amd.c 21.3 KB
Newer Older
1 2
/*
 *  AMD CPU Microcode Update Driver for Linux
3 4 5 6
 *
 *  This driver allows to upgrade microcode on F10h AMD
 *  CPUs and later.
 *
7
 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8
 *	          2013-2016 Borislav Petkov <bp@alien8.de>
9 10 11 12 13 14
 *
 *  Author: Peter Oruba <peter.oruba@amd.com>
 *
 *  Based on work by:
 *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
 *
15 16 17 18 19
 *  early loader:
 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 *  Author: Jacob Shin <jacob.shin@amd.com>
 *  Fixes: Borislav Petkov <bp@suse.de>
20
 *
21
 *  Licensed under the terms of the GNU General Public
22
 *  License version 2. See file COPYING for details.
I
Ingo Molnar 已提交
23
 */
24
#define pr_fmt(fmt) "microcode: " fmt
25

26
#include <linux/earlycpio.h>
I
Ingo Molnar 已提交
27 28 29
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
30
#include <linux/initrd.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel.h>
32 33
#include <linux/pci.h>

34
#include <asm/microcode_amd.h>
35
#include <asm/microcode.h>
I
Ingo Molnar 已提交
36
#include <asm/processor.h>
37 38
#include <asm/setup.h>
#include <asm/cpu.h>
I
Ingo Molnar 已提交
39
#include <asm/msr.h>
40

D
Dmitry Adamushko 已提交
41
static struct equiv_cpu_entry *equiv_cpu_table;
42

43 44
/*
 * This points to the current valid container of microcode patches which we will
45 46
 * save from the initrd/builtin before jettisoning its contents. @mc is the
 * microcode patch we found to match.
47
 */
48 49 50 51 52 53
static struct cont_desc {
	struct microcode_amd *mc;
	u32		     psize;
	u16		     eq_id;
	u8		     *data;
	size_t		     size;
54
} cont;
55 56

static u32 ucode_new_rev;
57
static u8 amd_ucode_patch[PATCH_MAX_SIZE];
58 59
static u16 this_equiv_id;

60 61 62 63 64 65
/*
 * Microcode patch container file is prepended to the initrd in cpio
 * format. See Documentation/x86/early-microcode.txt
 */
static const char
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
66

67
static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
68
{
69 70 71
	for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
		if (sig == equiv_table->installed_cpu)
			return equiv_table->equiv_cpu;
72
	}
73

74 75 76
	return 0;
}

77
/*
78
 * This scans the ucode blob for the proper container as we can have multiple
79 80
 * containers glued together. Returns the equivalence ID from the equivalence
 * table or 0 if none found.
81 82
 * Returns the amount of bytes consumed while scanning. @desc contains all the
 * data we're going to use in later stages of the application.
83
 */
84
static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
85 86
{
	struct equiv_cpu_entry *eq;
87 88 89 90 91 92 93 94 95 96 97 98 99
	ssize_t orig_size = size;
	u32 *hdr = (u32 *)ucode;
	u32 eax, ebx, ecx, edx;
	u16 eq_id;
	u8 *buf;

	/* Am I looking at an equivalence table header? */
	if (hdr[0] != UCODE_MAGIC ||
	    hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE ||
	    hdr[2] == 0) {
		desc->eq_id = 0;
		return CONTAINER_HDR_SZ;
	}
100

101
	buf = ucode;
102

103
	eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
104

105
	eax = 1;
106 107 108
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);

109 110
	/* Find the equivalence ID of our CPU in this table: */
	eq_id = find_equiv_id(eq, eax);
111

112 113
	buf  += hdr[2] + CONTAINER_HDR_SZ;
	size -= hdr[2] + CONTAINER_HDR_SZ;
114

115 116 117 118 119 120 121
	/*
	 * Scan through the rest of the container to find where it ends. We do
	 * some basic sanity-checking too.
	 */
	while (size > 0) {
		struct microcode_amd *mc;
		u32 patch_size;
122

123
		hdr = (u32 *)buf;
124

125 126
		if (hdr[0] != UCODE_UCODE_TYPE)
			break;
127

128 129 130 131
		/* Sanity-check patch size. */
		patch_size = hdr[1];
		if (patch_size > PATCH_MAX_SIZE)
			break;
132

133 134 135
		/* Skip patch section header: */
		buf  += SECTION_HDR_SIZE;
		size -= SECTION_HDR_SIZE;
136

137 138 139 140
		mc = (struct microcode_amd *)buf;
		if (eq_id == mc->hdr.processor_rev_id) {
			desc->psize = patch_size;
			desc->mc = mc;
141 142
		}

143 144
		buf  += patch_size;
		size -= patch_size;
145 146
	}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * If we have found a patch (desc->mc), it means we're looking at the
	 * container which has a patch for this CPU so return 0 to mean, @ucode
	 * already points to the proper container. Otherwise, we return the size
	 * we scanned so that we can advance to the next container in the
	 * buffer.
	 */
	if (desc->mc) {
		desc->eq_id = eq_id;
		desc->data  = ucode;
		desc->size  = orig_size - size;

		return 0;
	}

	return orig_size - size;
}

/*
 * Scan the ucode blob for the proper container as we can have multiple
 * containers glued together.
 */
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
{
	ssize_t rem = size;

	while (rem >= 0) {
		ssize_t s = parse_container(ucode, rem, desc);
		if (!s)
			return;

		ucode += s;
		rem   -= s;
	}
181 182
}

183
static int __apply_microcode_amd(struct microcode_amd *mc)
184 185 186
{
	u32 rev, dummy;

187
	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
188 189 190

	/* verify patch application was successful */
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
191
	if (rev != mc->hdr.patch_id)
192 193 194 195 196 197 198 199 200 201 202 203 204
		return -1;

	return 0;
}

/*
 * Early load occurs before we can vmalloc(). So we look for the microcode
 * patch container file in initrd, traverse equivalent cpu table, look for a
 * matching microcode patch, and update, all in initrd memory in place.
 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 * kernel heap memory.
205
 *
206
 * Returns true if container found (sets @desc), false otherwise.
207
 */
208
static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch,
209
				      struct cont_desc *ret_desc)
210
{
211
	struct cont_desc desc = { 0 };
212
	u8 (*patch)[PATCH_MAX_SIZE];
213 214 215
	struct microcode_amd *mc;
	u32 rev, *new_rev;
	bool ret = false;
216 217 218 219 220 221 222 223

#ifdef CONFIG_X86_32
	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
	new_rev = &ucode_new_rev;
	patch	= &amd_ucode_patch;
#endif
224 225

	if (check_current_patch_level(&rev, true))
226
		return false;
227

228 229 230
	scan_containers(ucode, size, &desc);
	if (!desc.eq_id)
		return ret;
231

232
	this_equiv_id = desc.eq_id;
233

234 235 236
	mc = desc.mc;
	if (!mc)
		return ret;
237

238 239
	if (rev >= mc->hdr.patch_id)
		return ret;
240

241 242 243
	if (!__apply_microcode_amd(mc)) {
		*new_rev = mc->hdr.patch_id;
		ret      = true;
244

245 246
		if (save_patch)
			memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
247
	}
248

249 250
	if (ret_desc)
		*ret_desc = desc;
251

252
	return ret;
253 254
}

255
static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
{
#ifdef CONFIG_X86_64
	char fw_name[36] = "amd-ucode/microcode_amd.bin";

	if (family >= 0x15)
		snprintf(fw_name, sizeof(fw_name),
			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);

	return get_builtin_firmware(cp, fw_name);
#else
	return false;
#endif
}

void __init load_ucode_amd_bsp(unsigned int family)
{
272
	struct ucode_cpu_info *uci;
273
	u32 eax, ebx, ecx, edx;
274
	struct cpio_data cp;
275 276
	const char *path;
	bool use_pa;
277

278 279 280 281 282 283 284 285 286
	if (IS_ENABLED(CONFIG_X86_32)) {
		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
		path	= (const char *)__pa_nodebug(ucode_path);
		use_pa	= true;
	} else {
		uci     = ucode_cpu_info;
		path	= ucode_path;
		use_pa	= false;
	}
287

288 289
	if (!get_builtin_microcode(&cp, family))
		cp = find_microcode_in_initrd(path, use_pa);
290 291 292

	if (!(cp.data && cp.size))
		return;
293

294
	/* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
295 296 297 298
	eax = 1;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);
	uci->cpu_sig.sig = eax;
299

300
	apply_microcode_early_amd(cp.data, cp.size, true, NULL);
301 302 303 304 305
}

#ifdef CONFIG_X86_32
/*
 * On 32-bit, since AP's early load occurs before paging is turned on, we
306 307 308
 * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
 * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
 * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
309 310
 * which is used upon resume from suspend.
 */
311
void load_ucode_amd_ap(unsigned int family)
312 313
{
	struct microcode_amd *mc;
314
	struct cpio_data cp;
315 316 317 318 319 320 321

	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
		__apply_microcode_amd(mc);
		return;
	}

322 323
	if (!get_builtin_microcode(&cp, family))
		cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
324

325
	if (!(cp.data && cp.size))
326 327
		return;

328 329 330 331
	/*
	 * This would set amd_ucode_patch above so that the following APs can
	 * use it directly instead of going down this path again.
	 */
332
	apply_microcode_early_amd(cp.data, cp.size, true, NULL);
333 334
}
#else
335
void load_ucode_amd_ap(unsigned int family)
336 337 338 339 340 341
{
	struct equiv_cpu_entry *eq;
	struct microcode_amd *mc;
	u32 rev, eax;
	u16 eq_id;

342
	/* 64-bit runs with paging enabled, thus early==false. */
343 344 345
	if (check_current_patch_level(&rev, false))
		return;

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/* First AP hasn't cached it yet, go through the blob. */
	if (!cont.data) {
		struct cpio_data cp = { NULL, 0, "" };

		if (cont.size == -1)
			return;

reget:
		if (!get_builtin_microcode(&cp, family)) {
#ifdef CONFIG_BLK_DEV_INITRD
			cp = find_cpio_data(ucode_path, (void *)initrd_start,
					    initrd_end - initrd_start, NULL);
#endif
			if (!(cp.data && cp.size)) {
				/*
				 * Mark it so that other APs do not scan again
				 * for no real reason and slow down boot
				 * needlessly.
				 */
				cont.size = -1;
				return;
			}
		}

370
		if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) {
371
			cont.data = NULL;
372 373 374 375
			cont.size = -1;
			return;
		}
	}
376

377
	eax = cpuid_eax(0x00000001);
378
	eq  = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	eq_id = find_equiv_id(eq, eax);
	if (!eq_id)
		return;

	if (eq_id == this_equiv_id) {
		mc = (struct microcode_amd *)amd_ucode_patch;

		if (mc && rev < mc->hdr.patch_id) {
			if (!__apply_microcode_amd(mc))
				ucode_new_rev = mc->hdr.patch_id;
		}

	} else {

		/*
		 * AP has a different equivalence ID than BSP, looks like
		 * mixed-steppings silicon so go through the ucode blob anew.
		 */
398
		goto reget;
399 400
	}
}
401
#endif /* CONFIG_X86_32 */
402

403 404 405
static enum ucode_state
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);

406
int __init save_microcode_in_initrd_amd(unsigned int fam)
407 408
{
	enum ucode_state ret;
409
	int retval = 0;
410

411 412 413
	if (!cont.data) {
		if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
			struct cpio_data cp = { NULL, 0, "" };
414

415 416 417
#ifdef CONFIG_BLK_DEV_INITRD
			cp = find_cpio_data(ucode_path, (void *)initrd_start,
					    initrd_end - initrd_start, NULL);
418 419
#endif

420 421 422 423
			if (!(cp.data && cp.size)) {
				cont.size = -1;
				return -EINVAL;
			}
424

425 426
			scan_containers(cp.data, cp.size, &cont);
			if (!cont.eq_id) {
427 428 429
				cont.size = -1;
				return -EINVAL;
			}
430

431 432 433
		} else
			return -EINVAL;
	}
434

435
	ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size);
436 437 438 439 440 441 442
	if (ret != UCODE_OK)
		retval = -EINVAL;

	/*
	 * This will be freed any msec now, stash patches for the current
	 * family and switch to patch cache for cpu hotplug, etc later.
	 */
443 444
	cont.data = NULL;
	cont.size = 0;
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

	return retval;
}

void reload_ucode_amd(void)
{
	struct microcode_amd *mc;
	u32 rev;

	/*
	 * early==false because this is a syscore ->resume path and by
	 * that time paging is long enabled.
	 */
	if (check_current_patch_level(&rev, false))
		return;

	mc = (struct microcode_amd *)amd_ucode_patch;
462 463
	if (!mc)
		return;
464

465
	if (rev < mc->hdr.patch_id) {
466 467
		if (!__apply_microcode_amd(mc)) {
			ucode_new_rev = mc->hdr.patch_id;
468
			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
469 470 471
		}
	}
}
472
static u16 __find_equiv_id(unsigned int cpu)
473 474
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
475
	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
	int i = 0;

	BUG_ON(!equiv_cpu_table);

	while (equiv_cpu_table[i].equiv_cpu != 0) {
		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
			return equiv_cpu_table[i].installed_cpu;
		i++;
	}
	return 0;
}

492 493 494 495 496 497 498
/*
 * a small, trivial cache of per-family ucode patches
 */
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
	struct ucode_patch *p;

499
	list_for_each_entry(p, &microcode_cache, plist)
500 501 502 503 504 505 506 507 508
		if (p->equiv_cpu == equiv_cpu)
			return p;
	return NULL;
}

static void update_cache(struct ucode_patch *new_patch)
{
	struct ucode_patch *p;

509
	list_for_each_entry(p, &microcode_cache, plist) {
510 511 512 513 514 515 516 517 518 519 520 521
		if (p->equiv_cpu == new_patch->equiv_cpu) {
			if (p->patch_id >= new_patch->patch_id)
				/* we already have the latest patch */
				return;

			list_replace(&p->plist, &new_patch->plist);
			kfree(p->data);
			kfree(p);
			return;
		}
	}
	/* no patch found, add it */
522
	list_add_tail(&new_patch->plist, &microcode_cache);
523 524 525 526
}

static void free_cache(void)
{
527
	struct ucode_patch *p, *tmp;
528

529
	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
530 531 532 533 534 535 536 537 538 539
		__list_del(p->plist.prev, p->plist.next);
		kfree(p->data);
		kfree(p);
	}
}

static struct ucode_patch *find_patch(unsigned int cpu)
{
	u16 equiv_id;

540
	equiv_id = __find_equiv_id(cpu);
541 542 543 544 545 546
	if (!equiv_id)
		return NULL;

	return cache_find_patch(equiv_id);
}

547
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
548
{
549
	struct cpuinfo_x86 *c = &cpu_data(cpu);
550 551
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	struct ucode_patch *p;
552

553
	csig->sig = cpuid_eax(0x00000001);
554
	csig->rev = c->microcode;
555 556 557 558 559 560 561 562 563

	/*
	 * a patch could have been loaded early, set uci->mc so that
	 * mc_bp_resume() can call apply_microcode()
	 */
	p = find_patch(cpu);
	if (p && (p->patch_id == csig->rev))
		uci->mc = p->data;

564 565
	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);

566
	return 0;
567 568
}

569
static unsigned int verify_patch_size(u8 family, u32 patch_size,
570
				      unsigned int size)
571
{
572 573 574 575 576
	u32 max_size;

#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
577
#define F16H_MPB_MAX_SIZE 3458
578

579
	switch (family) {
580 581 582 583 584 585
	case 0x14:
		max_size = F14H_MPB_MAX_SIZE;
		break;
	case 0x15:
		max_size = F15H_MPB_MAX_SIZE;
		break;
586 587 588
	case 0x16:
		max_size = F16H_MPB_MAX_SIZE;
		break;
589 590 591 592 593 594 595 596 597 598 599 600 601
	default:
		max_size = F1XH_MPB_MAX_SIZE;
		break;
	}

	if (patch_size > min_t(u32, size, max_size)) {
		pr_err("patch size mismatch\n");
		return 0;
	}

	return patch_size;
}

602 603 604 605 606 607 608 609 610 611
/*
 * Those patch levels cannot be updated to newer ones and thus should be final.
 */
static u32 final_levels[] = {
	0x01000098,
	0x0100009f,
	0x010000af,
	0, /* T-101 terminator */
};

612 613 614 615 616 617 618 619 620 621
/*
 * Check the current patch level on this CPU.
 *
 * @rev: Use it to return the patch level. It is set to 0 in the case of
 * error.
 *
 * Returns:
 *  - true: if update should stop
 *  - false: otherwise
 */
622
bool check_current_patch_level(u32 *rev, bool early)
623
{
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	u32 lvl, dummy, i;
	bool ret = false;
	u32 *levels;

	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);

	if (IS_ENABLED(CONFIG_X86_32) && early)
		levels = (u32 *)__pa_nodebug(&final_levels);
	else
		levels = final_levels;

	for (i = 0; levels[i]; i++) {
		if (lvl == levels[i]) {
			lvl = 0;
			ret = true;
			break;
		}
	}
642

643 644
	if (rev)
		*rev = lvl;
645

646
	return ret;
647 648
}

649
static int apply_microcode_amd(int cpu)
650
{
651
	struct cpuinfo_x86 *c = &cpu_data(cpu);
652 653 654
	struct microcode_amd *mc_amd;
	struct ucode_cpu_info *uci;
	struct ucode_patch *p;
655
	u32 rev;
656 657

	BUG_ON(raw_smp_processor_id() != cpu);
658

659
	uci = ucode_cpu_info + cpu;
660

661 662
	p = find_patch(cpu);
	if (!p)
663
		return 0;
664

665 666 667
	mc_amd  = p->data;
	uci->mc = p->data;

668
	if (check_current_patch_level(&rev, false))
669
		return -1;
670

671 672 673
	/* need to apply patch? */
	if (rev >= mc_amd->hdr.patch_id) {
		c->microcode = rev;
674
		uci->cpu_sig.rev = rev;
675 676 677
		return 0;
	}

678
	if (__apply_microcode_amd(mc_amd)) {
679
		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
680
			cpu, mc_amd->hdr.patch_id);
681 682 683 684
		return -1;
	}
	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
		mc_amd->hdr.patch_id);
685

686 687
	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
	c->microcode = mc_amd->hdr.patch_id;
688 689

	return 0;
690 691
}

692
static int install_equiv_cpu_table(const u8 *buf)
693
{
694 695 696
	unsigned int *ibuf = (unsigned int *)buf;
	unsigned int type = ibuf[1];
	unsigned int size = ibuf[2];
697

698
	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
699 700
		pr_err("empty section/"
		       "invalid type field in container file section header\n");
701
		return -EINVAL;
702 703
	}

704
	equiv_cpu_table = vmalloc(size);
705
	if (!equiv_cpu_table) {
706
		pr_err("failed to allocate equivalent CPU table\n");
707
		return -ENOMEM;
708 709
	}

710
	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
711

712 713
	/* add header length */
	return size + CONTAINER_HDR_SZ;
714 715
}

D
Dmitry Adamushko 已提交
716
static void free_equiv_cpu_table(void)
717
{
718 719
	vfree(equiv_cpu_table);
	equiv_cpu_table = NULL;
D
Dmitry Adamushko 已提交
720
}
721

722
static void cleanup(void)
D
Dmitry Adamushko 已提交
723
{
724 725 726 727 728 729 730 731 732 733 734
	free_equiv_cpu_table();
	free_cache();
}

/*
 * We return the current size even if some of the checks failed so that
 * we can skip over the next patch. If we return a negative value, we
 * signal a grave error like a memory allocation has failed and the
 * driver cannot continue functioning normally. In such cases, we tear
 * down everything we've used up so far and exit.
 */
735
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
{
	struct microcode_header_amd *mc_hdr;
	struct ucode_patch *patch;
	unsigned int patch_size, crnt_size, ret;
	u32 proc_fam;
	u16 proc_id;

	patch_size  = *(u32 *)(fw + 4);
	crnt_size   = patch_size + SECTION_HDR_SIZE;
	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
	proc_id	    = mc_hdr->processor_rev_id;

	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
	if (!proc_fam) {
		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
		return crnt_size;
	}

	/* check if patch is for the current family */
	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
756
	if (proc_fam != family)
757 758 759 760 761 762 763 764
		return crnt_size;

	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
			mc_hdr->patch_id);
		return crnt_size;
	}

765
	ret = verify_patch_size(family, patch_size, leftover);
766 767 768 769 770 771 772 773 774 775 776
	if (!ret) {
		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
		return crnt_size;
	}

	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
	if (!patch) {
		pr_err("Patch allocation failure.\n");
		return -EINVAL;
	}

777
	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
778 779 780 781 782 783 784 785 786 787
	if (!patch->data) {
		pr_err("Patch data allocation failure.\n");
		kfree(patch);
		return -EINVAL;
	}

	INIT_LIST_HEAD(&patch->plist);
	patch->patch_id  = mc_hdr->patch_id;
	patch->equiv_cpu = proc_id;

788 789 790
	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
		 __func__, patch->patch_id, proc_id);

791 792 793 794 795 796
	/* ... and add to cache. */
	update_cache(patch);

	return crnt_size;
}

797 798
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
					     size_t size)
799 800 801 802 803
{
	enum ucode_state ret = UCODE_ERROR;
	unsigned int leftover;
	u8 *fw = (u8 *)data;
	int crnt_size = 0;
804
	int offset;
805

806
	offset = install_equiv_cpu_table(data);
807
	if (offset < 0) {
808
		pr_err("failed to create equivalent cpu table\n");
809
		return ret;
810
	}
811
	fw += offset;
D
Dmitry Adamushko 已提交
812 813
	leftover = size - offset;

814
	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
815
		pr_err("invalid type field in container file section header\n");
816 817
		free_equiv_cpu_table();
		return ret;
818
	}
D
Dmitry Adamushko 已提交
819

820
	while (leftover) {
821
		crnt_size = verify_and_add_patch(family, fw, leftover);
822 823
		if (crnt_size < 0)
			return ret;
824

825 826
		fw	 += crnt_size;
		leftover -= crnt_size;
827
	}
D
Dmitry Adamushko 已提交
828

829
	return UCODE_OK;
D
Dmitry Adamushko 已提交
830 831
}

832 833
static enum ucode_state
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
834 835 836 837 838 839
{
	enum ucode_state ret;

	/* free old equiv table */
	free_equiv_cpu_table();

840
	ret = __load_microcode_amd(family, data, size);
841 842 843 844

	if (ret != UCODE_OK)
		cleanup();

845
#ifdef CONFIG_X86_32
846
	/* save BSP's matching patch for early load */
847 848
	if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
		struct ucode_patch *p = find_patch(cpu);
849
		if (p) {
850 851 852
			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
							       PATCH_MAX_SIZE));
853 854 855
		}
	}
#endif
856 857 858
	return ret;
}

859 860 861 862 863 864 865 866
/*
 * AMD microcode firmware naming convention, up to family 15h they are in
 * the legacy file:
 *
 *    amd-ucode/microcode_amd.bin
 *
 * This legacy file is always smaller than 2K in size.
 *
867
 * Beginning with family 15h, they are in family-specific firmware files:
868 869 870 871 872 873 874
 *
 *    amd-ucode/microcode_amd_fam15h.bin
 *    amd-ucode/microcode_amd_fam16h.bin
 *    ...
 *
 * These might be larger than 2K.
 */
875 876
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
					      bool refresh_fw)
D
Dmitry Adamushko 已提交
877
{
878 879
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct cpuinfo_x86 *c = &cpu_data(cpu);
880 881 882 883 884 885
	enum ucode_state ret = UCODE_NFOUND;
	const struct firmware *fw;

	/* reload ucode container only on the boot cpu */
	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
		return UCODE_OK;
886 887 888

	if (c->x86 >= 0x15)
		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
D
Dmitry Adamushko 已提交
889

890
	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
891
		pr_debug("failed to load file %s\n", fw_name);
892
		goto out;
893
	}
D
Dmitry Adamushko 已提交
894

895 896
	ret = UCODE_ERROR;
	if (*(u32 *)fw->data != UCODE_MAGIC) {
897
		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
898
		goto fw_release;
899 900
	}

901
	ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
D
Dmitry Adamushko 已提交
902

903
 fw_release:
904
	release_firmware(fw);
905

906
 out:
D
Dmitry Adamushko 已提交
907 908 909
	return ret;
}

910 911
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
D
Dmitry Adamushko 已提交
912
{
913
	return UCODE_ERROR;
914 915 916 917 918 919
}

static void microcode_fini_cpu_amd(int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

920
	uci->mc = NULL;
921 922 923
}

static struct microcode_ops microcode_amd_ops = {
D
Dmitry Adamushko 已提交
924
	.request_microcode_user           = request_microcode_user,
925
	.request_microcode_fw             = request_microcode_amd,
926 927 928 929 930
	.collect_cpu_info                 = collect_cpu_info_amd,
	.apply_microcode                  = apply_microcode_amd,
	.microcode_fini_cpu               = microcode_fini_cpu_amd,
};

931
struct microcode_ops * __init init_amd_microcode(void)
932
{
933
	struct cpuinfo_x86 *c = &boot_cpu_data;
934 935

	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
936
		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
937 938 939
		return NULL;
	}

940 941 942 943
	if (ucode_new_rev)
		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
			     ucode_new_rev);

944
	return &microcode_amd_ops;
945
}
946 947 948

void __exit exit_amd_microcode(void)
{
949
	cleanup();
950
}