i40e_txrx.c 85.1 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

106
#define I40E_FD_CLEAN_DELAY 10
107 108
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
109 110
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
111
 * @pf: The PF pointer
112 113
 * @add: True for add/update, False for remove
 **/
114 115 116
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
117
{
118
	struct i40e_tx_buffer *tx_buf, *first;
119 120 121 122 123 124 125 126 127
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
128
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
129 130 131
	if (!vsi)
		return -ENOENT;

132
	tx_ring = vsi->tx_rings[0];
133 134
	dev = tx_ring->dev;

135
	/* we need two descriptors to add/del a filter and we can wait */
136 137 138
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
139
		msleep_interruptible(1);
140
	}
141

142 143
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
144 145 146 147
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
148
	i = tx_ring->next_to_use;
149
	first = &tx_ring->tx_bi[i];
150
	i40e_fdir(tx_ring, fdir_data, add);
151 152

	/* Now program a dummy descriptor */
153 154
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
155
	tx_buf = &tx_ring->tx_bi[i];
156

157 158 159
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
160

161
	/* record length, and DMA address */
162
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
163 164
	dma_unmap_addr_set(tx_buf, dma, dma);

165
	tx_desc->buffer_addr = cpu_to_le64(dma);
166
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
167

168 169 170
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

171
	tx_desc->cmd_type_offset_bsz =
172
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
173 174

	/* Force memory writes to complete before letting h/w
175
	 * know there are new descriptors to fetch.
176 177 178
	 */
	wmb();

179
	/* Mark the data descriptor to be watched */
180
	first->next_to_watch = tx_desc;
181

182 183 184 185 186 187 188
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

189 190 191 192 193 194 195 196 197 198 199 200
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
201
				   bool add)
202 203 204 205
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
206
	u8 *raw_packet;
207 208 209 210 211
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

212 213 214
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
215 216 217 218 219 220
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

221
	ip->daddr = fd_data->dst_ip;
222
	udp->dest = fd_data->dst_port;
223
	ip->saddr = fd_data->src_ip;
224 225
	udp->source = fd_data->src_port;

226 227 228 229
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
230 231
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
232 233 234
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
235
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
236 237 238 239 240 241 242 243
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
244
	}
245

246 247 248 249 250
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

251
	return 0;
252 253 254 255 256 257 258 259 260 261 262 263 264
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
265
				   bool add)
266 267 268 269
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
270
	u8 *raw_packet;
271 272 273 274 275 276 277
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

278 279 280
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
281 282 283 284 285 286
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

287
	ip->daddr = fd_data->dst_ip;
288
	tcp->dest = fd_data->dst_port;
289
	ip->saddr = fd_data->src_ip;
290 291
	tcp->source = fd_data->src_port;

292
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
293 294 295
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
296 297
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
298 299 300
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
301
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
302 303 304 305 306 307 308
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
309 310
	}

311
	if (add) {
312
		pf->fd_tcp4_filter_cnt++;
313 314 315 316 317
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
	} else {
318 319
		pf->fd_tcp4_filter_cnt--;
		if (pf->fd_tcp4_filter_cnt == 0) {
320 321 322 323 324 325 326
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
			pf->hw_disabled_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
		}
	}

327
	return 0;
328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
342
				  bool add)
343 344 345
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
346
	u8 *raw_packet;
347 348 349 350 351 352 353 354
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
355 356 357 358 359 360
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

361 362
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
363 364
		ip->protocol = 0;

365 366 367 368
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
369 370
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
371 372 373 374 375
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
376
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
377 378 379 380 381 382 383 384
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
385 386 387
		}
	}

388 389 390 391 392
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

393
	return 0;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
411
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
412 413
		break;
	case UDP_V4_FLOW:
414
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
415 416 417 418
		break;
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
419
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
420 421
			break;
		case IPPROTO_UDP:
422
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
423
			break;
424
		case IPPROTO_IP:
425
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
426
			break;
427 428 429
		default:
			/* We cannot support masking based on protocol */
			goto unsupported_flow;
430 431 432
		}
		break;
	default:
433
unsupported_flow:
434
		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
435 436 437 438
			 input->flow_type);
		ret = -EINVAL;
	}

439 440 441 442 443 444
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
445 446 447
	return ret;
}

448 449 450
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
451
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
452 453 454 455 456
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
457 458
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
459
{
460 461 462
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
463
	u32 error;
464
	u64 qw;
465

466
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
467 468 469
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

470
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
471
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
472 473 474
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
475
				 pf->fd_inv);
476

477 478 479 480 481 482 483 484 485
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

486 487 488 489
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

490
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
491 492
		    (pf->hw_disabled_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
493 494 495
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

496
		/* filter programming failed most likely due to table full */
497
		fcnt_prog = i40e_get_global_fd_count(pf);
498
		fcnt_avail = pf->fdir_pf_filter_count;
499 500 501 502 503
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
504
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
505
			    !(pf->hw_disabled_flags &
506
				     I40E_FLAG_FD_SB_ENABLED)) {
507 508
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
509
				pf->hw_disabled_flags |=
510 511 512
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
513
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
515
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516
				 rx_desc->wb.qword0.hi_dword.fd_id);
517
	}
518 519 520
}

/**
A
Alexander Duyck 已提交
521
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522 523 524
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
525 526
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
527
{
A
Alexander Duyck 已提交
528
	if (tx_buffer->skb) {
529 530 531 532
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
533
		if (dma_unmap_len(tx_buffer, len))
534
			dma_unmap_single(ring->dev,
535 536
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
537
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
538 539 540 541 542
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
543
	}
544

A
Alexander Duyck 已提交
545 546
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
547
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
548
	/* tx_buffer must be completely set up in the transmit path */
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
565 566
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567 568 569 570 571 572 573 574 575

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
576 577 578 579 580

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
581
	netdev_tx_reset_queue(txring_txq(tx_ring));
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
606
 * @in_sw: is tx_pending being checked in SW or HW
607 608 609 610
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
611
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
612
{
J
Jesse Brandeburg 已提交
613 614
	u32 head, tail;

615 616 617 618
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
J
Jesse Brandeburg 已提交
619 620 621 622 623 624 625
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
626 627
}

628
#define WB_STRIDE 4
629

630 631
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
632 633 634
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
635 636 637
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
638 639
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
640 641 642
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
643
	struct i40e_tx_desc *tx_head;
644
	struct i40e_tx_desc *tx_desc;
645 646
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
647 648 649

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
650
	i -= tx_ring->count;
651

652 653
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
654 655
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
656 657 658 659 660

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
661 662 663
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

664 665
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
666 667
			break;

A
Alexander Duyck 已提交
668
		/* clear next_to_watch to prevent false hangs */
669 670
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
671 672 673
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
674

A
Alexander Duyck 已提交
675
		/* free the skb */
676
		napi_consume_skb(tx_buf->skb, napi_budget);
677

A
Alexander Duyck 已提交
678 679 680 681 682
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
683

A
Alexander Duyck 已提交
684 685 686
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
687

A
Alexander Duyck 已提交
688 689
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
690 691 692 693

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
694 695
			if (unlikely(!i)) {
				i -= tx_ring->count;
696 697 698 699
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

720 721
		prefetch(tx_desc);

A
Alexander Duyck 已提交
722 723 724 725 726
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
727
	tx_ring->next_to_clean = i;
728
	u64_stats_update_begin(&tx_ring->syncp);
729 730
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
731
	u64_stats_update_end(&tx_ring->syncp);
732 733
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
734

735 736 737 738 739 740
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
741
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
742 743

		if (budget &&
744
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
745
		    !test_bit(__I40E_DOWN, &vsi->state) &&
746 747 748
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
749

750 751
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
752 753
				  total_packets, total_bytes);

754 755 756 757 758 759 760 761 762
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
763
		   !test_bit(__I40E_DOWN, &vsi->state)) {
764 765 766 767 768 769
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

770 771 772 773
	return !!budget;
}

/**
774
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
775
 * @vsi: the VSI we care about
776
 * @q_vector: the vector on which to enable writeback
777 778
 *
 **/
779 780
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
781
{
782
	u16 flags = q_vector->tx.ring[0].flags;
783
	u32 val;
784

785 786
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
787

788 789
	if (q_vector->arm_wb_state)
		return;
790

791 792 793
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
794

795 796 797 798 799 800
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
801

802 803 804 805 806 807 808 809 810 811 812 813 814 815
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
834 835 836 837 838 839
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
840 841
 * Returns true if ITR changed, false if not
 *
842 843 844 845 846 847 848 849
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
850
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
851 852
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
853
	struct i40e_q_vector *qv = rc->ring->q_vector;
854 855
	u32 new_itr = rc->itr;
	int bytes_per_int;
856
	int usecs;
857 858

	if (rc->total_packets == 0 || !rc->itr)
859
		return false;
860 861

	/* simple throttlerate management
862
	 *   0-10MB/s   lowest (50000 ints/s)
863
	 *  10-20MB/s   low    (20000 ints/s)
864 865
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
866 867 868 869
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
870 871
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
872
	 */
873
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
874
	bytes_per_int = rc->total_bytes / usecs;
875

876
	switch (new_latency_range) {
877 878 879 880 881 882 883 884 885 886 887
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
888
	case I40E_ULTRA_LATENCY:
889 890 891
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
892 893
		break;
	}
894 895 896 897 898 899 900 901 902 903 904 905

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

906
	rc->latency_range = new_latency_range;
907 908 909

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
910
		new_itr = I40E_ITR_50K;
911 912 913 914 915
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
916 917 918
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
919 920 921 922 923 924 925 926
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
927 928 929 930 931 932 933

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
}

/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
					  union i40e_rx_desc *rx_desc)
{
	u64 qw;
	u8 id;

	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
957
		i40e_fd_handle_status(rx_ring, rx_desc, id);
958 959 960 961 962
#ifdef I40E_FCOE
	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
#endif
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
979 980
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
981 982 983 984 985 986 987
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
988 989 990 991
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1024 1025 1026 1027 1028
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1029 1030
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1031 1032 1033 1034 1035
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
					      I40E_RXBUFFER_2048,
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
				     PAGE_SIZE,
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1050 1051 1052 1053
		__free_pages(rx_bi->page, 0);

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1054 1055 1056 1057 1058 1059 1060 1061
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1062
	rx_ring->next_to_alloc = 0;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1097 1098
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1099 1100 1101 1102 1103
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1104
	u64_stats_init(&rx_ring->syncp);
1105

1106
	/* Round up to nearest 4K */
1107
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1118
	rx_ring->next_to_alloc = 0;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1137 1138 1139 1140

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
1151 1152 1153
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1154
 *
1155 1156
 * Returns true if the page was successfully allocated or
 * reused.
1157
 **/
1158 1159
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1160
{
1161 1162
	struct page *page = bi->page;
	dma_addr_t dma;
1163

1164 1165 1166 1167 1168
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1169

1170 1171 1172 1173 1174 1175
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1176

1177
	/* map page for use */
1178 1179 1180 1181
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 PAGE_SIZE,
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1182

1183 1184
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1185
	 */
1186 1187 1188 1189
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1190 1191
	}

1192 1193 1194
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
1195

1196 1197
	return true;
}
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1209

1210 1211 1212 1213 1214
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1215 1216 1217
}

/**
1218
 * i40e_alloc_rx_buffers - Replace used receive buffers
1219 1220
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1221
 *
1222
 * Returns false if all allocations were successful, true if any fail
1223
 **/
1224
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1225
{
1226
	u16 ntu = rx_ring->next_to_use;
1227 1228 1229 1230 1231
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1232
		return false;
1233

1234 1235
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1236

1237 1238 1239
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1240

1241 1242 1243 1244 1245 1246
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 I40E_RXBUFFER_2048,
						 DMA_FROM_DEVICE);

1247 1248 1249 1250
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1269 1270 1271

	return false;

1272
no_buffers:
1273 1274
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1275 1276 1277 1278 1279

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1280 1281 1282 1283 1284 1285
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1286 1287 1288
 * @rx_desc: the receive descriptor
 *
 * skb->protocol must be set before this function is called
1289 1290 1291
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1292
				    union i40e_rx_desc *rx_desc)
1293
{
1294 1295
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1296
	bool ipv4, ipv6;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1307

1308 1309
	skb->ip_summed = CHECKSUM_NONE;

1310 1311
	skb_checksum_none_assert(skb);

1312
	/* Rx csum enabled and ip headers found? */
1313 1314 1315 1316
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1317
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1318 1319 1320 1321
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1322 1323
		return;

1324 1325 1326 1327
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1328 1329

	if (ipv4 &&
1330 1331
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1332 1333
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1334
	/* likely incorrect csum if alternate IP extension headers found */
1335
	if (ipv6 &&
1336
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1337
		/* don't increment checksum err here, non-fatal err */
1338 1339
		return;

1340
	/* there was some L4 error, count error and punt packet to the stack */
1341
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1342 1343 1344 1345 1346 1347
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1348
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1349 1350
		return;

1351 1352 1353
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1354
	 */
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1368 1369 1370 1371 1372

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1373 1374 1375
}

/**
1376
 * i40e_ptype_to_htype - get a hash type
1377 1378 1379 1380
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1381
static inline int i40e_ptype_to_htype(u8 ptype)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1409
	const __le64 rss_mask =
1410 1411 1412
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1413
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1414 1415 1416 1417 1418 1419 1420 1421
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1422
/**
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1441 1442
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1443 1444
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1445
	if (unlikely(tsynvalid))
1446
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;
}

/**
1504
 * i40e_page_is_reusable - check if any reuse is possible
1505
 * @page: page struct to check
1506 1507 1508
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1509
 */
1510
static inline bool i40e_page_is_reusable(struct page *page)
1511
{
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 * @page: page address from rx_buffer
 * @truesize: actual size of the buffer in this page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   struct page *page,
				   const unsigned int truesize)
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

	/* Inc ref count on page before passing it up to the stack */
	get_page(page);

	return true;
1576 1577 1578 1579 1580 1581
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
1582
 * @size: packet length from rx_desc
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
1595
			     unsigned int size,
1596 1597 1598
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
1599
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1600 1601 1602 1603 1604
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
1605 1606 1607 1608
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1609 1610 1611 1612

	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1613
	if (size <= I40E_RX_HDR_SIZE) {
1614 1615
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

1616 1617
		/* page is reusable, we can reuse buffer as-is */
		if (likely(i40e_page_is_reusable(page)))
1618 1619 1620 1621 1622 1623 1624
			return true;

		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

1625 1626 1627 1628 1629
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1630

1631 1632 1633 1634
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1635

1636 1637 1638
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1639

1640 1641 1642
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1643

1644
	return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1645 1646 1647 1648 1649 1650
}

/**
 * i40e_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
1651
 *
1652 1653 1654 1655 1656 1657 1658
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1659 1660
				     union i40e_rx_desc *rx_desc,
				     struct sk_buff *skb)
1661
{
1662 1663 1664 1665 1666
	u64 local_status_error_len =
		le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	unsigned int size =
		(local_status_error_len & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	struct i40e_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
1703
				      size,
1704 1705 1706
				      DMA_FROM_DEVICE);

	/* pull page into skb */
1707
	if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1708 1709 1710 1711 1712
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1713 1714
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1733
 **/
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

#define staterrlen rx_desc->wb.qword1.status_error_len
	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
		i40e_clean_programming_status(rx_ring, rx_desc);
		return true;
	}
	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1774 1775
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1776
	struct sk_buff *skb = rx_ring->skb;
1777
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1778
	bool failure = false;
1779

1780 1781
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1782
		u16 vlan_tag;
1783 1784 1785
		u8 rx_ptype;
		u64 qword;

1786 1787
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1788
			failure = failure ||
1789
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1790 1791 1792
			cleaned_count = 0;
		}

1793 1794 1795 1796 1797 1798 1799
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
1800 1801
		if (!i40e_test_staterr(rx_desc,
				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1802 1803
			break;

1804 1805 1806 1807
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1808
		dma_rmb();
1809

1810
		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb);
1811 1812
		if (!skb)
			break;
1813 1814 1815

		cleaned_count++;

1816
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1817 1818
			continue;

1819 1820 1821 1822 1823 1824
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1825 1826 1827 1828
			dev_kfree_skb_any(skb);
			continue;
		}

1829 1830
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1831
			continue;
1832
		}
1833 1834 1835 1836

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1837 1838 1839 1840
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1841 1842
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1843 1844

#ifdef I40E_FCOE
1845 1846 1847
		if (unlikely(
		    i40e_rx_is_fcoe(rx_ptype) &&
		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1848 1849 1850 1851
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1852 1853 1854 1855

		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1856
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1857
		skb = NULL;
1858

1859 1860 1861
		/* update budget accounting */
		total_rx_packets++;
	}
1862

1863 1864
	rx_ring->skb = skb;

1865
	u64_stats_update_begin(&rx_ring->syncp);
1866 1867
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
1868
	u64_stats_update_end(&rx_ring->syncp);
1869 1870 1871
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1872
	/* guarantee a trip back through this routine if there was a failure */
1873
	return failure ? budget : total_rx_packets;
1874 1875
}

1876 1877 1878 1879 1880
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1881 1882 1883
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1884 1885 1886 1887 1888 1889 1890 1891
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
1892
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1893
{
1894
	return vsi->rx_rings[idx]->rx_itr_setting;
1895 1896
}

1897
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1898
{
1899
	return vsi->tx_rings[idx]->tx_itr_setting;
1900
}
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1912 1913
	bool rx = false, tx = false;
	u32 rxval, txval;
1914
	int vector;
1915
	int idx = q_vector->v_idx;
1916
	int rx_itr_setting, tx_itr_setting;
1917 1918

	vector = (q_vector->v_idx + vsi->base_vector);
1919

1920 1921 1922
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1923 1924
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1925 1926
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1927

1928
	if (q_vector->itr_countdown > 0 ||
1929 1930
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1931 1932 1933
		goto enable_int;
	}

1934
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1935 1936
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1937
	}
1938

1939
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1940 1941
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1942
	}
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1971
enable_int:
1972 1973
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1974 1975 1976 1977 1978

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1979 1980
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
1995
	struct i40e_ring *ring;
1996
	bool clean_complete = true;
1997
	bool arm_wb = false;
1998
	int budget_per_ring;
1999
	int work_done = 0;
2000 2001 2002 2003 2004 2005

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

2006 2007
	/* Clear hung_detected bit */
	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
2008 2009 2010
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2011
	i40e_for_each_ring(ring, q_vector->tx) {
2012
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2013 2014 2015 2016
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2017
		ring->arm_wb = false;
2018
	}
2019

2020 2021 2022 2023
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2024 2025 2026 2027
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2028

2029
	i40e_for_each_ring(ring, q_vector->rx) {
2030
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2031 2032

		work_done += cleaned;
2033 2034 2035
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2036
	}
2037 2038

	/* If work not completed, return budget and polling will return */
2039
	if (!clean_complete) {
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2052
tx_only:
2053 2054 2055 2056 2057
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2058
		}
2059
	}
2060

2061 2062 2063
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2064
	/* Work is done so exit the polling mode and re-enable the interrupt */
2065
	napi_complete_done(napi, work_done);
2066 2067 2068 2069 2070 2071 2072 2073

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2074
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2075 2076 2077
	else
		i40e_update_enable_itr(vsi, q_vector);

2078
	return min(work_done, budget - 1);
2079 2080 2081 2082 2083 2084
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2085
 * @tx_flags: send tx flags
2086 2087
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2088
		     u32 tx_flags)
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2100
	int l4_proto;
2101
	u16 i;
2102 2103

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2104
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2105 2106
		return;

2107
	if ((pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2108 2109
		return;

2110 2111 2112 2113
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2114
	/* Currently only IPv4/IPv6 with TCP is supported */
2115 2116
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2117

2118 2119 2120
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2121

2122 2123 2124 2125
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2126
		/* access ihl as u8 to avoid unaligned access on ia64 */
2127 2128
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2129
	} else {
2130 2131 2132
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2133 2134
	}

2135
	if (l4_proto != IPPROTO_TCP)
2136 2137
		return;

2138 2139
	th = (struct tcphdr *)(hdr.network + hlen);

2140
	/* Due to lack of space, no more new filters can be programmed */
2141
	if (th->syn && (pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2142
		return;
2143
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2144
	    (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2145 2146 2147 2148 2149 2150
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2151 2152 2153

	tx_ring->atr_count++;

2154 2155 2156 2157 2158
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2159 2160 2161 2162 2163
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2164 2165 2166 2167 2168
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2169 2170 2171

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2172
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2173 2174 2175 2176 2177 2178 2179 2180 2181
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2182
	dtype_cmd |= (th->fin || th->rst) ?
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2194
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2195
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2196 2197 2198 2199 2200 2201 2202 2203 2204
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2205

2206
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2207
	    (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2208 2209
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2210
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2211
	fdir_desc->rsvd = cpu_to_le32(0);
2212
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2213
	fdir_desc->fd_id = cpu_to_le32(0);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2228
#ifdef I40E_FCOE
2229
inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2230 2231
				      struct i40e_ring *tx_ring,
				      u32 *flags)
2232 2233 2234 2235
#else
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2236
#endif
2237 2238 2239 2240
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2254
	/* if we have a HW VLAN tag being added, default to the HW one */
2255 2256
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2257 2258
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2259
	} else if (protocol == htons(ETH_P_8021Q)) {
2260
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2261

2262 2263 2264 2265 2266 2267 2268 2269 2270
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2271 2272 2273
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2274
	/* Insert 802.1p priority into VLAN header */
2275 2276
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2277 2278 2279 2280 2281
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2282 2283 2284 2285 2286
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2287 2288 2289 2290 2291 2292 2293
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2294 2295

out:
2296 2297 2298 2299 2300 2301
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2302
 * @first:    pointer to first Tx buffer for xmit
2303
 * @hdr_len:  ptr to the size of the packet header
2304
 * @cd_type_cmd_tso_mss: Quad Word 1
2305 2306 2307
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2308 2309
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2310
{
2311
	struct sk_buff *skb = first->skb;
2312
	u64 cd_cmd, cd_tso_len, cd_mss;
2313 2314 2315 2316 2317
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2318 2319
	union {
		struct tcphdr *tcp;
2320
		struct udphdr *udp;
2321 2322 2323
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2324
	u16 gso_segs, gso_size;
2325 2326
	int err;

2327 2328 2329
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2330 2331 2332
	if (!skb_is_gso(skb))
		return 0;

2333 2334 2335
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2336

2337 2338
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2339

2340 2341 2342 2343
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2344
	} else {
2345 2346 2347
		ip.v6->payload_len = 0;
	}

2348
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2349
					 SKB_GSO_GRE_CSUM |
2350
					 SKB_GSO_IPXIP4 |
2351
					 SKB_GSO_IPXIP6 |
2352
					 SKB_GSO_UDP_TUNNEL |
2353
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2354 2355 2356 2357
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2358 2359 2360 2361
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2362
			paylen = skb->len - l4_offset;
2363 2364
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2365 2366
		}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2378 2379
	}

2380 2381 2382 2383
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2384
	paylen = skb->len - l4_offset;
2385
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2386 2387 2388

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2389

2390 2391 2392 2393 2394 2395 2396 2397
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2398 2399 2400
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2401
	cd_mss = gso_size;
2402 2403 2404
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2405 2406 2407
	return 1;
}

J
Jacob Keller 已提交
2408 2409 2410 2411 2412
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2413
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2433 2434 2435
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2436 2437
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2450 2451 2452
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2453
 * @tx_flags: pointer to Tx flags currently set
2454 2455
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2456
 * @tx_ring: Tx descriptor ring
2457 2458
 * @cd_tunneling: ptr to context desc bits
 **/
2459 2460 2461 2462
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2463
{
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2474
	unsigned char *exthdr;
2475
	u32 offset, cmd = 0;
2476
	__be16 frag_off;
2477 2478
	u8 l4_proto = 0;

2479 2480 2481
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2482 2483
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2484

2485 2486 2487
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2488
	if (skb->encapsulation) {
2489
		u32 tunnel = 0;
2490 2491
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2492 2493 2494 2495
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2496 2497
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2498
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2499 2500

			exthdr = ip.hdr + sizeof(*ip.v6);
2501
			l4_proto = ip.v6->nexthdr;
2502 2503 2504
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2505 2506 2507 2508
		}

		/* define outer transport */
		switch (l4_proto) {
2509
		case IPPROTO_UDP:
2510
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2511
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2512
			break;
2513
		case IPPROTO_GRE:
2514
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2515
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2516
			break;
2517 2518 2519 2520 2521
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2522
		default:
2523 2524 2525 2526 2527
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2528
		}
2529

2530 2531 2532 2533 2534 2535 2536
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2537 2538 2539 2540
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2541 2542
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2543
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2544 2545 2546
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2547 2548 2549
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2550 2551
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2552
		l4_proto = 0;
2553

2554 2555 2556 2557 2558
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2559
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2560 2561 2562
	}

	/* Enable IP checksum offloads */
2563
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2564
		l4_proto = ip.v4->protocol;
2565 2566 2567
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2568 2569 2570
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2571
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2572
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2573 2574 2575 2576 2577 2578

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2579
	}
2580

2581 2582
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2583 2584

	/* Enable L4 checksum offloads */
2585
	switch (l4_proto) {
2586 2587
	case IPPROTO_TCP:
		/* enable checksum offloads */
2588 2589
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2590 2591 2592
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2593 2594 2595
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2596 2597 2598
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2599 2600 2601
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2602 2603
		break;
	default:
2604 2605 2606 2607
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2608
	}
2609 2610 2611

	*td_cmd |= cmd;
	*td_offset |= offset;
2612 2613

	return 1;
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2628
	int i = tx_ring->next_to_use;
2629

2630 2631
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2632 2633 2634
		return;

	/* grab the next descriptor */
2635 2636 2637 2638
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2639 2640 2641 2642

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2643
	context_desc->rsvd = cpu_to_le16(0);
2644 2645 2646
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2647 2648 2649 2650 2651 2652 2653
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2654
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2670
/**
2671
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2672 2673
 * @skb:      send buffer
 *
2674 2675 2676 2677 2678 2679 2680 2681
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2682
 **/
2683
bool __i40e_chk_linearize(struct sk_buff *skb)
2684
{
2685
	const struct skb_frag_struct *frag, *stale;
2686
	int nr_frags, sum;
2687

2688
	/* no need to check if number of frags is less than 7 */
2689
	nr_frags = skb_shinfo(skb)->nr_frags;
2690
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2691
		return false;
2692

2693
	/* We need to walk through the list and validate that each group
2694
	 * of 6 fragments totals at least gso_size.
2695
	 */
2696
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2697 2698 2699 2700 2701 2702 2703 2704
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2705
	sum = 1 - skb_shinfo(skb)->gso_size;
2706

2707 2708 2709 2710 2711 2712
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2713 2714 2715 2716 2717 2718

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2719
		sum += skb_frag_size(frag++);
2720 2721 2722 2723 2724

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2725
		if (!nr_frags--)
2726 2727
			break;

2728
		sum -= skb_frag_size(stale++);
2729 2730
	}

2731
	return false;
2732 2733
}

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2744
#ifdef I40E_FCOE
2745
inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2746 2747
			struct i40e_tx_buffer *first, u32 tx_flags,
			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2748 2749 2750 2751
#else
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2752
#endif
2753 2754 2755
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2756
	struct skb_frag_struct *frag;
2757 2758
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2759
	u16 i = tx_ring->next_to_use;
2760 2761
	u32 td_tag = 0;
	dma_addr_t dma;
2762
	u16 desc_count = 1;
2763 2764 2765 2766 2767 2768 2769

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2770 2771 2772 2773
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2774
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2775 2776 2777
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2778 2779
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2780 2781 2782 2783 2784 2785 2786
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2787 2788
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2789 2790 2791
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2792 2793
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2794
					   max_data, td_tag);
2795 2796 2797

			tx_desc++;
			i++;
2798 2799
			desc_count++;

2800 2801 2802 2803 2804
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2805 2806
			dma += max_data;
			size -= max_data;
2807

2808
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2809 2810
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2811 2812 2813 2814

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
2815 2816
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
2817 2818 2819

		tx_desc++;
		i++;
2820 2821
		desc_count++;

2822 2823 2824 2825 2826
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
2827 2828
		size = skb_frag_size(frag);
		data_len -= size;
2829

A
Alexander Duyck 已提交
2830 2831
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
2832

A
Alexander Duyck 已提交
2833 2834
		tx_bi = &tx_ring->tx_bi[i];
	}
2835

2836
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
2837 2838 2839 2840 2841 2842 2843

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
2844
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

2855
	/* Algorithm to optimize tail and RS bit setting:
2856 2857 2858 2859 2860 2861
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
2862
	 *
2863 2864 2865 2866 2867
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
2868
	 *
2869
	 * Note: If there are less than 4 descriptors
2870 2871 2872
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
2883 2884 2885 2886
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2899

A
Alexander Duyck 已提交
2900
	/* notify HW of packet */
2901
	if (desc_count) {
2902
		writel(i, tx_ring->tail);
2903 2904 2905 2906 2907

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2908
	}
2909

2910 2911 2912
	return;

dma_error:
A
Alexander Duyck 已提交
2913
	dev_info(tx_ring->dev, "TX DMA map failed\n");
2914 2915 2916 2917

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
2918
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2947
	int tso, count;
J
Jacob Keller 已提交
2948
	int tsyn;
J
Jesse Brandeburg 已提交
2949

2950 2951 2952
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2953
	count = i40e_xmit_descriptor_count(skb);
2954
	if (i40e_chk_linearize(skb, count)) {
2955 2956 2957 2958
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2959
		count = i40e_txd_use_count(skb->len);
2960 2961
		tx_ring->tx_stats.tx_linearize++;
	}
2962 2963 2964 2965 2966 2967 2968 2969 2970

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2971
		return NETDEV_TX_BUSY;
2972
	}
2973

2974 2975 2976 2977 2978 2979
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2980 2981 2982 2983 2984
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
2985
	protocol = vlan_get_protocol(skb);
2986 2987

	/* setup IPv4/IPv6 offloads */
2988
	if (protocol == htons(ETH_P_IP))
2989
		tx_flags |= I40E_TX_FLAGS_IPV4;
2990
	else if (protocol == htons(ETH_P_IPV6))
2991 2992
		tx_flags |= I40E_TX_FLAGS_IPV6;

2993
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2994 2995 2996 2997 2998 2999

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3000 3001 3002 3003 3004 3005
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3006 3007 3008 3009 3010
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3011 3012
	skb_tx_timestamp(skb);

3013 3014 3015
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3016 3017 3018 3019 3020 3021 3022
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3023
	i40e_atr(tx_ring, skb, tx_flags);
3024 3025 3026 3027 3028 3029 3030

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3031 3032
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3047
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3048 3049 3050 3051

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3052 3053
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3054 3055 3056

	return i40e_xmit_frame_ring(skb, tx_ring);
}