amd.c 21.4 KB
Newer Older
1 2
/*
 *  AMD CPU Microcode Update Driver for Linux
3 4 5 6
 *
 *  This driver allows to upgrade microcode on F10h AMD
 *  CPUs and later.
 *
7
 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8 9 10 11 12 13
 *
 *  Author: Peter Oruba <peter.oruba@amd.com>
 *
 *  Based on work by:
 *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
 *
14 15 16 17 18
 *  early loader:
 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 *  Author: Jacob Shin <jacob.shin@amd.com>
 *  Fixes: Borislav Petkov <bp@suse.de>
19
 *
20
 *  Licensed under the terms of the GNU General Public
21
 *  License version 2. See file COPYING for details.
I
Ingo Molnar 已提交
22
 */
23
#define pr_fmt(fmt) "microcode: " fmt
24

25
#include <linux/earlycpio.h>
I
Ingo Molnar 已提交
26 27 28
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
29
#include <linux/initrd.h>
I
Ingo Molnar 已提交
30
#include <linux/kernel.h>
31 32
#include <linux/pci.h>

33
#include <asm/microcode_amd.h>
34
#include <asm/microcode.h>
I
Ingo Molnar 已提交
35
#include <asm/processor.h>
36 37
#include <asm/setup.h>
#include <asm/cpu.h>
I
Ingo Molnar 已提交
38
#include <asm/msr.h>
39

D
Dmitry Adamushko 已提交
40
static struct equiv_cpu_entry *equiv_cpu_table;
41

42 43 44 45 46 47 48 49 50
struct ucode_patch {
	struct list_head plist;
	void *data;
	u32 patch_id;
	u16 equiv_cpu;
};

static LIST_HEAD(pcache);

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * This points to the current valid container of microcode patches which we will
 * save from the initrd before jettisoning its contents.
 */
static u8 *container;
static size_t container_size;

static u32 ucode_new_rev;
u8 amd_ucode_patch[PATCH_MAX_SIZE];
static u16 this_equiv_id;

static struct cpio_data ucode_cpio;

/*
 * Microcode patch container file is prepended to the initrd in cpio format.
 * See Documentation/x86/early-microcode.txt
 */
static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin";

static struct cpio_data __init find_ucode_in_initrd(void)
{
	long offset = 0;
	char *path;
	void *start;
	size_t size;

#ifdef CONFIG_X86_32
	struct boot_params *p;

	/*
	 * On 32-bit, early load occurs before paging is turned on so we need
	 * to use physical addresses.
	 */
	p       = (struct boot_params *)__pa_nodebug(&boot_params);
	path    = (char *)__pa_nodebug(ucode_path);
	start   = (void *)p->hdr.ramdisk_image;
	size    = p->hdr.ramdisk_size;
#else
	path    = ucode_path;
	start   = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET);
	size    = boot_params.hdr.ramdisk_size;
#endif

	return find_cpio_data(path, start, size, &offset);
}

static size_t compute_container_size(u8 *data, u32 total_size)
{
	size_t size = 0;
	u32 *header = (u32 *)data;

	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
		return size;

	size = header[2] + CONTAINER_HDR_SZ;
	total_size -= size;
	data += size;

	while (total_size) {
		u16 patch_size;

		header = (u32 *)data;

		if (header[0] != UCODE_UCODE_TYPE)
			break;

		/*
		 * Sanity-check patch size.
		 */
		patch_size = header[1];
		if (patch_size > PATCH_MAX_SIZE)
			break;

		size	   += patch_size + SECTION_HDR_SIZE;
		data	   += patch_size + SECTION_HDR_SIZE;
		total_size -= patch_size + SECTION_HDR_SIZE;
	}

	return size;
}

/*
 * Early load occurs before we can vmalloc(). So we look for the microcode
 * patch container file in initrd, traverse equivalent cpu table, look for a
 * matching microcode patch, and update, all in initrd memory in place.
 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 * kernel heap memory.
 */
static void apply_ucode_in_initrd(void *ucode, size_t size, bool save_patch)
{
	struct equiv_cpu_entry *eq;
	size_t *cont_sz;
	u32 *header;
	u8  *data, **cont;
	u8 (*patch)[PATCH_MAX_SIZE];
	u16 eq_id = 0;
	int offset, left;
	u32 rev, eax, ebx, ecx, edx;
	u32 *new_rev;

#ifdef CONFIG_X86_32
	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	cont_sz = (size_t *)__pa_nodebug(&container_size);
	cont	= (u8 **)__pa_nodebug(&container);
	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
	new_rev = &ucode_new_rev;
	cont_sz = &container_size;
	cont	= &container;
	patch	= &amd_ucode_patch;
#endif

	data   = ucode;
	left   = size;
	header = (u32 *)data;

	/* find equiv cpu table */
	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
		return;

	eax = 0x00000001;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);

	while (left > 0) {
		eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);

		*cont = data;

		/* Advance past the container header */
		offset = header[2] + CONTAINER_HDR_SZ;
		data  += offset;
		left  -= offset;

		eq_id = find_equiv_id(eq, eax);
		if (eq_id) {
			this_equiv_id = eq_id;
			*cont_sz = compute_container_size(*cont, left + offset);

			/*
			 * truncate how much we need to iterate over in the
			 * ucode update loop below
			 */
			left = *cont_sz - offset;
			break;
		}

		/*
		 * support multiple container files appended together. if this
		 * one does not have a matching equivalent cpu entry, we fast
		 * forward to the next container file.
		 */
		while (left > 0) {
			header = (u32 *)data;
			if (header[0] == UCODE_MAGIC &&
			    header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
				break;

			offset = header[1] + SECTION_HDR_SIZE;
			data  += offset;
			left  -= offset;
		}

		/* mark where the next microcode container file starts */
		offset    = data - (u8 *)ucode;
		ucode     = data;
	}

	if (!eq_id) {
		*cont = NULL;
		*cont_sz = 0;
		return;
	}

	if (check_current_patch_level(&rev, true))
		return;

	while (left > 0) {
		struct microcode_amd *mc;

		header = (u32 *)data;
		if (header[0] != UCODE_UCODE_TYPE || /* type */
		    header[1] == 0)                  /* size */
			break;

		mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);

		if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {

			if (!__apply_microcode_amd(mc)) {
				rev = mc->hdr.patch_id;
				*new_rev = rev;

				if (save_patch)
					memcpy(patch, mc,
					       min_t(u32, header[1], PATCH_MAX_SIZE));
			}
		}

		offset  = header[1] + SECTION_HDR_SIZE;
		data   += offset;
		left   -= offset;
	}
}

static bool __init load_builtin_amd_microcode(struct cpio_data *cp,
					      unsigned int family)
{
#ifdef CONFIG_X86_64
	char fw_name[36] = "amd-ucode/microcode_amd.bin";

	if (family >= 0x15)
		snprintf(fw_name, sizeof(fw_name),
			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);

	return get_builtin_firmware(cp, fw_name);
#else
	return false;
#endif
}

void __init load_ucode_amd_bsp(unsigned int family)
{
	struct cpio_data cp;
	void **data;
	size_t *size;

#ifdef CONFIG_X86_32
	data =  (void **)__pa_nodebug(&ucode_cpio.data);
	size = (size_t *)__pa_nodebug(&ucode_cpio.size);
#else
	data = &ucode_cpio.data;
	size = &ucode_cpio.size;
#endif

	cp = find_ucode_in_initrd();
	if (!cp.data) {
		if (!load_builtin_amd_microcode(&cp, family))
			return;
	}

	*data = cp.data;
	*size = cp.size;

	apply_ucode_in_initrd(cp.data, cp.size, true);
}

#ifdef CONFIG_X86_32
/*
 * On 32-bit, since AP's early load occurs before paging is turned on, we
 * cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during
 * cold boot, AP will apply_ucode_in_initrd() just like the BSP. During
 * save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
 * which is used upon resume from suspend.
 */
void load_ucode_amd_ap(void)
{
	struct microcode_amd *mc;
	size_t *usize;
	void **ucode;

	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
		__apply_microcode_amd(mc);
		return;
	}

	ucode = (void *)__pa_nodebug(&container);
	usize = (size_t *)__pa_nodebug(&container_size);

	if (!*ucode || !*usize)
		return;

	apply_ucode_in_initrd(*ucode, *usize, false);
}

static void __init collect_cpu_sig_on_bsp(void *arg)
{
	unsigned int cpu = smp_processor_id();
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

	uci->cpu_sig.sig = cpuid_eax(0x00000001);
}

static void __init get_bsp_sig(void)
{
	unsigned int bsp = boot_cpu_data.cpu_index;
	struct ucode_cpu_info *uci = ucode_cpu_info + bsp;

	if (!uci->cpu_sig.sig)
		smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1);
}
#else
void load_ucode_amd_ap(void)
{
	unsigned int cpu = smp_processor_id();
	struct equiv_cpu_entry *eq;
	struct microcode_amd *mc;
	u32 rev, eax;
	u16 eq_id;

	/* Exit if called on the BSP. */
	if (!cpu)
		return;

	if (!container)
		return;

	/*
	 * 64-bit runs with paging enabled, thus early==false.
	 */
	if (check_current_patch_level(&rev, false))
		return;

	eax = cpuid_eax(0x00000001);
	eq  = (struct equiv_cpu_entry *)(container + CONTAINER_HDR_SZ);

	eq_id = find_equiv_id(eq, eax);
	if (!eq_id)
		return;

	if (eq_id == this_equiv_id) {
		mc = (struct microcode_amd *)amd_ucode_patch;

		if (mc && rev < mc->hdr.patch_id) {
			if (!__apply_microcode_amd(mc))
				ucode_new_rev = mc->hdr.patch_id;
		}

	} else {
		if (!ucode_cpio.data)
			return;

		/*
		 * AP has a different equivalence ID than BSP, looks like
		 * mixed-steppings silicon so go through the ucode blob anew.
		 */
		apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size, false);
	}
}
#endif

int __init save_microcode_in_initrd_amd(void)
{
	unsigned long cont;
	int retval = 0;
	enum ucode_state ret;
	u8 *cont_va;
	u32 eax;

	if (!container)
		return -EINVAL;

#ifdef CONFIG_X86_32
	get_bsp_sig();
	cont	= (unsigned long)container;
	cont_va = __va(container);
#else
	/*
	 * We need the physical address of the container for both bitness since
	 * boot_params.hdr.ramdisk_image is a physical address.
	 */
	cont    = __pa(container);
	cont_va = container;
#endif

	/*
	 * Take into account the fact that the ramdisk might get relocated and
	 * therefore we need to recompute the container's position in virtual
	 * memory space.
	 */
	if (relocated_ramdisk)
		container = (u8 *)(__va(relocated_ramdisk) +
			     (cont - boot_params.hdr.ramdisk_image));
	else
		container = cont_va;

	eax   = cpuid_eax(0x00000001);
	eax   = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff);

	ret = load_microcode_amd(smp_processor_id(), eax, container, container_size);
	if (ret != UCODE_OK)
		retval = -EINVAL;

	/*
	 * This will be freed any msec now, stash patches for the current
	 * family and switch to patch cache for cpu hotplug, etc later.
	 */
	container = NULL;
	container_size = 0;

	return retval;
}

void reload_ucode_amd(void)
{
	struct microcode_amd *mc;
	u32 rev;

	/*
	 * early==false because this is a syscore ->resume path and by
	 * that time paging is long enabled.
	 */
	if (check_current_patch_level(&rev, false))
		return;

	mc = (struct microcode_amd *)amd_ucode_patch;

	if (mc && rev < mc->hdr.patch_id) {
		if (!__apply_microcode_amd(mc)) {
			ucode_new_rev = mc->hdr.patch_id;
468
			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
469 470 471
		}
	}
}
472
static u16 __find_equiv_id(unsigned int cpu)
473 474
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
475
	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
	int i = 0;

	BUG_ON(!equiv_cpu_table);

	while (equiv_cpu_table[i].equiv_cpu != 0) {
		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
			return equiv_cpu_table[i].installed_cpu;
		i++;
	}
	return 0;
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * a small, trivial cache of per-family ucode patches
 */
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
	struct ucode_patch *p;

	list_for_each_entry(p, &pcache, plist)
		if (p->equiv_cpu == equiv_cpu)
			return p;
	return NULL;
}

static void update_cache(struct ucode_patch *new_patch)
{
	struct ucode_patch *p;

	list_for_each_entry(p, &pcache, plist) {
		if (p->equiv_cpu == new_patch->equiv_cpu) {
			if (p->patch_id >= new_patch->patch_id)
				/* we already have the latest patch */
				return;

			list_replace(&p->plist, &new_patch->plist);
			kfree(p->data);
			kfree(p);
			return;
		}
	}
	/* no patch found, add it */
	list_add_tail(&new_patch->plist, &pcache);
}

static void free_cache(void)
{
527
	struct ucode_patch *p, *tmp;
528

529
	list_for_each_entry_safe(p, tmp, &pcache, plist) {
530 531 532 533 534 535 536 537 538 539
		__list_del(p->plist.prev, p->plist.next);
		kfree(p->data);
		kfree(p);
	}
}

static struct ucode_patch *find_patch(unsigned int cpu)
{
	u16 equiv_id;

540
	equiv_id = __find_equiv_id(cpu);
541 542 543 544 545 546
	if (!equiv_id)
		return NULL;

	return cache_find_patch(equiv_id);
}

547
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
548
{
549
	struct cpuinfo_x86 *c = &cpu_data(cpu);
550 551
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	struct ucode_patch *p;
552

553
	csig->sig = cpuid_eax(0x00000001);
554
	csig->rev = c->microcode;
555 556 557 558 559 560 561 562 563

	/*
	 * a patch could have been loaded early, set uci->mc so that
	 * mc_bp_resume() can call apply_microcode()
	 */
	p = find_patch(cpu);
	if (p && (p->patch_id == csig->rev))
		uci->mc = p->data;

564 565
	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);

566
	return 0;
567 568
}

569
static unsigned int verify_patch_size(u8 family, u32 patch_size,
570
				      unsigned int size)
571
{
572 573 574 575 576
	u32 max_size;

#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
577
#define F16H_MPB_MAX_SIZE 3458
578

579
	switch (family) {
580 581 582 583 584 585
	case 0x14:
		max_size = F14H_MPB_MAX_SIZE;
		break;
	case 0x15:
		max_size = F15H_MPB_MAX_SIZE;
		break;
586 587 588
	case 0x16:
		max_size = F16H_MPB_MAX_SIZE;
		break;
589 590 591 592 593 594 595 596 597 598 599 600 601
	default:
		max_size = F1XH_MPB_MAX_SIZE;
		break;
	}

	if (patch_size > min_t(u32, size, max_size)) {
		pr_err("patch size mismatch\n");
		return 0;
	}

	return patch_size;
}

602 603 604 605 606 607 608 609 610 611
/*
 * Those patch levels cannot be updated to newer ones and thus should be final.
 */
static u32 final_levels[] = {
	0x01000098,
	0x0100009f,
	0x010000af,
	0, /* T-101 terminator */
};

612 613 614 615 616 617 618 619 620 621
/*
 * Check the current patch level on this CPU.
 *
 * @rev: Use it to return the patch level. It is set to 0 in the case of
 * error.
 *
 * Returns:
 *  - true: if update should stop
 *  - false: otherwise
 */
622
bool check_current_patch_level(u32 *rev, bool early)
623
{
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	u32 lvl, dummy, i;
	bool ret = false;
	u32 *levels;

	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);

	if (IS_ENABLED(CONFIG_X86_32) && early)
		levels = (u32 *)__pa_nodebug(&final_levels);
	else
		levels = final_levels;

	for (i = 0; levels[i]; i++) {
		if (lvl == levels[i]) {
			lvl = 0;
			ret = true;
			break;
		}
	}
642

643 644
	if (rev)
		*rev = lvl;
645

646
	return ret;
647 648
}

649 650 651 652
int __apply_microcode_amd(struct microcode_amd *mc_amd)
{
	u32 rev, dummy;

653
	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
654 655

	/* verify patch application was successful */
656
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
657 658 659 660 661 662 663
	if (rev != mc_amd->hdr.patch_id)
		return -1;

	return 0;
}

int apply_microcode_amd(int cpu)
664
{
665
	struct cpuinfo_x86 *c = &cpu_data(cpu);
666 667 668
	struct microcode_amd *mc_amd;
	struct ucode_cpu_info *uci;
	struct ucode_patch *p;
669
	u32 rev;
670 671

	BUG_ON(raw_smp_processor_id() != cpu);
672

673
	uci = ucode_cpu_info + cpu;
674

675 676
	p = find_patch(cpu);
	if (!p)
677
		return 0;
678

679 680 681
	mc_amd  = p->data;
	uci->mc = p->data;

682
	if (check_current_patch_level(&rev, false))
683
		return -1;
684

685 686 687
	/* need to apply patch? */
	if (rev >= mc_amd->hdr.patch_id) {
		c->microcode = rev;
688
		uci->cpu_sig.rev = rev;
689 690 691
		return 0;
	}

692
	if (__apply_microcode_amd(mc_amd)) {
693
		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
694
			cpu, mc_amd->hdr.patch_id);
695 696 697 698
		return -1;
	}
	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
		mc_amd->hdr.patch_id);
699

700 701
	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
	c->microcode = mc_amd->hdr.patch_id;
702 703

	return 0;
704 705
}

706
static int install_equiv_cpu_table(const u8 *buf)
707
{
708 709 710
	unsigned int *ibuf = (unsigned int *)buf;
	unsigned int type = ibuf[1];
	unsigned int size = ibuf[2];
711

712
	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
713 714
		pr_err("empty section/"
		       "invalid type field in container file section header\n");
715
		return -EINVAL;
716 717
	}

718
	equiv_cpu_table = vmalloc(size);
719
	if (!equiv_cpu_table) {
720
		pr_err("failed to allocate equivalent CPU table\n");
721
		return -ENOMEM;
722 723
	}

724
	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
725

726 727
	/* add header length */
	return size + CONTAINER_HDR_SZ;
728 729
}

D
Dmitry Adamushko 已提交
730
static void free_equiv_cpu_table(void)
731
{
732 733
	vfree(equiv_cpu_table);
	equiv_cpu_table = NULL;
D
Dmitry Adamushko 已提交
734
}
735

736
static void cleanup(void)
D
Dmitry Adamushko 已提交
737
{
738 739 740 741 742 743 744 745 746 747 748
	free_equiv_cpu_table();
	free_cache();
}

/*
 * We return the current size even if some of the checks failed so that
 * we can skip over the next patch. If we return a negative value, we
 * signal a grave error like a memory allocation has failed and the
 * driver cannot continue functioning normally. In such cases, we tear
 * down everything we've used up so far and exit.
 */
749
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
{
	struct microcode_header_amd *mc_hdr;
	struct ucode_patch *patch;
	unsigned int patch_size, crnt_size, ret;
	u32 proc_fam;
	u16 proc_id;

	patch_size  = *(u32 *)(fw + 4);
	crnt_size   = patch_size + SECTION_HDR_SIZE;
	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
	proc_id	    = mc_hdr->processor_rev_id;

	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
	if (!proc_fam) {
		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
		return crnt_size;
	}

	/* check if patch is for the current family */
	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
770
	if (proc_fam != family)
771 772 773 774 775 776 777 778
		return crnt_size;

	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
			mc_hdr->patch_id);
		return crnt_size;
	}

779
	ret = verify_patch_size(family, patch_size, leftover);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	if (!ret) {
		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
		return crnt_size;
	}

	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
	if (!patch) {
		pr_err("Patch allocation failure.\n");
		return -EINVAL;
	}

	patch->data = kzalloc(patch_size, GFP_KERNEL);
	if (!patch->data) {
		pr_err("Patch data allocation failure.\n");
		kfree(patch);
		return -EINVAL;
	}

	/* All looks ok, copy patch... */
	memcpy(patch->data, fw + SECTION_HDR_SIZE, patch_size);
	INIT_LIST_HEAD(&patch->plist);
	patch->patch_id  = mc_hdr->patch_id;
	patch->equiv_cpu = proc_id;

804 805 806
	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
		 __func__, patch->patch_id, proc_id);

807 808 809 810 811 812
	/* ... and add to cache. */
	update_cache(patch);

	return crnt_size;
}

813 814
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
					     size_t size)
815 816 817 818 819
{
	enum ucode_state ret = UCODE_ERROR;
	unsigned int leftover;
	u8 *fw = (u8 *)data;
	int crnt_size = 0;
820
	int offset;
821

822
	offset = install_equiv_cpu_table(data);
823
	if (offset < 0) {
824
		pr_err("failed to create equivalent cpu table\n");
825
		return ret;
826
	}
827
	fw += offset;
D
Dmitry Adamushko 已提交
828 829
	leftover = size - offset;

830
	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
831
		pr_err("invalid type field in container file section header\n");
832 833
		free_equiv_cpu_table();
		return ret;
834
	}
D
Dmitry Adamushko 已提交
835

836
	while (leftover) {
837
		crnt_size = verify_and_add_patch(family, fw, leftover);
838 839
		if (crnt_size < 0)
			return ret;
840

841 842
		fw	 += crnt_size;
		leftover -= crnt_size;
843
	}
D
Dmitry Adamushko 已提交
844

845
	return UCODE_OK;
D
Dmitry Adamushko 已提交
846 847
}

848
enum ucode_state load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
849 850 851 852 853 854
{
	enum ucode_state ret;

	/* free old equiv table */
	free_equiv_cpu_table();

855
	ret = __load_microcode_amd(family, data, size);
856 857 858 859

	if (ret != UCODE_OK)
		cleanup();

860
#ifdef CONFIG_X86_32
861
	/* save BSP's matching patch for early load */
862 863
	if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
		struct ucode_patch *p = find_patch(cpu);
864
		if (p) {
865 866 867
			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
							       PATCH_MAX_SIZE));
868 869 870
		}
	}
#endif
871 872 873
	return ret;
}

874 875 876 877 878 879 880 881
/*
 * AMD microcode firmware naming convention, up to family 15h they are in
 * the legacy file:
 *
 *    amd-ucode/microcode_amd.bin
 *
 * This legacy file is always smaller than 2K in size.
 *
882
 * Beginning with family 15h, they are in family-specific firmware files:
883 884 885 886 887 888 889
 *
 *    amd-ucode/microcode_amd_fam15h.bin
 *    amd-ucode/microcode_amd_fam16h.bin
 *    ...
 *
 * These might be larger than 2K.
 */
890 891
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
					      bool refresh_fw)
D
Dmitry Adamushko 已提交
892
{
893 894
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct cpuinfo_x86 *c = &cpu_data(cpu);
895 896 897 898 899 900
	enum ucode_state ret = UCODE_NFOUND;
	const struct firmware *fw;

	/* reload ucode container only on the boot cpu */
	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
		return UCODE_OK;
901 902 903

	if (c->x86 >= 0x15)
		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
D
Dmitry Adamushko 已提交
904

905
	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
906
		pr_debug("failed to load file %s\n", fw_name);
907
		goto out;
908
	}
D
Dmitry Adamushko 已提交
909

910 911
	ret = UCODE_ERROR;
	if (*(u32 *)fw->data != UCODE_MAGIC) {
912
		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
913
		goto fw_release;
914 915
	}

916
	ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
D
Dmitry Adamushko 已提交
917

918
 fw_release:
919
	release_firmware(fw);
920

921
 out:
D
Dmitry Adamushko 已提交
922 923 924
	return ret;
}

925 926
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
D
Dmitry Adamushko 已提交
927
{
928
	return UCODE_ERROR;
929 930 931 932 933 934
}

static void microcode_fini_cpu_amd(int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

935
	uci->mc = NULL;
936 937 938
}

static struct microcode_ops microcode_amd_ops = {
D
Dmitry Adamushko 已提交
939
	.request_microcode_user           = request_microcode_user,
940
	.request_microcode_fw             = request_microcode_amd,
941 942 943 944 945
	.collect_cpu_info                 = collect_cpu_info_amd,
	.apply_microcode                  = apply_microcode_amd,
	.microcode_fini_cpu               = microcode_fini_cpu_amd,
};

946
struct microcode_ops * __init init_amd_microcode(void)
947
{
948
	struct cpuinfo_x86 *c = &boot_cpu_data;
949 950 951 952 953 954

	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
		pr_warning("AMD CPU family 0x%x not supported\n", c->x86);
		return NULL;
	}

955 956 957 958
	if (ucode_new_rev)
		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
			     ucode_new_rev);

959
	return &microcode_amd_ops;
960
}
961 962 963

void __exit exit_amd_microcode(void)
{
964
	cleanup();
965
}