tsc.c 21.5 KB
Newer Older
A
Alok Kataria 已提交
1
#include <linux/kernel.h>
A
Alok Kataria 已提交
2 3 4 5
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/timer.h>
A
Alok Kataria 已提交
6
#include <linux/acpi_pmtmr.h>
A
Alok Kataria 已提交
7
#include <linux/cpufreq.h>
8 9 10 11
#include <linux/dmi.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
A
Alok Kataria 已提交
12 13

#include <asm/hpet.h>
14 15 16 17
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
A
Alok Kataria 已提交
18 19 20 21 22 23 24 25 26

unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
unsigned int tsc_khz;
EXPORT_SYMBOL(tsc_khz);

/*
 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 */
27
static int tsc_unstable;
A
Alok Kataria 已提交
28 29 30 31

/* native_sched_clock() is called before tsc_init(), so
   we must start with the TSC soft disabled to prevent
   erroneous rdtsc usage on !cpu_has_tsc processors */
32
static int tsc_disabled = -1;
A
Alok Kataria 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

/*
 * Scheduler clock - returns current time in nanosec units.
 */
u64 native_sched_clock(void)
{
	u64 this_offset;

	/*
	 * Fall back to jiffies if there's no TSC available:
	 * ( But note that we still use it if the TSC is marked
	 *   unstable. We do this because unlike Time Of Day,
	 *   the scheduler clock tolerates small errors and it's
	 *   very important for it to be as fast as the platform
	 *   can achive it. )
	 */
	if (unlikely(tsc_disabled)) {
		/* No locking but a rare wrong value is not a big deal: */
		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
	}

	/* read the Time Stamp Counter: */
	rdtscll(this_offset);

	/* return the value in ns */
	return cycles_2_ns(this_offset);
}

/* We need to define a real function for sched_clock, to override the
   weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
	return paravirt_sched_clock();
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
#endif

int check_tsc_unstable(void)
{
	return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);

#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
			"cannot disable TSC completely.\n");
	tsc_disabled = 1;
	return 1;
}
#else
/*
 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 * in cpu/common.c
 */
int __init notsc_setup(char *str)
{
	setup_clear_cpu_cap(X86_FEATURE_TSC);
	return 1;
}
#endif

__setup("notsc", notsc_setup);
A
Alok Kataria 已提交
100 101 102 103 104 105 106

#define MAX_RETRIES     5
#define SMI_TRESHOLD    50000

/*
 * Read TSC and the reference counters. Take care of SMI disturbance
 */
107
static u64 tsc_read_refs(u64 *p, int hpet)
A
Alok Kataria 已提交
108 109 110 111 112 113 114
{
	u64 t1, t2;
	int i;

	for (i = 0; i < MAX_RETRIES; i++) {
		t1 = get_cycles();
		if (hpet)
115
			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
A
Alok Kataria 已提交
116
		else
117
			*p = acpi_pm_read_early();
A
Alok Kataria 已提交
118 119 120 121 122 123 124
		t2 = get_cycles();
		if ((t2 - t1) < SMI_TRESHOLD)
			return t2;
	}
	return ULLONG_MAX;
}

125 126
/*
 * Calculate the TSC frequency from HPET reference
A
Alok Kataria 已提交
127
 */
128
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
A
Alok Kataria 已提交
129
{
130
	u64 tmp;
A
Alok Kataria 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	if (hpet2 < hpet1)
		hpet2 += 0x100000000ULL;
	hpet2 -= hpet1;
	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
	do_div(tmp, 1000000);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

/*
 * Calculate the TSC frequency from PMTimer reference
 */
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
	u64 tmp;
A
Alok Kataria 已提交
148

149 150 151 152 153 154 155 156 157 158 159 160 161
	if (!pm1 && !pm2)
		return ULONG_MAX;

	if (pm2 < pm1)
		pm2 += (u64)ACPI_PM_OVRRUN;
	pm2 -= pm1;
	tmp = pm2 * 1000000000LL;
	do_div(tmp, PMTMR_TICKS_PER_SEC);
	do_div(deltatsc, tmp);

	return (unsigned long) deltatsc;
}

162
#define CAL_MS		10
163
#define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
164 165 166 167 168 169
#define CAL_PIT_LOOPS	1000

#define CAL2_MS		50
#define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
#define CAL2_PIT_LOOPS	5000

170

171 172 173 174 175 176 177
/*
 * Try to calibrate the TSC against the Programmable
 * Interrupt Timer and return the frequency of the TSC
 * in kHz.
 *
 * Return ULONG_MAX on failure to calibrate.
 */
178
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
179 180 181 182 183 184 185 186 187 188 189 190 191 192
{
	u64 tsc, t1, t2, delta;
	unsigned long tscmin, tscmax;
	int pitcnt;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
	 * count mode), binary count. Set the latch register to 50ms
	 * (LSB then MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);
193 194
	outb(latch & 0xff, 0x42);
	outb(latch >> 8, 0x42);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

	tsc = t1 = t2 = get_cycles();

	pitcnt = 0;
	tscmax = 0;
	tscmin = ULONG_MAX;
	while ((inb(0x61) & 0x20) == 0) {
		t2 = get_cycles();
		delta = t2 - tsc;
		tsc = t2;
		if ((unsigned long) delta < tscmin)
			tscmin = (unsigned int) delta;
		if ((unsigned long) delta > tscmax)
			tscmax = (unsigned int) delta;
		pitcnt++;
	}

	/*
	 * Sanity checks:
	 *
215
	 * If we were not able to read the PIT more than loopmin
216 217 218 219 220
	 * times, then we have been hit by a massive SMI
	 *
	 * If the maximum is 10 times larger than the minimum,
	 * then we got hit by an SMI as well.
	 */
221
	if (pitcnt < loopmin || tscmax > 10 * tscmin)
222 223 224 225
		return ULONG_MAX;

	/* Calculate the PIT value */
	delta = t2 - t1;
226
	do_div(delta, ms);
227 228 229
	return delta;
}

L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/*
 * This reads the current MSB of the PIT counter, and
 * checks if we are running on sufficiently fast and
 * non-virtualized hardware.
 *
 * Our expectations are:
 *
 *  - the PIT is running at roughly 1.19MHz
 *
 *  - each IO is going to take about 1us on real hardware,
 *    but we allow it to be much faster (by a factor of 10) or
 *    _slightly_ slower (ie we allow up to a 2us read+counter
 *    update - anything else implies a unacceptably slow CPU
 *    or PIT for the fast calibration to work.
 *
 *  - with 256 PIT ticks to read the value, we have 214us to
 *    see the same MSB (and overhead like doing a single TSC
 *    read per MSB value etc).
 *
 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 *    them each to take about a microsecond on real hardware.
 *    So we expect a count value of around 100. But we'll be
 *    generous, and accept anything over 50.
 *
 *  - if the PIT is stuck, and we see *many* more reads, we
 *    return early (and the next caller of pit_expect_msb()
 *    then consider it a failure when they don't see the
 *    next expected value).
 *
 * These expectations mean that we know that we have seen the
 * transition from one expected value to another with a fairly
 * high accuracy, and we didn't miss any events. We can thus
 * use the TSC value at the transitions to calculate a pretty
 * good value for the TSC frequencty.
 */
static inline int pit_expect_msb(unsigned char val)
{
	int count = 0;
A
Alok Kataria 已提交
268

L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	for (count = 0; count < 50000; count++) {
		/* Ignore LSB */
		inb(0x42);
		if (inb(0x42) != val)
			break;
	}
	return count > 50;
}

/*
 * How many MSB values do we want to see? We aim for a
 * 15ms calibration, which assuming a 2us counter read
 * error should give us roughly 150 ppm precision for
 * the calibration.
 */
#define QUICK_PIT_MS 15
#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
A
Alok Kataria 已提交
286

L
Linus Torvalds 已提交
287 288 289
static unsigned long quick_pit_calibrate(void)
{
	/* Set the Gate high, disable speaker */
A
Alok Kataria 已提交
290 291
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

L
Linus Torvalds 已提交
292 293 294 295 296 297 298 299 300
	/*
	 * Counter 2, mode 0 (one-shot), binary count
	 *
	 * NOTE! Mode 2 decrements by two (and then the
	 * output is flipped each time, giving the same
	 * final output frequency as a decrement-by-one),
	 * so mode 0 is much better when looking at the
	 * individual counts.
	 */
A
Alok Kataria 已提交
301 302
	outb(0xb0, 0x43);

L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	/* Start at 0xffff */
	outb(0xff, 0x42);
	outb(0xff, 0x42);

	if (pit_expect_msb(0xff)) {
		int i;
		u64 t1, t2, delta;
		unsigned char expect = 0xfe;

		t1 = get_cycles();
		for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
			if (!pit_expect_msb(expect))
				goto failed;
		}
		t2 = get_cycles();

319 320 321
		/*
		 * Make sure we can rely on the second TSC timestamp:
		 */
I
Ingo Molnar 已提交
322
		if (!pit_expect_msb(expect))
323 324
			goto failed;

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		/*
		 * Ok, if we get here, then we've seen the
		 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
		 * times, and each MSB had many hits, so we never
		 * had any sudden jumps.
		 *
		 * As a result, we can depend on there not being
		 * any odd delays anywhere, and the TSC reads are
		 * reliable.
		 *
		 * kHz = ticks / time-in-seconds / 1000;
		 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
		 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
		 */
		delta = (t2 - t1)*PIT_TICK_RATE;
		do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
		printk("Fast TSC calibration using PIT\n");
		return delta;
	}
failed:
	return 0;
}
347

A
Alok Kataria 已提交
348
/**
349
 * native_calibrate_tsc - calibrate the tsc on boot
A
Alok Kataria 已提交
350
 */
351
unsigned long native_calibrate_tsc(void)
A
Alok Kataria 已提交
352
{
353
	u64 tsc1, tsc2, delta, ref1, ref2;
354
	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
L
Linus Torvalds 已提交
355
	unsigned long flags, latch, ms, fast_calibrate;
356
	int hpet = is_hpet_enabled(), i, loopmin;
A
Alok Kataria 已提交
357

L
Linus Torvalds 已提交
358 359
	local_irq_save(flags);
	fast_calibrate = quick_pit_calibrate();
A
Alok Kataria 已提交
360
	local_irq_restore(flags);
L
Linus Torvalds 已提交
361 362
	if (fast_calibrate)
		return fast_calibrate;
A
Alok Kataria 已提交
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	/*
	 * Run 5 calibration loops to get the lowest frequency value
	 * (the best estimate). We use two different calibration modes
	 * here:
	 *
	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
	 * load a timeout of 50ms. We read the time right after we
	 * started the timer and wait until the PIT count down reaches
	 * zero. In each wait loop iteration we read the TSC and check
	 * the delta to the previous read. We keep track of the min
	 * and max values of that delta. The delta is mostly defined
	 * by the IO time of the PIT access, so we can detect when a
	 * SMI/SMM disturbance happend between the two reads. If the
	 * maximum time is significantly larger than the minimum time,
	 * then we discard the result and have another try.
	 *
	 * 2) Reference counter. If available we use the HPET or the
	 * PMTIMER as a reference to check the sanity of that value.
	 * We use separate TSC readouts and check inside of the
	 * reference read for a SMI/SMM disturbance. We dicard
	 * disturbed values here as well. We do that around the PIT
	 * calibration delay loop as we have to wait for a certain
	 * amount of time anyway.
	 */
388 389 390 391 392 393 394

	/* Preset PIT loop values */
	latch = CAL_LATCH;
	ms = CAL_MS;
	loopmin = CAL_PIT_LOOPS;

	for (i = 0; i < 3; i++) {
395
		unsigned long tsc_pit_khz;
396 397 398

		/*
		 * Read the start value and the reference count of
399 400 401
		 * hpet/pmtimer when available. Then do the PIT
		 * calibration, which will take at least 50ms, and
		 * read the end value.
402
		 */
403
		local_irq_save(flags);
404
		tsc1 = tsc_read_refs(&ref1, hpet);
405
		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
406
		tsc2 = tsc_read_refs(&ref2, hpet);
407 408
		local_irq_restore(flags);

409 410
		/* Pick the lowest PIT TSC calibration so far */
		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
411 412

		/* hpet or pmtimer available ? */
413
		if (!hpet && !ref1 && !ref2)
414 415 416 417 418 419 420
			continue;

		/* Check, whether the sampling was disturbed by an SMI */
		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
			continue;

		tsc2 = (tsc2 - tsc1) * 1000000LL;
421
		if (hpet)
422
			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
423
		else
424
			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
425 426

		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

		/* Check the reference deviation */
		delta = ((u64) tsc_pit_min) * 100;
		do_div(delta, tsc_ref_min);

		/*
		 * If both calibration results are inside a 10% window
		 * then we can be sure, that the calibration
		 * succeeded. We break out of the loop right away. We
		 * use the reference value, as it is more precise.
		 */
		if (delta >= 90 && delta <= 110) {
			printk(KERN_INFO
			       "TSC: PIT calibration matches %s. %d loops\n",
			       hpet ? "HPET" : "PMTIMER", i + 1);
			return tsc_ref_min;
443 444
		}

445 446 447 448 449 450 451 452 453 454 455
		/*
		 * Check whether PIT failed more than once. This
		 * happens in virtualized environments. We need to
		 * give the virtual PC a slightly longer timeframe for
		 * the HPET/PMTIMER to make the result precise.
		 */
		if (i == 1 && tsc_pit_min == ULONG_MAX) {
			latch = CAL2_LATCH;
			ms = CAL2_MS;
			loopmin = CAL2_PIT_LOOPS;
		}
456
	}
A
Alok Kataria 已提交
457 458

	/*
459
	 * Now check the results.
A
Alok Kataria 已提交
460
	 */
461 462
	if (tsc_pit_min == ULONG_MAX) {
		/* PIT gave no useful value */
463
		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
464 465

		/* We don't have an alternative source, disable TSC */
466
		if (!hpet && !ref1 && !ref2) {
467 468 469 470 471 472 473
			printk("TSC: No reference (HPET/PMTIMER) available\n");
			return 0;
		}

		/* The alternative source failed as well, disable TSC */
		if (tsc_ref_min == ULONG_MAX) {
			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
474
			       "failed.\n");
475 476 477 478 479 480 481 482 483
			return 0;
		}

		/* Use the alternative source */
		printk(KERN_INFO "TSC: using %s reference calibration\n",
		       hpet ? "HPET" : "PMTIMER");

		return tsc_ref_min;
	}
A
Alok Kataria 已提交
484

485
	/* We don't have an alternative source, use the PIT calibration value */
486
	if (!hpet && !ref1 && !ref2) {
487 488
		printk(KERN_INFO "TSC: Using PIT calibration value\n");
		return tsc_pit_min;
A
Alok Kataria 已提交
489 490
	}

491 492
	/* The alternative source failed, use the PIT calibration value */
	if (tsc_ref_min == ULONG_MAX) {
493 494
		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
		       "Using PIT calibration\n");
495
		return tsc_pit_min;
A
Alok Kataria 已提交
496 497
	}

498 499 500
	/*
	 * The calibration values differ too much. In doubt, we use
	 * the PIT value as we know that there are PMTIMERs around
501
	 * running at double speed. At least we let the user know:
502
	 */
503 504
	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
505 506
	printk(KERN_INFO "TSC: Using PIT calibration value\n");
	return tsc_pit_min;
A
Alok Kataria 已提交
507 508 509 510 511 512 513 514 515 516
}

#ifdef CONFIG_X86_32
/* Only called from the Powernow K7 cpu freq driver */
int recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
	unsigned long cpu_khz_old = cpu_khz;

	if (cpu_has_tsc) {
517 518
		tsc_khz = calibrate_tsc();
		cpu_khz = tsc_khz;
A
Alok Kataria 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532
		cpu_data(0).loops_per_jiffy =
			cpufreq_scale(cpu_data(0).loops_per_jiffy,
					cpu_khz_old, cpu_khz);
		return 0;
	} else
		return -ENODEV;
#else
	return -ENODEV;
#endif
}

EXPORT_SYMBOL(recalibrate_cpu_khz);

#endif /* CONFIG_X86_32 */
A
Alok Kataria 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *              ns = cycles / (freq / ns_per_sec)
 *              ns = cycles * (ns_per_sec / freq)
 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 *              ns = cycles * (10^6 / cpu_khz)
 *
 *      Then we use scaling math (suggested by george@mvista.com) to get:
 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 *              ns = cycles * cyc2ns_scale / SC
 *
 *      And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 */

DEFINE_PER_CPU(unsigned long, cyc2ns);

558
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
A
Alok Kataria 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
{
	unsigned long long tsc_now, ns_now;
	unsigned long flags, *scale;

	local_irq_save(flags);
	sched_clock_idle_sleep_event();

	scale = &per_cpu(cyc2ns, cpu);

	rdtscll(tsc_now);
	ns_now = __cycles_2_ns(tsc_now);

	if (cpu_khz)
		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;

	sched_clock_idle_wakeup_event(0);
	local_irq_restore(flags);
}

#ifdef CONFIG_CPU_FREQ

/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 * changes.
 *
 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 * not that important because current Opteron setups do not support
 * scaling on SMP anyroads.
 *
 * Should fix up last_tsc too. Currently gettimeofday in the
 * first tick after the change will be slightly wrong.
 */

static unsigned int  ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;

static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
				void *data)
{
	struct cpufreq_freqs *freq = data;
	unsigned long *lpj, dummy;

	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
		return 0;

	lpj = &dummy;
	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
#ifdef CONFIG_SMP
		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
#else
	lpj = &boot_cpu_data.loops_per_jiffy;
#endif

	if (!ref_freq) {
		ref_freq = freq->old;
		loops_per_jiffy_ref = *lpj;
		tsc_khz_ref = tsc_khz;
	}
	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
			(val == CPUFREQ_RESUMECHANGE)) {
		*lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);

		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
			mark_tsc_unstable("cpufreq changes");
	}

627
	set_cyc2ns_scale(tsc_khz, freq->cpu);
A
Alok Kataria 已提交
628 629 630 631 632 633 634 635 636 637

	return 0;
}

static struct notifier_block time_cpufreq_notifier_block = {
	.notifier_call  = time_cpufreq_notifier
};

static int __init cpufreq_tsc(void)
{
638 639 640 641
	if (!cpu_has_tsc)
		return 0;
	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
A
Alok Kataria 已提交
642 643 644 645 646 647 648 649
	cpufreq_register_notifier(&time_cpufreq_notifier_block,
				CPUFREQ_TRANSITION_NOTIFIER);
	return 0;
}

core_initcall(cpufreq_tsc);

#endif /* CONFIG_CPU_FREQ */
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

/* clocksource code */

static struct clocksource clocksource_tsc;

/*
 * We compare the TSC to the cycle_last value in the clocksource
 * structure to avoid a nasty time-warp. This can be observed in a
 * very small window right after one CPU updated cycle_last under
 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
 * is smaller than the cycle_last reference value due to a TSC which
 * is slighty behind. This delta is nowhere else observable, but in
 * that case it results in a forward time jump in the range of hours
 * due to the unsigned delta calculation of the time keeping core
 * code, which is necessary to support wrapping clocksources like pm
 * timer.
 */
static cycle_t read_tsc(void)
{
	cycle_t ret = (cycle_t)get_cycles();

	return ret >= clocksource_tsc.cycle_last ?
		ret : clocksource_tsc.cycle_last;
}

675
#ifdef CONFIG_X86_64
676 677 678 679 680 681 682
static cycle_t __vsyscall_fn vread_tsc(void)
{
	cycle_t ret = (cycle_t)vget_cycles();

	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
		ret : __vsyscall_gtod_data.clock.cycle_last;
}
683
#endif
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

static struct clocksource clocksource_tsc = {
	.name                   = "tsc",
	.rating                 = 300,
	.read                   = read_tsc,
	.mask                   = CLOCKSOURCE_MASK(64),
	.shift                  = 22,
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
				  CLOCK_SOURCE_MUST_VERIFY,
#ifdef CONFIG_X86_64
	.vread                  = vread_tsc,
#endif
};

void mark_tsc_unstable(char *reason)
{
	if (!tsc_unstable) {
		tsc_unstable = 1;
		printk("Marking TSC unstable due to %s\n", reason);
		/* Change only the rating, when not registered */
		if (clocksource_tsc.mult)
			clocksource_change_rating(&clocksource_tsc, 0);
		else
			clocksource_tsc.rating = 0;
	}
}

EXPORT_SYMBOL_GPL(mark_tsc_unstable);

static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
{
	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
			d->ident);
	tsc_unstable = 1;
	return 0;
}

/* List of systems that have known TSC problems */
static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
	{
		.callback = dmi_mark_tsc_unstable,
		.ident = "IBM Thinkpad 380XD",
		.matches = {
			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
		},
	},
	{}
};

/*
 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
 */
#ifdef CONFIG_MGEODE_LX
/* RTSC counts during suspend */
#define RTSC_SUSP 0x100

static void __init check_geode_tsc_reliable(void)
{
	unsigned long res_low, res_high;

	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
	if (res_low & RTSC_SUSP)
		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
}
#else
static inline void check_geode_tsc_reliable(void) { }
#endif

/*
 * Make an educated guess if the TSC is trustworthy and synchronized
 * over all CPUs.
 */
__cpuinit int unsynchronized_tsc(void)
{
	if (!cpu_has_tsc || tsc_unstable)
		return 1;

762
#ifdef CONFIG_X86_SMP
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	if (apic_is_clustered_box())
		return 1;
#endif

	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return 0;
	/*
	 * Intel systems are normally all synchronized.
	 * Exceptions must mark TSC as unstable:
	 */
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		/* assume multi socket systems are not synchronized: */
		if (num_possible_cpus() > 1)
			tsc_unstable = 1;
	}

	return tsc_unstable;
}

static void __init init_tsc_clocksource(void)
{
	clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
			clocksource_tsc.shift);
	/* lower the rating if we already know its unstable: */
	if (check_tsc_unstable()) {
		clocksource_tsc.rating = 0;
		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
	}
	clocksource_register(&clocksource_tsc);
}

void __init tsc_init(void)
{
	u64 lpj;
	int cpu;

	if (!cpu_has_tsc)
		return;

802 803
	tsc_khz = calibrate_tsc();
	cpu_khz = tsc_khz;
804

805
	if (!tsc_khz) {
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		mark_tsc_unstable("could not calculate TSC khz");
		return;
	}

#ifdef CONFIG_X86_64
	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
		cpu_khz = calibrate_cpu();
#endif

	lpj = ((u64)tsc_khz * 1000);
	do_div(lpj, HZ);
	lpj_fine = lpj;

	printk("Detected %lu.%03lu MHz processor.\n",
			(unsigned long)cpu_khz / 1000,
			(unsigned long)cpu_khz % 1000);

	/*
	 * Secondary CPUs do not run through tsc_init(), so set up
	 * all the scale factors for all CPUs, assuming the same
	 * speed as the bootup CPU. (cpufreq notifiers will fix this
	 * up if their speed diverges)
	 */
	for_each_possible_cpu(cpu)
		set_cyc2ns_scale(cpu_khz, cpu);

	if (tsc_disabled > 0)
		return;

	/* now allow native_sched_clock() to use rdtsc */
	tsc_disabled = 0;

	use_tsc_delay();
	/* Check and install the TSC clocksource */
	dmi_check_system(bad_tsc_dmi_table);

	if (unsynchronized_tsc())
		mark_tsc_unstable("TSCs unsynchronized");

	check_geode_tsc_reliable();
	init_tsc_clocksource();
}