <jacob.shin@amd.com>
 *  Fixes: Borislav Petkov <bp@suse.de>
19
 *
20
 *  Licensed under the terms of the GNU General Public
21
 *  License version 2. See file COPYING for details.
I
Ingo Molnar 已提交
22
 */
23
#define pr_fmt(fmt) "microcode: " fmt
24

25
#include <linux/earlycpio.h>
I
Ingo Molnar 已提交
26 27 28
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
29
#include <linux/initrd.h>
I
Ingo Molnar 已提交
30
#include <linux/kernel.h>
31 32
#include <linux/pci.h>

33
#include <asm/microcode_amd.h>
34
#include <asm/microcode.h>
I
Ingo Molnar 已提交
35
#include <asm/processor.h>
36 37
#include <asm/setup.h>
#include <asm/cpu.h>
I
Ingo Molnar 已提交
38
#include <asm/msr.h>
39

D
Dmitry Adamushko 已提交
40
static struct equiv_cpu_entry *equiv_cpu_table;
41

42 43 44 45 46 47 48 49 50
struct ucode_patch {
	struct list_head plist;
	void *data;
	u32 patch_id;
	u16 equiv_cpu;
};

static LIST_HEAD(pcache);

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/*
 * This points to the current valid container of microcode patches which we will
 * save from the initrd before jettisoning its contents.
 */
static u8 *container;
static size_t container_size;

static u32 ucode_new_rev;
u8 amd_ucode_patch[PATCH_MAX_SIZE];
static u16 this_equiv_id;

static struct cpio_data ucode_cpio;

/*
 * Microcode patch container file is prepended to the initrd in cpio format.
 * See Documentation/x86/early-microcode.txt
 */
static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin";

static struct cpio_data __init find_ucode_in_initrd(void)
{
	long offset = 0;
	char *path;
	void *start;
	size_t size;

#ifdef CONFIG_X86_32
	struct boot_params *p;

	/*
	 * On 32-bit, early load occurs before paging is turned on so we need
	 * to use physical addresses.
	 */
	p       = (struct boot_params *)__pa_nodebug(&boot_params);
	path    = (char *)__pa_nodebug(ucode_path);
	start   = (void *)p->hdr.ramdisk_image;
	size    = p->hdr.ramdisk_size;
#else
	path    = ucode_path;
	start   = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET);
	size    = boot_params.hdr.ramdisk_size;
#endif

	return find_cpio_data(path, start, size, &offset);
}

static size_t compute_container_size(u8 *data, u32 total_size)
{
	size_t size = 0;
	u32 *header = (u32 *)data;

	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
		return size;

	size = header[2] + CONTAINER_HDR_SZ;
	total_size -= size;
	data += size;

	while (total_size) {
		u16 patch_size;

		header = (u32 *)data;

		if (header[0] != UCODE_UCODE_TYPE)
			break;

		/*
		 * Sanity-check patch size.
		 */
		patch_size = header[1];
		if (patch_size > PATCH_MAX_SIZE)
			break;

		size	   += patch_size + SECTION_HDR_SIZE;
		data	   += patch_size + SECTION_HDR_SIZE;
		total_size -= patch_size + SECTION_HDR_SIZE;
	}

	return size;
}

/*
 * Early load occurs before we can vmalloc(). So we look for the microcode
 * patch container file in initrd, traverse equivalent cpu table, look for a
 * matching microcode patch, and update, all in initrd memory in place.
 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 * kernel heap memory.
 */
static void apply_ucode_in_initrd(void *ucode, size_t size, bool save_patch)
{
	struct equiv_cpu_entry *eq;
	size_t *cont_sz;
	u32 *header;
	u8  *data, **cont;
	u8 (*patch)[PATCH_MAX_SIZE];
	u16 eq_id = 0;
	int offset, left;
	u32 rev, eax, ebx, ecx, edx;
	u32 *new_rev;

#ifdef CONFIG_X86_32
	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	cont_sz = (size_t *)__pa_nodebug(&container_size);
	cont	= (u8 **)__pa_nodebug(&container);
	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
	new_rev = &ucode_new_rev;
	cont_sz = &container_size;
	cont	= &container;
	patch	= &amd_ucode_patch;
#endif

	data   = ucode;
	left   = size;
	header = (u32 *)data;

	/* find equiv cpu table */
	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
		return;

	eax = 0x00000001;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);

	while (left > 0) {
		eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);

		*cont = data;

		/* Advance past the container header */
		offset = header[2] + CONTAINER_HDR_SZ;
		data  += offset;
		left  -= offset;

		eq_id = find_equiv_id(eq, eax);
		if (eq_id) {
			this_equiv_id = eq_id;
			*cont_sz = compute_container_size(*cont, left + offset);

			/*
			 * truncate how much we need to iterate over in the
			 * ucode update loop below
			 */
			left = *cont_sz - offset;
			break;
		}

		/*
		 * support multiple container files appended together. if this
		 * one does not have a matching equivalent cpu entry, we fast
		 * forward to the next container file.
		 */
		while (left > 0) {
			header = (u32 *)data;
			if (header[0] == UCODE_MAGIC &&
			    header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
				break;

			offset = header[1] + SECTION_HDR_SIZE;
			data  += offset;
			left  -= offset;
		}

		/* mark where the next microcode container file starts */
		offset    = data - (u8 *)ucode;
		ucode     = data;
	}

	if (!eq_id) {
		*cont = NULL;
		*cont_sz = 0;
		return;
	}

	if (check_current_patch_level(&rev, true))
		return;

	while (left > 0) {
		struct microcode_amd *mc;

		header = (u32 *)data;
		if (header[0] != UCODE_UCODE_TYPE || /* type */
		    header[1] == 0)                  /* size */
			break;

		mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);

		if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {

			if (!__apply_microcode_amd(mc)) {
				rev = mc->hdr.patch_id;
				*new_rev = rev;

				if (save_patch)
					memcpy(patch, mc,
					       min_t(u32, header[1], PATCH_MAX_SIZE));
			}
		}

		offset  = header[1] + SECTION_HDR_SIZE;
		data   += offset;
		left   -= offset;
	}
}

static bool __init load_builtin_amd_microcode(struct cpio_data *cp,
					      unsigned int family)
{
#ifdef CONFIG_X86_64
	char fw_name[36] = "amd-ucode/microcode_amd.bin";

	if (family >= 0x15)
		snprintf(fw_name, sizeof(fw_name),
			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);

	return get_builtin_firmware(cp, fw_name);
#else
	return false;
#endif
}

void __init load_ucode_amd_bsp(unsigned int family)
{
	struct cpio_data cp;
	void **data;
	size_t *size;

#ifdef CONFIG_X86_32
	data =  (void **)__pa_nodebug(&ucode_cpio.data);
	size = (size_t *)__pa_nodebug(&ucode_cpio.size);
#else
	data = &ucode_cpio.data;
	size = &ucode_cpio.size;
#endif

	cp = find_ucode_in_initrd();
	if (!cp.data) {
		if (!load_builtin_amd_microcode(&cp, family))
			return;
	}

	*data = cp.data;
	*size = cp.size;

	apply_ucode_in_initrd(cp.data, cp.size, true);
}

#ifdef CONFIG_X86_32
/*
 * On 32-bit, since AP's early load occurs before paging is turned on, we
 * cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during
 * cold boot, AP will apply_ucode_in_initrd() just like the BSP. During
 * save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
 * which is used upon resume from suspend.
 */
void load_ucode_amd_ap(void)
{
	struct microcode_amd *mc;
	size_t *usize;
	void **ucode;

	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
		__apply_microcode_amd(mc);
		return;
	}

	ucode = (void *)__pa_nodebug(&container);
	usize = (size_t *)__pa_nodebug(&container_size);

	if (!*ucode || !*usize)
		return;

	apply_ucode_in_initrd(*ucode, *usize, false);
}

static void __init collect_cpu_sig_on_bsp(void *arg)
{
	unsigned int cpu = smp_processor_id();
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

	uci->cpu_sig.sig = cpuid_eax(0x00000001);
}

static void __init get_bsp_sig(void)
{
	unsigned int bsp = boot_cpu_data.cpu_index;
	struct ucode_cpu_info *uci = ucode_cpu_info + bsp;

	if (!uci->cpu_sig.sig)
		smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1);
}
#else
void load_ucode_amd_ap(void)
{
	unsigned int cpu = smp_processor_id();
	struct equiv_cpu_entry *eq;
	struct microcode_amd *mc;
	u32 rev, eax;
	u16 eq_id;

	/* Exit if called on the BSP. */
	if (!cpu)
		return;

	if (!container)
		return;

	/*
	 * 64-bit runs with paging enabled, thus early==false.
	 */
	if (check_current_patch_level(&rev, false))
		return;

	eax = cpuid_eax(0x00000001);
	eq  = (struct equiv_cpu_entry *)(container + CONTAINER_HDR_SZ);

	eq_id = find_equiv_id(eq, eax);
	if (!eq_id)
		return;

	if (eq_id == this_equiv_id) {
		mc = (struct microcode_amd *)amd_ucode_patch;

		if (mc && rev < mc->hdr.patch_id) {
			if (!__apply_microcode_amd(mc))
				ucode_new_rev = mc->hdr.patch_id;
		}

	} else {
		if (!ucode_cpio.data)
			return;

		/*
		 * AP has a different equivalence ID than BSP, looks like
		 * mixed-steppings silicon so go through the ucode blob anew.
		 */
		apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size, false);
	}
}
#endif

int __init save_microcode_in_initrd_amd(void)
{
	unsigned long cont;
	int retval = 0;
	enum ucode_state ret;
	u8 *cont_va;
	u32 eax;

	if (!container)
		return -EINVAL;

#ifdef CONFIG_X86_32
	get_bsp_sig();
	cont	= (unsigned long)container;
	cont_va = __va(container);
#else
	/*
	 * We need the physical address of the container for both bitness since
	 * boot_params.hdr.ramdisk_image is a physical address.
	 */
	cont    = __pa(container);
	cont_va = container;
#endif

	/*
	 * Take into account the fact that the ramdisk might get relocated and
	 * therefore we need to recompute the container's position in virtual
	 * memory space.
	 */
	if (relocated_ramdisk)
		container = (u8 *)(__va(relocated_ramdisk) +
			     (cont - boot_params.hdr.ramdisk_image));
	else
		container = cont_va;

	if (ucode_new_rev)
435 436
		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
			     ucode_new_rev);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

	eax   = cpuid_eax(0x00000001);
	eax   = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff);

	ret = load_microcode_amd(smp_processor_id(), eax, container, container_size);
	if (ret != UCODE_OK)
		retval = -EINVAL;

	/*
	 * This will be freed any msec now, stash patches for the current
	 * family and switch to patch cache for cpu hotplug, etc later.
	 */
	container = NULL;
	container_size = 0;

	return retval;
}

void reload_ucode_amd(void)
{
	struct microcode_amd *mc;
	u32 rev;

	/*
	 * early==false because this is a syscore ->resume path and by
	 * that time paging is long enabled.
	 */
	if (check_current_patch_level(&rev, false))
		return;

	mc = (struct microcode_amd *)amd_ucode_patch;

	if (mc && rev < mc->hdr.patch_id) {
		if (!__apply_microcode_amd(mc)) {
			ucode_new_rev = mc->hdr.patch_id;
			pr_info("microcode: reload patch_level=0x%08x\n",
				ucode_new_rev);
		}
	}
}
477
static u16 __find_equiv_id(unsigned int cpu)
478 479
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
480
	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
}

static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
	int i = 0;

	BUG_ON(!equiv_cpu_table);

	while (equiv_cpu_table[i].equiv_cpu != 0) {
		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
			return equiv_cpu_table[i].installed_cpu;
		i++;
	}
	return 0;
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * a small, trivial cache of per-family ucode patches
 */
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
	struct ucode_patch *p;

	list_for_each_entry(p, &pcache, plist)
		if (p->equiv_cpu == equiv_cpu)
			return p;
	return NULL;
}

static void update_cache(struct ucode_patch *new_patch)
{
	struct ucode_patch *p;

	list_for_each_entry(p, &pcache, plist) {
		if (p->equiv_cpu == new_patch->equiv_cpu) {
			if (p->patch_id >= new_patch->patch_id)
				/* we already have the latest patch */
				return;

			list_replace(&p->plist, &new_patch->plist);
			kfree(p->data);
			kfree(p);
			return;
		}
	}
	/* no patch found, add it */
	list_add_tail(&new_patch->plist, &pcache);
}

static void free_cache(void)
{
532
	struct ucode_patch *p, *tmp;
533

534
	list_for_each_entry_safe(p, tmp, &pcache, plist) {
535 536 537 538 539 540 541 542 543 544
		__list_del(p->plist.prev, p->plist.next);
		kfree(p->data);
		kfree(p);
	}
}

static struct ucode_patch *find_patch(unsigned int cpu)
{
	u16 equiv_id;

545
	equiv_id = __find_equiv_id(cpu);
546 547 548 549 550 551
	if (!equiv_id)
		return NULL;

	return cache_find_patch(equiv_id);
}

552
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
553
{
554
	struct cpuinfo_x86 *c = &cpu_data(cpu);
555 556
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	struct ucode_patch *p;
557

558
	csig->sig = cpuid_eax(0x00000001);
559
	csig->rev = c->microcode;
560 561 562 563 564 565 566 567 568

	/*
	 * a patch could have been loaded early, set uci->mc so that
	 * mc_bp_resume() can call apply_microcode()
	 */
	p = find_patch(cpu);
	if (p && (p->patch_id == csig->rev))
		uci->mc = p->data;

569 570
	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);

571
	return 0;
572 573
}

574
static unsigned int verify_patch_size(u8 family, u32 patch_size,
575
				      unsigned int size)
576
{
577 578 579 580 581
	u32 max_size;

#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
582
#define F16H_MPB_MAX_SIZE 3458
583

584
	switch (family) {
585 586 587 588 589 590
	case 0x14:
		max_size = F14H_MPB_MAX_SIZE;
		break;
	case 0x15:
		max_size = F15H_MPB_MAX_SIZE;
		break;
591 592 593
	case 0x16:
		max_size = F16H_MPB_MAX_SIZE;
		break;
594 595 596 597 598 599 600 601 602 603 604 605 606
	default:
		max_size = F1XH_MPB_MAX_SIZE;
		break;
	}

	if (patch_size > min_t(u32, size, max_size)) {
		pr_err("patch size mismatch\n");
		return 0;
	}

	return patch_size;
}

607 608 609 610 611 612 613 614 615 616
/*
 * Those patch levels cannot be updated to newer ones and thus should be final.
 */
static u32 final_levels[] = {
	0x01000098,
	0x0100009f,
	0x010000af,
	0, /* T-101 terminator */
};

617 618 619 620 621 622 623 624 625 626
/*
 * Check the current patch level on this CPU.
 *
 * @rev: Use it to return the patch level. It is set to 0 in the case of
 * error.
 *
 * Returns:
 *  - true: if update should stop
 *  - false: otherwise
 */
627
bool check_current_patch_level(u32 *rev, bool early)
628
{
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	u32 lvl, dummy, i;
	bool ret = false;
	u32 *levels;

	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);

	if (IS_ENABLED(CONFIG_X86_32) && early)
		levels = (u32 *)__pa_nodebug(&final_levels);
	else
		levels = final_levels;

	for (i = 0; levels[i]; i++) {
		if (lvl == levels[i]) {
			lvl = 0;
			ret = true;
			break;
		}
	}
647

648 649
	if (rev)
		*rev = lvl;
650

651
	return ret;
652 653
}

654 655 656 657
int __apply_microcode_amd(struct microcode_amd *mc_amd)
{
	u32 rev, dummy;

658
	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
659 660

	/* verify patch application was successful */
661
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
662 663 664 665 666 667 668
	if (rev != mc_amd->hdr.patch_id)
		return -1;

	return 0;
}

int apply_microcode_amd(int cpu)
669
{
670
	struct cpuinfo_x86 *c = &cpu_data(cpu);
671 672 673
	struct microcode_amd *mc_amd;
	struct ucode_cpu_info *uci;
	struct ucode_patch *p;
674
	u32 rev;
675 676

	BUG_ON(raw_smp_processor_id() != cpu);
677

678
	uci = ucode_cpu_info + cpu;
679

680 681
	p = find_patch(cpu);
	if (!p)
682
		return 0;
683

684 685 686
	mc_amd  = p->data;
	uci->mc = p->data;

687
	if (check_current_patch_level(&rev, false))
688
		return -1;
689

690 691 692
	/* need to apply patch? */
	if (rev >= mc_amd->hdr.patch_id) {
		c->microcode = rev;
693
		uci->cpu_sig.rev = rev;
694 695 696
		return 0;
	}

697
	if (__apply_microcode_amd(mc_amd)) {
698
		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
699
			cpu, mc_amd->hdr.patch_id);
700 701 702 703
		return -1;
	}
	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
		mc_amd->hdr.patch_id);
704

705 706
	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
	c->microcode = mc_amd->hdr.patch_id;
707 708

	return 0;
709 710
}

711
static int install_equiv_cpu_table(const u8 *buf)
712
{
713 714 715
	unsigned int *ibuf = (unsigned int *)buf;
	unsigned int type = ibuf[1];
	unsigned int size = ibuf[2];
716

717
	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
718 719
		pr_err("empty section/"
		       "invalid type field in container file section header\n");
720
		return -EINVAL;
721 722
	}

723
	equiv_cpu_table = vmalloc(size);
724
	if (!equiv_cpu_table) {
725
		pr_err("failed to allocate equivalent CPU table\n");
726
		return -ENOMEM;
727 728
	}

729
	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
730

731 732
	/* add header length */
	return size + CONTAINER_HDR_SZ;
733 734
}

D
Dmitry Adamushko 已提交
735
static void free_equiv_cpu_table(void)
736
{
737 738
	vfree(equiv_cpu_table);
	equiv_cpu_table = NULL;
D
Dmitry Adamushko 已提交
739
}
740

741
static void cleanup(void)
D
Dmitry Adamushko 已提交
742
{
743 744 745 746 747 748 749 750 751 752 753
	free_equiv_cpu_table();
	free_cache();
}

/*
 * We return the current size even if some of the checks failed so that
 * we can skip over the next patch. If we return a negative value, we
 * signal a grave error like a memory allocation has failed and the
 * driver cannot continue functioning normally. In such cases, we tear
 * down everything we've used up so far and exit.
 */
754
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
{
	struct microcode_header_amd *mc_hdr;
	struct ucode_patch *patch;
	unsigned int patch_size, crnt_size, ret;
	u32 proc_fam;
	u16 proc_id;

	patch_size  = *(u32 *)(fw + 4);
	crnt_size   = patch_size + SECTION_HDR_SIZE;
	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
	proc_id	    = mc_hdr->processor_rev_id;

	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
	if (!proc_fam) {
		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
		return crnt_size;
	}

	/* check if patch is for the current family */
	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
775
	if (proc_fam != family)
776 777 778 779 780 781 782 783
		return crnt_size;

	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
			mc_hdr->patch_id);
		return crnt_size;
	}

784
	ret = verify_patch_size(family, patch_size, leftover);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	if (!ret) {
		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
		return crnt_size;
	}

	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
	if (!patch) {
		pr_err("Patch allocation failure.\n");
		return -EINVAL;
	}

	patch->data = kzalloc(patch_size, GFP_KERNEL);
	if (!patch->data) {
		pr_err("Patch data allocation failure.\n");
		kfree(patch);
		return -EINVAL;
	}

	/* All looks ok, copy patch... */
	memcpy(patch->data, fw + SECTION_HDR_SIZE, patch_size);
	INIT_LIST_HEAD(&patch->plist);
	patch->patch_id  = mc_hdr->patch_id;
	patch->equiv_cpu = proc_id;

809 810 811
	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
		 __func__, patch->patch_id, proc_id);

812 813 814 815 816 817
	/* ... and add to cache. */
	update_cache(patch);

	return crnt_size;
}

818 819
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
					     size_t size)
820 821 822 823 824
{
	enum ucode_state ret = UCODE_ERROR;
	unsigned int leftover;
	u8 *fw = (u8 *)data;
	int crnt_size = 0;
825
	int offset;
826

827
	offset = install_equiv_cpu_table(data);
828
	if (offset < 0) {
829
		pr_err("failed to create equivalent cpu table\n");
830
		return ret;
831
	}
832
	fw += offset;
D
Dmitry Adamushko 已提交
833 834
	leftover = size - offset;

835
	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
836
		pr_err("invalid type field in container file section header\n");
837 838
		free_equiv_cpu_table();
		return ret;
839
	}
D
Dmitry Adamushko 已提交
840

841
	while (leftover) {
842
		crnt_size = verify_and_add_patch(family, fw, leftover);
843 844
		if (crnt_size < 0)
			return ret;
845

846 847
		fw	 += crnt_size;
		leftover -= crnt_size;
848
	}
D
Dmitry Adamushko 已提交
849

850
	return UCODE_OK;
D
Dmitry Adamushko 已提交
851 852
}

853
enum ucode_state load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
854 855 856 857 858 859
{
	enum ucode_state ret;

	/* free old equiv table */
	free_equiv_cpu_table();

860
	ret = __load_microcode_amd(family, data, size);
861 862 863 864

	if (ret != UCODE_OK)
		cleanup();

865
#ifdef CONFIG_X86_32
866
	/* save BSP's matching patch for early load */
867 868
	if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
		struct ucode_patch *p = find_patch(cpu);
869
		if (p) {
870 871 872
			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
							       PATCH_MAX_SIZE));
873 874 875
		}
	}
#endif
876 877 878
	return ret;
}

879 880 881 882 883 884 885 886
/*
 * AMD microcode firmware naming convention, up to family 15h they are in
 * the legacy file:
 *
 *    amd-ucode/microcode_amd.bin
 *
 * This legacy file is always smaller than 2K in size.
 *
887
 * Beginning with family 15h, they are in family-specific firmware files:
888 889 890 891 892 893 894
 *
 *    amd-ucode/microcode_amd_fam15h.bin
 *    amd-ucode/microcode_amd_fam16h.bin
 *    ...
 *
 * These might be larger than 2K.
 */
895 896
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
					      bool refresh_fw)
D
Dmitry Adamushko 已提交
897
{
898 899
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct cpuinfo_x86 *c = &cpu_data(cpu);
900 901 902 903 904 905
	enum ucode_state ret = UCODE_NFOUND;
	const struct firmware *fw;

	/* reload ucode container only on the boot cpu */
	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
		return UCODE_OK;
906 907 908

	if (c->x86 >= 0x15)
		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
D
Dmitry Adamushko 已提交
909

910
	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
911
		pr_debug("failed to load file %s\n", fw_name);
912
		goto out;
913
	}
D
Dmitry Adamushko 已提交
914

915 916
	ret = UCODE_ERROR;
	if (*(u32 *)fw->data != UCODE_MAGIC) {
917
		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
918
		goto fw_release;
919 920
	}

921
	ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
D
Dmitry Adamushko 已提交
922

923
 fw_release:
924
	release_firmware(fw);
925

926
 out:
D
Dmitry Adamushko 已提交
927 928 929
	return ret;
}

930 931
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
D
Dmitry Adamushko 已提交
932
{
933
	return UCODE_ERROR;
934 935 936 937 938 939
}

static void microcode_fini_cpu_amd(int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

940
	uci->mc = NULL;
941 942 943
}

static struct microcode_ops microcode_amd_ops = {
D
Dmitry Adamushko 已提交
944
	.request_microcode_user           = request_microcode_user,
945
	.request_microcode_fw             = request_microcode_amd,
946 947 948 949 950
	.collect_cpu_info                 = collect_cpu_info_amd,
	.apply_microcode                  = apply_microcode_amd,
	.microcode_fini_cpu               = microcode_fini_cpu_amd,
};

951
struct microcode_ops * __init init_amd_microcode(void)
952
{
953
	struct cpuinfo_x86 *c = &boot_cpu_data;
954 955 956 957 958 959

	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
		pr_warning("AMD CPU family 0x%x not supported\n", c->x86);
		return NULL;
	}

960
	return &microcode_amd_ops;
961
}
962 963 964

void __exit exit_amd_microcode(void)
{
965
	cleanup();
966
}