i40e_txrx.c 85.0 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

106
#define I40E_FD_CLEAN_DELAY 10
107 108
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
109 110
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
111
 * @pf: The PF pointer
112 113
 * @add: True for add/update, False for remove
 **/
114 115 116
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
117
{
118
	struct i40e_tx_buffer *tx_buf, *first;
119 120 121 122 123 124 125 126 127
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
128
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
129 130 131
	if (!vsi)
		return -ENOENT;

132
	tx_ring = vsi->tx_rings[0];
133 134
	dev = tx_ring->dev;

135
	/* we need two descriptors to add/del a filter and we can wait */
136 137 138
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
139
		msleep_interruptible(1);
140
	}
141

142 143
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
144 145 146 147
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
148
	i = tx_ring->next_to_use;
149
	first = &tx_ring->tx_bi[i];
150
	i40e_fdir(tx_ring, fdir_data, add);
151 152

	/* Now program a dummy descriptor */
153 154
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
155
	tx_buf = &tx_ring->tx_bi[i];
156

157 158 159
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
160

161
	/* record length, and DMA address */
162
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
163 164
	dma_unmap_addr_set(tx_buf, dma, dma);

165
	tx_desc->buffer_addr = cpu_to_le64(dma);
166
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
167

168 169 170
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

171
	tx_desc->cmd_type_offset_bsz =
172
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
173 174

	/* Force memory writes to complete before letting h/w
175
	 * know there are new descriptors to fetch.
176 177 178
	 */
	wmb();

179
	/* Mark the data descriptor to be watched */
180
	first->next_to_watch = tx_desc;
181

182 183 184 185 186 187 188
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

189 190 191 192 193 194 195 196 197 198 199 200
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
201
				   bool add)
202 203 204 205
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
206
	u8 *raw_packet;
207 208 209 210 211
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

212 213 214
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
215 216 217 218 219 220
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

221
	ip->daddr = fd_data->dst_ip;
222
	udp->dest = fd_data->dst_port;
223
	ip->saddr = fd_data->src_ip;
224 225
	udp->source = fd_data->src_port;

226 227 228 229
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
230 231
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
232 233 234
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
235
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
236 237 238 239 240 241 242 243
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
244
	}
245

246
	return 0;
247 248 249 250 251 252 253 254 255 256 257 258 259
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
260
				   bool add)
261 262 263 264
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
265
	u8 *raw_packet;
266 267 268 269 270 271 272
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

273 274 275
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
276 277 278 279 280 281
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

282
	ip->daddr = fd_data->dst_ip;
283
	tcp->dest = fd_data->dst_port;
284
	ip->saddr = fd_data->src_ip;
285 286 287
	tcp->source = fd_data->src_port;

	if (add) {
288
		pf->fd_tcp_rule++;
289 290 291
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
292
		pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
293 294 295 296
	} else {
		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
				  (pf->fd_tcp_rule - 1) : 0;
		if (pf->fd_tcp_rule == 0) {
297 298
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
299
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
300
			pf->hw_disabled_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
301
		}
302 303
	}

304
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
305 306 307
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
308 309
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
310 311 312
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
313
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
314 315 316 317 318 319 320
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
321 322
	}

323
	return 0;
324 325 326 327 328 329 330 331 332 333 334 335 336 337
}

#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
338
				  bool add)
339 340 341
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
342
	u8 *raw_packet;
343 344 345 346 347 348 349 350
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
351 352 353 354 355 356
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

357 358
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
359 360
		ip->protocol = 0;

361 362 363 364
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
365 366
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
367 368 369 370 371
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
372
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
373 374 375 376 377 378 379 380
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
381 382 383
		}
	}

384
	return 0;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
402
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
403 404
		break;
	case UDP_V4_FLOW:
405
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
406 407 408 409
		break;
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
410
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
411 412
			break;
		case IPPROTO_UDP:
413
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
414
			break;
415
		case IPPROTO_IP:
416
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
417
			break;
418 419 420
		default:
			/* We cannot support masking based on protocol */
			goto unsupported_flow;
421 422 423
		}
		break;
	default:
424
unsupported_flow:
425
		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
426 427 428 429
			 input->flow_type);
		ret = -EINVAL;
	}

430 431 432 433 434 435
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
436 437 438
	return ret;
}

439 440 441
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
442
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
443 444 445 446 447
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
448 449
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
450
{
451 452 453
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
454
	u32 error;
455
	u64 qw;
456

457
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
458 459 460
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

461
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
462
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
463 464 465
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
466
				 pf->fd_inv);
467

468 469 470 471 472 473 474 475 476
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

477 478 479 480
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

481
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
482 483
		    (pf->hw_disabled_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
484 485 486
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

487
		/* filter programming failed most likely due to table full */
488
		fcnt_prog = i40e_get_global_fd_count(pf);
489
		fcnt_avail = pf->fdir_pf_filter_count;
490 491 492 493 494
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
495
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
496
			    !(pf->hw_disabled_flags &
497
				     I40E_FLAG_FD_SB_ENABLED)) {
498 499
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
500
				pf->hw_disabled_flags |=
501 502 503
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
504
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
505
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
506
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
507
				 rx_desc->wb.qword0.hi_dword.fd_id);
508
	}
509 510 511
}

/**
A
Alexander Duyck 已提交
512
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
513 514 515
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
516 517
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
518
{
A
Alexander Duyck 已提交
519
	if (tx_buffer->skb) {
520 521 522 523
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
524
		if (dma_unmap_len(tx_buffer, len))
525
			dma_unmap_single(ring->dev,
526 527
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
528
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
529 530 531 532 533
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
534
	}
535

A
Alexander Duyck 已提交
536 537
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
538
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
539
	/* tx_buffer must be completely set up in the transmit path */
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
556 557
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
558 559 560 561 562 563 564 565 566

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
567 568 569 570 571

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
572
	netdev_tx_reset_queue(txring_txq(tx_ring));
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
597
 * @in_sw: is tx_pending being checked in SW or HW
598 599 600 601
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
602
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
603
{
J
Jesse Brandeburg 已提交
604 605
	u32 head, tail;

606 607 608 609
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
J
Jesse Brandeburg 已提交
610 611 612 613 614 615 616
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
617 618
}

619
#define WB_STRIDE 4
620

621 622
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
623 624 625
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
626 627 628
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
629 630
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
631 632 633
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
634
	struct i40e_tx_desc *tx_head;
635
	struct i40e_tx_desc *tx_desc;
636 637
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
638 639 640

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
641
	i -= tx_ring->count;
642

643 644
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
645 646
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
647 648 649 650 651

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
652 653 654
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

655 656
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
657 658
			break;

A
Alexander Duyck 已提交
659
		/* clear next_to_watch to prevent false hangs */
660 661
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
662 663 664
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
665

A
Alexander Duyck 已提交
666
		/* free the skb */
667
		napi_consume_skb(tx_buf->skb, napi_budget);
668

A
Alexander Duyck 已提交
669 670 671 672 673
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
674

A
Alexander Duyck 已提交
675 676 677
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
678

A
Alexander Duyck 已提交
679 680
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
681 682 683 684

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
685 686
			if (unlikely(!i)) {
				i -= tx_ring->count;
687 688 689 690
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

711 712
		prefetch(tx_desc);

A
Alexander Duyck 已提交
713 714 715 716 717
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
718
	tx_ring->next_to_clean = i;
719
	u64_stats_update_begin(&tx_ring->syncp);
720 721
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
722
	u64_stats_update_end(&tx_ring->syncp);
723 724
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
725

726 727 728 729 730 731
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
732
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
733 734

		if (budget &&
735
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
736
		    !test_bit(__I40E_DOWN, &vsi->state) &&
737 738 739
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
740

741 742
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
743 744
				  total_packets, total_bytes);

745 746 747 748 749 750 751 752 753
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
754
		   !test_bit(__I40E_DOWN, &vsi->state)) {
755 756 757 758 759 760
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

761 762 763 764
	return !!budget;
}

/**
765
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
766
 * @vsi: the VSI we care about
767
 * @q_vector: the vector on which to enable writeback
768 769
 *
 **/
770 771
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
772
{
773
	u16 flags = q_vector->tx.ring[0].flags;
774
	u32 val;
775

776 777
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
778

779 780
	if (q_vector->arm_wb_state)
		return;
781

782 783 784
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
785

786 787 788 789 790 791
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
825 826 827 828 829 830
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
831 832
 * Returns true if ITR changed, false if not
 *
833 834 835 836 837 838 839 840
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
841
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
842 843
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
844
	struct i40e_q_vector *qv = rc->ring->q_vector;
845 846
	u32 new_itr = rc->itr;
	int bytes_per_int;
847
	int usecs;
848 849

	if (rc->total_packets == 0 || !rc->itr)
850
		return false;
851 852

	/* simple throttlerate management
853
	 *   0-10MB/s   lowest (50000 ints/s)
854
	 *  10-20MB/s   low    (20000 ints/s)
855 856
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
857 858 859 860
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
861 862
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
863
	 */
864
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
865
	bytes_per_int = rc->total_bytes / usecs;
866

867
	switch (new_latency_range) {
868 869 870 871 872 873 874 875 876 877 878
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
879
	case I40E_ULTRA_LATENCY:
880 881 882
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
883 884
		break;
	}
885 886 887 888 889 890 891 892 893 894 895 896

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

897
	rc->latency_range = new_latency_range;
898 899 900

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
901
		new_itr = I40E_ITR_50K;
902 903 904 905 906
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
907 908 909
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
910 911 912 913 914 915 916 917
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
918 919 920 921 922 923 924

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
					  union i40e_rx_desc *rx_desc)
{
	u64 qw;
	u8 id;

	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
948
		i40e_fd_handle_status(rx_ring, rx_desc, id);
949 950 951 952 953
#ifdef I40E_FCOE
	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
#endif
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
970 971
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
972 973 974 975 976 977 978
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
979 980 981 982
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1015 1016 1017 1018 1019
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1020 1021
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1022 1023 1024 1025 1026
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
					      I40E_RXBUFFER_2048,
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
				     PAGE_SIZE,
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1041 1042 1043 1044
		__free_pages(rx_bi->page, 0);

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1045 1046 1047 1048 1049 1050 1051 1052
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1053
	rx_ring->next_to_alloc = 0;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1088 1089
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1090 1091 1092 1093 1094
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1095
	u64_stats_init(&rx_ring->syncp);
1096

1097
	/* Round up to nearest 4K */
1098
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1109
	rx_ring->next_to_alloc = 0;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1128 1129 1130 1131

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
1142 1143 1144
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1145
 *
1146 1147
 * Returns true if the page was successfully allocated or
 * reused.
1148
 **/
1149 1150
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1151
{
1152 1153
	struct page *page = bi->page;
	dma_addr_t dma;
1154

1155 1156 1157 1158 1159
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1160

1161 1162 1163 1164 1165 1166
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1167

1168
	/* map page for use */
1169 1170 1171 1172
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 PAGE_SIZE,
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1173

1174 1175
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1176
	 */
1177 1178 1179 1180
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1181 1182
	}

1183 1184 1185
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
1186

1187 1188
	return true;
}
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1200

1201 1202 1203 1204 1205
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1206 1207 1208
}

/**
1209
 * i40e_alloc_rx_buffers - Replace used receive buffers
1210 1211
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1212
 *
1213
 * Returns false if all allocations were successful, true if any fail
1214
 **/
1215
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1216
{
1217
	u16 ntu = rx_ring->next_to_use;
1218 1219 1220 1221 1222
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1223
		return false;
1224

1225 1226
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1227

1228 1229 1230
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1231

1232 1233 1234 1235 1236 1237
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 I40E_RXBUFFER_2048,
						 DMA_FROM_DEVICE);

1238 1239 1240 1241
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1260 1261 1262

	return false;

1263
no_buffers:
1264 1265
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1266 1267 1268 1269 1270

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1271 1272 1273 1274 1275 1276
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1277 1278 1279
 * @rx_desc: the receive descriptor
 *
 * skb->protocol must be set before this function is called
1280 1281 1282
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1283
				    union i40e_rx_desc *rx_desc)
1284
{
1285 1286
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1287
	bool ipv4, ipv6;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1298

1299 1300
	skb->ip_summed = CHECKSUM_NONE;

1301 1302
	skb_checksum_none_assert(skb);

1303
	/* Rx csum enabled and ip headers found? */
1304 1305 1306 1307
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1308
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1309 1310 1311 1312
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1313 1314
		return;

1315 1316 1317 1318
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1319 1320

	if (ipv4 &&
1321 1322
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1323 1324
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1325
	/* likely incorrect csum if alternate IP extension headers found */
1326
	if (ipv6 &&
1327
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1328
		/* don't increment checksum err here, non-fatal err */
1329 1330
		return;

1331
	/* there was some L4 error, count error and punt packet to the stack */
1332
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1333 1334 1335 1336 1337 1338
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1339
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1340 1341
		return;

1342 1343 1344
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1345
	 */
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1359 1360 1361 1362 1363

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1364 1365 1366
}

/**
1367
 * i40e_ptype_to_htype - get a hash type
1368 1369 1370 1371
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1372
static inline int i40e_ptype_to_htype(u8 ptype)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1400
	const __le64 rss_mask =
1401 1402 1403
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1404
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1405 1406 1407 1408 1409 1410 1411 1412
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1413
/**
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1432 1433
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1434 1435
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1436
	if (unlikely(tsynvalid))
1437
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;
}

/**
1495
 * i40e_page_is_reusable - check if any reuse is possible
1496
 * @page: page struct to check
1497 1498 1499
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1500
 */
1501
static inline bool i40e_page_is_reusable(struct page *page)
1502
{
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 * @page: page address from rx_buffer
 * @truesize: actual size of the buffer in this page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   struct page *page,
				   const unsigned int truesize)
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

	/* Inc ref count on page before passing it up to the stack */
	get_page(page);

	return true;
1567 1568 1569 1570 1571 1572
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
1573
 * @size: packet length from rx_desc
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
1586
			     unsigned int size,
1587 1588 1589
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
1590
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1591 1592 1593 1594 1595
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
1596 1597 1598 1599
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1600 1601 1602 1603

	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1604
	if (size <= I40E_RX_HDR_SIZE) {
1605 1606
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

1607 1608
		/* page is reusable, we can reuse buffer as-is */
		if (likely(i40e_page_is_reusable(page)))
1609 1610 1611 1612 1613 1614 1615
			return true;

		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

1616 1617 1618 1619 1620
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1621

1622 1623 1624 1625
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1626

1627 1628 1629
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1630

1631 1632 1633
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1634

1635
	return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1636 1637 1638 1639 1640 1641
}

/**
 * i40e_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
1642
 *
1643 1644 1645 1646 1647 1648 1649
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1650 1651
				     union i40e_rx_desc *rx_desc,
				     struct sk_buff *skb)
1652
{
1653 1654 1655 1656 1657
	u64 local_status_error_len =
		le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	unsigned int size =
		(local_status_error_len & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	struct i40e_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
1694
				      size,
1695 1696 1697
				      DMA_FROM_DEVICE);

	/* pull page into skb */
1698
	if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1699 1700 1701 1702 1703
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1704 1705
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1724
 **/
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

#define staterrlen rx_desc->wb.qword1.status_error_len
	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
		i40e_clean_programming_status(rx_ring, rx_desc);
		return true;
	}
	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1765 1766
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1767
	struct sk_buff *skb = rx_ring->skb;
1768
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1769
	bool failure = false;
1770

1771 1772
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1773
		u16 vlan_tag;
1774 1775 1776
		u8 rx_ptype;
		u64 qword;

1777 1778
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1779
			failure = failure ||
1780
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1781 1782 1783
			cleaned_count = 0;
		}

1784 1785 1786 1787 1788 1789 1790
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
1791 1792
		if (!i40e_test_staterr(rx_desc,
				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1793 1794
			break;

1795 1796 1797 1798
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1799
		dma_rmb();
1800

1801
		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb);
1802 1803
		if (!skb)
			break;
1804 1805 1806

		cleaned_count++;

1807
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1808 1809
			continue;

1810 1811 1812 1813 1814 1815
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1816 1817 1818 1819
			dev_kfree_skb_any(skb);
			continue;
		}

1820 1821
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1822
			continue;
1823
		}
1824 1825 1826 1827

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1828 1829 1830 1831
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1832 1833
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1834 1835

#ifdef I40E_FCOE
1836 1837 1838
		if (unlikely(
		    i40e_rx_is_fcoe(rx_ptype) &&
		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1839 1840 1841 1842
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1843 1844 1845 1846

		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1847
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1848
		skb = NULL;
1849

1850 1851 1852
		/* update budget accounting */
		total_rx_packets++;
	}
1853

1854 1855
	rx_ring->skb = skb;

1856
	u64_stats_update_begin(&rx_ring->syncp);
1857 1858
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
1859
	u64_stats_update_end(&rx_ring->syncp);
1860 1861 1862
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1863
	/* guarantee a trip back through this routine if there was a failure */
1864
	return failure ? budget : total_rx_packets;
1865 1866
}

1867 1868 1869 1870 1871
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1872 1873 1874
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1875 1876 1877 1878 1879 1880 1881 1882
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
1883
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1884
{
1885
	return vsi->rx_rings[idx]->rx_itr_setting;
1886 1887
}

1888
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1889
{
1890
	return vsi->tx_rings[idx]->tx_itr_setting;
1891
}
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1903 1904
	bool rx = false, tx = false;
	u32 rxval, txval;
1905
	int vector;
1906
	int idx = q_vector->v_idx;
1907
	int rx_itr_setting, tx_itr_setting;
1908 1909

	vector = (q_vector->v_idx + vsi->base_vector);
1910

1911 1912 1913
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1914 1915
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1916 1917
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1918

1919
	if (q_vector->itr_countdown > 0 ||
1920 1921
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1922 1923 1924
		goto enable_int;
	}

1925
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1926 1927
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1928
	}
1929

1930
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1931 1932
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1933
	}
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1962
enable_int:
1963 1964
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1965 1966 1967 1968 1969

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1970 1971
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
1986
	struct i40e_ring *ring;
1987
	bool clean_complete = true;
1988
	bool arm_wb = false;
1989
	int budget_per_ring;
1990
	int work_done = 0;
1991 1992 1993 1994 1995 1996

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

1997 1998
	/* Clear hung_detected bit */
	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1999 2000 2001
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2002
	i40e_for_each_ring(ring, q_vector->tx) {
2003
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2004 2005 2006 2007
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2008
		ring->arm_wb = false;
2009
	}
2010

2011 2012 2013 2014
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2015 2016 2017 2018
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2019

2020
	i40e_for_each_ring(ring, q_vector->rx) {
2021
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2022 2023

		work_done += cleaned;
2024 2025 2026
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2027
	}
2028 2029

	/* If work not completed, return budget and polling will return */
2030
	if (!clean_complete) {
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2043
tx_only:
2044 2045 2046 2047 2048
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2049
		}
2050
	}
2051

2052 2053 2054
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2055
	/* Work is done so exit the polling mode and re-enable the interrupt */
2056
	napi_complete_done(napi, work_done);
2057 2058 2059 2060 2061 2062 2063 2064

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2065
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2066 2067 2068
	else
		i40e_update_enable_itr(vsi, q_vector);

2069
	return min(work_done, budget - 1);
2070 2071 2072 2073 2074 2075
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2076
 * @tx_flags: send tx flags
2077 2078
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2079
		     u32 tx_flags)
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2091
	int l4_proto;
2092
	u16 i;
2093 2094

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2095
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2096 2097
		return;

2098
	if ((pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2099 2100
		return;

2101 2102 2103 2104
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2105
	/* Currently only IPv4/IPv6 with TCP is supported */
2106 2107
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2108

2109 2110 2111
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2112

2113 2114 2115 2116
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2117
		/* access ihl as u8 to avoid unaligned access on ia64 */
2118 2119
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2120
	} else {
2121 2122 2123
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2124 2125
	}

2126
	if (l4_proto != IPPROTO_TCP)
2127 2128
		return;

2129 2130
	th = (struct tcphdr *)(hdr.network + hlen);

2131
	/* Due to lack of space, no more new filters can be programmed */
2132
	if (th->syn && (pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2133
		return;
2134
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2135
	    (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2136 2137 2138 2139 2140 2141
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2142 2143 2144

	tx_ring->atr_count++;

2145 2146 2147 2148 2149
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2150 2151 2152 2153 2154
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2155 2156 2157 2158 2159
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2160 2161 2162

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2163
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2164 2165 2166 2167 2168 2169 2170 2171 2172
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2173
	dtype_cmd |= (th->fin || th->rst) ?
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2185
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2186
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2187 2188 2189 2190 2191 2192 2193 2194 2195
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2196

2197
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2198
	    (!(pf->hw_disabled_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2199 2200
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2201
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2202
	fdir_desc->rsvd = cpu_to_le32(0);
2203
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2204
	fdir_desc->fd_id = cpu_to_le32(0);
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2219
#ifdef I40E_FCOE
2220
inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2221 2222
				      struct i40e_ring *tx_ring,
				      u32 *flags)
2223 2224 2225 2226
#else
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2227
#endif
2228 2229 2230 2231
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2245
	/* if we have a HW VLAN tag being added, default to the HW one */
2246 2247
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2248 2249
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2250
	} else if (protocol == htons(ETH_P_8021Q)) {
2251
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2262 2263 2264
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2265
	/* Insert 802.1p priority into VLAN header */
2266 2267
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2268 2269 2270 2271 2272
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2273 2274 2275 2276 2277
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2278 2279 2280 2281 2282 2283 2284
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2285 2286

out:
2287 2288 2289 2290 2291 2292
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2293
 * @first:    pointer to first Tx buffer for xmit
2294
 * @hdr_len:  ptr to the size of the packet header
2295
 * @cd_type_cmd_tso_mss: Quad Word 1
2296 2297 2298
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2299 2300
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2301
{
2302
	struct sk_buff *skb = first->skb;
2303
	u64 cd_cmd, cd_tso_len, cd_mss;
2304 2305 2306 2307 2308
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2309 2310
	union {
		struct tcphdr *tcp;
2311
		struct udphdr *udp;
2312 2313 2314
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2315
	u16 gso_segs, gso_size;
2316 2317
	int err;

2318 2319 2320
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2321 2322 2323
	if (!skb_is_gso(skb))
		return 0;

2324 2325 2326
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2327

2328 2329
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2330

2331 2332 2333 2334
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2335
	} else {
2336 2337 2338
		ip.v6->payload_len = 0;
	}

2339
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2340
					 SKB_GSO_GRE_CSUM |
2341
					 SKB_GSO_IPXIP4 |
2342
					 SKB_GSO_IPXIP6 |
2343
					 SKB_GSO_UDP_TUNNEL |
2344
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2345 2346 2347 2348
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2349 2350 2351 2352
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2353
			paylen = skb->len - l4_offset;
2354 2355
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2356 2357
		}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2369 2370
	}

2371 2372 2373 2374
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2375
	paylen = skb->len - l4_offset;
2376
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2377 2378 2379

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2380

2381 2382 2383 2384 2385 2386 2387 2388
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2389 2390 2391
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2392
	cd_mss = gso_size;
2393 2394 2395
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2396 2397 2398
	return 1;
}

J
Jacob Keller 已提交
2399 2400 2401 2402 2403
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2404
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2424 2425 2426
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2427 2428
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2441 2442 2443
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2444
 * @tx_flags: pointer to Tx flags currently set
2445 2446
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2447
 * @tx_ring: Tx descriptor ring
2448 2449
 * @cd_tunneling: ptr to context desc bits
 **/
2450 2451 2452 2453
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2454
{
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2465
	unsigned char *exthdr;
2466
	u32 offset, cmd = 0;
2467
	__be16 frag_off;
2468 2469
	u8 l4_proto = 0;

2470 2471 2472
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2473 2474
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2475

2476 2477 2478
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2479
	if (skb->encapsulation) {
2480
		u32 tunnel = 0;
2481 2482
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2483 2484 2485 2486
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2487 2488
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2489
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2490 2491

			exthdr = ip.hdr + sizeof(*ip.v6);
2492
			l4_proto = ip.v6->nexthdr;
2493 2494 2495
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2496 2497 2498 2499
		}

		/* define outer transport */
		switch (l4_proto) {
2500
		case IPPROTO_UDP:
2501
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2502
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2503
			break;
2504
		case IPPROTO_GRE:
2505
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2506
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2507
			break;
2508 2509 2510 2511 2512
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2513
		default:
2514 2515 2516 2517 2518
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2519
		}
2520

2521 2522 2523 2524 2525 2526 2527
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2528 2529 2530 2531
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2532 2533
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2534
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2535 2536 2537
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2538 2539 2540
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2541 2542
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2543
		l4_proto = 0;
2544

2545 2546 2547 2548 2549
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2550
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2551 2552 2553
	}

	/* Enable IP checksum offloads */
2554
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2555
		l4_proto = ip.v4->protocol;
2556 2557 2558
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2559 2560 2561
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2562
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2563
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2564 2565 2566 2567 2568 2569

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2570
	}
2571

2572 2573
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2574 2575

	/* Enable L4 checksum offloads */
2576
	switch (l4_proto) {
2577 2578
	case IPPROTO_TCP:
		/* enable checksum offloads */
2579 2580
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2581 2582 2583
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2584 2585 2586
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2587 2588 2589
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2590 2591 2592
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2593 2594
		break;
	default:
2595 2596 2597 2598
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2599
	}
2600 2601 2602

	*td_cmd |= cmd;
	*td_offset |= offset;
2603 2604

	return 1;
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2619
	int i = tx_ring->next_to_use;
2620

2621 2622
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2623 2624 2625
		return;

	/* grab the next descriptor */
2626 2627 2628 2629
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2630 2631 2632 2633

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2634
	context_desc->rsvd = cpu_to_le16(0);
2635 2636 2637
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2638 2639 2640 2641 2642 2643 2644
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2645
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2661
/**
2662
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2663 2664
 * @skb:      send buffer
 *
2665 2666 2667 2668 2669 2670 2671 2672
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2673
 **/
2674
bool __i40e_chk_linearize(struct sk_buff *skb)
2675
{
2676
	const struct skb_frag_struct *frag, *stale;
2677
	int nr_frags, sum;
2678

2679
	/* no need to check if number of frags is less than 7 */
2680
	nr_frags = skb_shinfo(skb)->nr_frags;
2681
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2682
		return false;
2683

2684
	/* We need to walk through the list and validate that each group
2685
	 * of 6 fragments totals at least gso_size.
2686
	 */
2687
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2688 2689 2690 2691 2692 2693 2694 2695
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2696
	sum = 1 - skb_shinfo(skb)->gso_size;
2697

2698 2699 2700 2701 2702 2703
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2704 2705 2706 2707 2708 2709

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2710
		sum += skb_frag_size(frag++);
2711 2712 2713 2714 2715

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2716
		if (!nr_frags--)
2717 2718
			break;

2719
		sum -= skb_frag_size(stale++);
2720 2721
	}

2722
	return false;
2723 2724
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2735
#ifdef I40E_FCOE
2736
inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2737 2738
			struct i40e_tx_buffer *first, u32 tx_flags,
			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2739 2740 2741 2742
#else
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2743
#endif
2744 2745 2746
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2747
	struct skb_frag_struct *frag;
2748 2749
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2750
	u16 i = tx_ring->next_to_use;
2751 2752
	u32 td_tag = 0;
	dma_addr_t dma;
2753
	u16 desc_count = 1;
2754 2755 2756 2757 2758 2759 2760

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2761 2762 2763 2764
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2765
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2766 2767 2768
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2769 2770
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2771 2772 2773 2774 2775 2776 2777
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2778 2779
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2780 2781 2782
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2783 2784
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2785
					   max_data, td_tag);
2786 2787 2788

			tx_desc++;
			i++;
2789 2790
			desc_count++;

2791 2792 2793 2794 2795
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2796 2797
			dma += max_data;
			size -= max_data;
2798

2799
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2800 2801
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2802 2803 2804 2805

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
2806 2807
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
2808 2809 2810

		tx_desc++;
		i++;
2811 2812
		desc_count++;

2813 2814 2815 2816 2817
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
2818 2819
		size = skb_frag_size(frag);
		data_len -= size;
2820

A
Alexander Duyck 已提交
2821 2822
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
2823

A
Alexander Duyck 已提交
2824 2825
		tx_bi = &tx_ring->tx_bi[i];
	}
2826

2827
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
2828 2829 2830 2831 2832 2833 2834

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
2835
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2836

2837 2838 2839 2840 2841 2842 2843 2844 2845
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

2846
	/* Algorithm to optimize tail and RS bit setting:
2847 2848 2849 2850 2851 2852
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
2853
	 *
2854 2855 2856 2857 2858
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
2859
	 *
2860
	 * Note: If there are less than 4 descriptors
2861 2862 2863
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
2874 2875 2876 2877
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2890

A
Alexander Duyck 已提交
2891
	/* notify HW of packet */
2892
	if (desc_count) {
2893
		writel(i, tx_ring->tail);
2894 2895 2896 2897 2898

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2899
	}
2900

2901 2902 2903
	return;

dma_error:
A
Alexander Duyck 已提交
2904
	dev_info(tx_ring->dev, "TX DMA map failed\n");
2905 2906 2907 2908

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
2909
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2938
	int tso, count;
J
Jacob Keller 已提交
2939
	int tsyn;
J
Jesse Brandeburg 已提交
2940

2941 2942 2943
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2944
	count = i40e_xmit_descriptor_count(skb);
2945
	if (i40e_chk_linearize(skb, count)) {
2946 2947 2948 2949
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2950
		count = i40e_txd_use_count(skb->len);
2951 2952
		tx_ring->tx_stats.tx_linearize++;
	}
2953 2954 2955 2956 2957 2958 2959 2960 2961

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2962
		return NETDEV_TX_BUSY;
2963
	}
2964

2965 2966 2967 2968 2969 2970
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2971 2972 2973 2974 2975
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
2976
	protocol = vlan_get_protocol(skb);
2977 2978

	/* setup IPv4/IPv6 offloads */
2979
	if (protocol == htons(ETH_P_IP))
2980
		tx_flags |= I40E_TX_FLAGS_IPV4;
2981
	else if (protocol == htons(ETH_P_IPV6))
2982 2983
		tx_flags |= I40E_TX_FLAGS_IPV6;

2984
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2985 2986 2987 2988 2989 2990

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

2991 2992 2993 2994 2995 2996
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
2997 2998 2999 3000 3001
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3002 3003
	skb_tx_timestamp(skb);

3004 3005 3006
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3007 3008 3009 3010 3011 3012 3013
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3014
	i40e_atr(tx_ring, skb, tx_flags);
3015 3016 3017 3018 3019 3020 3021

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3022 3023
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3038
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3039 3040 3041 3042

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3043 3044
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3045 3046 3047

	return i40e_xmit_frame_ring(skb, tx_ring);
}