i40e_txrx.c 84.1 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

106
#define I40E_FD_CLEAN_DELAY 10
107 108
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
109 110
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
111
 * @pf: The PF pointer
112 113
 * @add: True for add/update, False for remove
 **/
114 115 116
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
117
{
118
	struct i40e_tx_buffer *tx_buf, *first;
119 120 121 122 123 124 125 126 127
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
128
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
129 130 131
	if (!vsi)
		return -ENOENT;

132
	tx_ring = vsi->tx_rings[0];
133 134
	dev = tx_ring->dev;

135
	/* we need two descriptors to add/del a filter and we can wait */
136 137 138
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
139
		msleep_interruptible(1);
140
	}
141

142 143
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
144 145 146 147
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
148
	i = tx_ring->next_to_use;
149
	first = &tx_ring->tx_bi[i];
150
	i40e_fdir(tx_ring, fdir_data, add);
151 152

	/* Now program a dummy descriptor */
153 154
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
155
	tx_buf = &tx_ring->tx_bi[i];
156

157 158 159
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
160

161
	/* record length, and DMA address */
162
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
163 164
	dma_unmap_addr_set(tx_buf, dma, dma);

165
	tx_desc->buffer_addr = cpu_to_le64(dma);
166
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
167

168 169 170
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

171
	tx_desc->cmd_type_offset_bsz =
172
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
173 174

	/* Force memory writes to complete before letting h/w
175
	 * know there are new descriptors to fetch.
176 177 178
	 */
	wmb();

179
	/* Mark the data descriptor to be watched */
180
	first->next_to_watch = tx_desc;
181

182 183 184 185 186 187 188
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

189 190 191 192 193 194 195 196 197 198 199 200
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
201
				   bool add)
202 203 204 205 206
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
	bool err = false;
207
	u8 *raw_packet;
208 209 210 211 212
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

213 214 215
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
216 217 218 219 220 221 222 223 224 225 226
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip[0];
	udp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip[0];
	udp->source = fd_data->src_port;

227 228 229 230
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
231 232
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
233
		err = true;
234
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
235 236 237 238 239 240 241 242
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
243
	}
244 245 246
	if (err)
		kfree(raw_packet);

247 248 249 250 251 252 253 254 255 256 257 258 259 260
	return err ? -EOPNOTSUPP : 0;
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
261
				   bool add)
262 263 264 265 266
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
	bool err = false;
267
	u8 *raw_packet;
268 269 270 271 272 273 274
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

275 276 277
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
278 279 280 281 282 283 284 285 286 287 288 289
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip[0];
	tcp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip[0];
	tcp->source = fd_data->src_port;

	if (add) {
290
		pf->fd_tcp_rule++;
291 292 293 294
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
295 296 297 298
	} else {
		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
				  (pf->fd_tcp_rule - 1) : 0;
		if (pf->fd_tcp_rule == 0) {
299 300
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
301
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
302
			pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
303
		}
304 305
	}

306
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
307 308 309 310
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);

	if (ret) {
		dev_info(&pf->pdev->dev,
311 312
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
313
		err = true;
314
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
315 316 317 318 319 320 321
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
322 323
	}

324 325 326
	if (err)
		kfree(raw_packet);

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	return err ? -EOPNOTSUPP : 0;
}

#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
342
				  bool add)
343 344 345 346
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
	bool err = false;
347
	u8 *raw_packet;
348 349 350 351 352 353 354 355
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
356 357 358 359 360 361 362 363 364 365
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

		ip->saddr = fd_data->src_ip[0];
		ip->daddr = fd_data->dst_ip[0];
		ip->protocol = 0;

366 367 368 369 370
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);

		if (ret) {
			dev_info(&pf->pdev->dev,
371 372
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
373
			err = true;
374
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
375 376 377 378 379 380 381 382
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
383 384 385
		}
	}

386 387 388
	if (err)
		kfree(raw_packet);

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	return err ? -EOPNOTSUPP : 0;
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
407
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
408 409
		break;
	case UDP_V4_FLOW:
410
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
411 412 413 414
		break;
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
415
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
416 417
			break;
		case IPPROTO_UDP:
418
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
419
			break;
420
		case IPPROTO_IP:
421
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
422
			break;
423 424 425
		default:
			/* We cannot support masking based on protocol */
			goto unsupported_flow;
426 427 428
		}
		break;
	default:
429
unsupported_flow:
430
		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
431 432 433 434
			 input->flow_type);
		ret = -EINVAL;
	}

435
	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
436 437 438
	return ret;
}

439 440 441
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
442
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
443 444 445 446 447
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
448 449
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
450
{
451 452 453
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
454
	u32 error;
455
	u64 qw;
456

457
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
458 459 460
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

461
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
462
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
463 464 465
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
466
				 pf->fd_inv);
467

468 469 470 471 472 473 474 475 476
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

477 478 479 480
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

481 482 483 484 485 486
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

487
		/* filter programming failed most likely due to table full */
488
		fcnt_prog = i40e_get_global_fd_count(pf);
489
		fcnt_avail = pf->fdir_pf_filter_count;
490 491 492 493 494
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
495
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
496 497
			    !(pf->auto_disable_flags &
				     I40E_FLAG_FD_SB_ENABLED)) {
498 499
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
500 501 502 503
				pf->auto_disable_flags |=
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
504
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
505
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
506
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
507
				 rx_desc->wb.qword0.hi_dword.fd_id);
508
	}
509 510 511
}

/**
A
Alexander Duyck 已提交
512
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
513 514 515
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
516 517
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
518
{
A
Alexander Duyck 已提交
519
	if (tx_buffer->skb) {
520 521 522 523
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
524
		if (dma_unmap_len(tx_buffer, len))
525
			dma_unmap_single(ring->dev,
526 527
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
528
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
529 530 531 532 533
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
534
	}
535

A
Alexander Duyck 已提交
536 537
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
538
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
539
	/* tx_buffer must be completely set up in the transmit path */
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
556 557
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
558 559 560 561 562 563 564 565 566

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
567 568 569 570 571

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
572
	netdev_tx_reset_queue(txring_txq(tx_ring));
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
597
 * @in_sw: is tx_pending being checked in SW or HW
598 599 600 601
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
602
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
603
{
J
Jesse Brandeburg 已提交
604 605
	u32 head, tail;

606 607 608 609
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
J
Jesse Brandeburg 已提交
610 611 612 613 614 615 616
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
617 618
}

619
#define WB_STRIDE 4
620

621 622
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
623 624 625
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
626 627 628
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
629 630
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
631 632 633
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
634
	struct i40e_tx_desc *tx_head;
635
	struct i40e_tx_desc *tx_desc;
636 637
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
638 639 640

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
641
	i -= tx_ring->count;
642

643 644
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
645 646
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
647 648 649 650 651

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
652 653 654
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

655 656
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
657 658
			break;

A
Alexander Duyck 已提交
659
		/* clear next_to_watch to prevent false hangs */
660 661
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
662 663 664
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
665

A
Alexander Duyck 已提交
666
		/* free the skb */
667
		napi_consume_skb(tx_buf->skb, napi_budget);
668

A
Alexander Duyck 已提交
669 670 671 672 673
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
674

A
Alexander Duyck 已提交
675 676 677
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
678

A
Alexander Duyck 已提交
679 680
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
681 682 683 684

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
685 686
			if (unlikely(!i)) {
				i -= tx_ring->count;
687 688 689 690
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

711 712
		prefetch(tx_desc);

A
Alexander Duyck 已提交
713 714 715 716 717
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
718
	tx_ring->next_to_clean = i;
719
	u64_stats_update_begin(&tx_ring->syncp);
720 721
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
722
	u64_stats_update_end(&tx_ring->syncp);
723 724
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
725

726 727 728 729 730 731
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
732
		unsigned int j = i40e_get_tx_pending(tx_ring, false);
733 734

		if (budget &&
735
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
736
		    !test_bit(__I40E_DOWN, &vsi->state) &&
737 738 739
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
740

741 742
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
743 744
				  total_packets, total_bytes);

745 746 747 748 749 750 751 752 753
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
754
		   !test_bit(__I40E_DOWN, &vsi->state)) {
755 756 757 758 759 760
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

761 762 763 764
	return !!budget;
}

/**
765
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
766
 * @vsi: the VSI we care about
767
 * @q_vector: the vector on which to enable writeback
768 769
 *
 **/
770 771
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
772
{
773
	u16 flags = q_vector->tx.ring[0].flags;
774
	u32 val;
775

776 777
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
778

779 780
	if (q_vector->arm_wb_state)
		return;
781

782 783 784
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
785

786 787 788 789 790 791
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
792

793 794 795 796 797 798 799 800 801 802 803 804 805 806
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
825 826 827 828 829 830
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
831 832
 * Returns true if ITR changed, false if not
 *
833 834 835 836 837 838 839 840
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
841
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
842 843
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
844
	struct i40e_q_vector *qv = rc->ring->q_vector;
845 846
	u32 new_itr = rc->itr;
	int bytes_per_int;
847
	int usecs;
848 849

	if (rc->total_packets == 0 || !rc->itr)
850
		return false;
851 852

	/* simple throttlerate management
853
	 *   0-10MB/s   lowest (50000 ints/s)
854
	 *  10-20MB/s   low    (20000 ints/s)
855 856
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
857 858 859 860
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
861 862
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
863
	 */
864
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
865
	bytes_per_int = rc->total_bytes / usecs;
866

867
	switch (new_latency_range) {
868 869 870 871 872 873 874 875 876 877 878
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
879
	case I40E_ULTRA_LATENCY:
880 881 882
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
883 884
		break;
	}
885 886 887 888 889 890 891 892 893 894 895 896

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

897
	rc->latency_range = new_latency_range;
898 899 900

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
901
		new_itr = I40E_ITR_50K;
902 903 904 905 906
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
907 908 909
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
910 911 912 913 914 915 916 917
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
918 919 920 921 922 923 924

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
					  union i40e_rx_desc *rx_desc)
{
	u64 qw;
	u8 id;

	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
948
		i40e_fd_handle_status(rx_ring, rx_desc, id);
949 950 951 952 953
#ifdef I40E_FCOE
	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
#endif
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
970 971
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
972 973 974 975 976 977 978
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
979 980 981 982
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1016 1017 1018 1019 1020
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1021 1022
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
		__free_pages(rx_bi->page, 0);

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1033 1034 1035 1036 1037 1038 1039 1040
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1041
	rx_ring->next_to_alloc = 0;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1076 1077
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1078 1079 1080 1081 1082
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1083
	u64_stats_init(&rx_ring->syncp);
1084

1085
	/* Round up to nearest 4K */
1086
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1097
	rx_ring->next_to_alloc = 0;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1116 1117 1118 1119

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
1130 1131 1132
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1133
 *
1134 1135
 * Returns true if the page was successfully allocated or
 * reused.
1136
 **/
1137 1138
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1139
{
1140 1141
	struct page *page = bi->page;
	dma_addr_t dma;
1142

1143 1144 1145 1146 1147
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1148

1149 1150 1151 1152 1153 1154
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1155

1156 1157
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1158

1159 1160
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1161
	 */
1162 1163 1164 1165
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1166 1167
	}

1168 1169 1170
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
1171

1172 1173
	return true;
}
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1185

1186 1187 1188 1189 1190
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1191 1192 1193
}

/**
1194
 * i40e_alloc_rx_buffers - Replace used receive buffers
1195 1196
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1197
 *
1198
 * Returns false if all allocations were successful, true if any fail
1199
 **/
1200
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1201
{
1202
	u16 ntu = rx_ring->next_to_use;
1203 1204 1205 1206 1207
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1208
		return false;
1209

1210 1211
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1212

1213 1214 1215
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1216

1217 1218 1219 1220
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1239 1240 1241

	return false;

1242
no_buffers:
1243 1244
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1245 1246 1247 1248 1249

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1250 1251 1252 1253 1254 1255
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1256 1257 1258
 * @rx_desc: the receive descriptor
 *
 * skb->protocol must be set before this function is called
1259 1260 1261
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1262
				    union i40e_rx_desc *rx_desc)
1263
{
1264 1265
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1266
	bool ipv4, ipv6;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1277

1278 1279
	skb->ip_summed = CHECKSUM_NONE;

1280 1281
	skb_checksum_none_assert(skb);

1282
	/* Rx csum enabled and ip headers found? */
1283 1284 1285 1286
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1287
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1288 1289 1290 1291
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1292 1293
		return;

1294 1295 1296 1297
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1298 1299

	if (ipv4 &&
1300 1301
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1302 1303
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1304
	/* likely incorrect csum if alternate IP extension headers found */
1305
	if (ipv6 &&
1306
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1307
		/* don't increment checksum err here, non-fatal err */
1308 1309
		return;

1310
	/* there was some L4 error, count error and punt packet to the stack */
1311
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1312 1313 1314 1315 1316 1317
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1318
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1319 1320
		return;

1321 1322 1323
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1324
	 */
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1338 1339 1340 1341 1342

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1343 1344 1345
}

/**
1346
 * i40e_ptype_to_htype - get a hash type
1347 1348 1349 1350
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1351
static inline int i40e_ptype_to_htype(u8 ptype)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1379
	const __le64 rss_mask =
1380 1381 1382
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1383
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1384 1385 1386 1387 1388 1389 1390 1391
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1392
/**
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1411 1412
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1413 1414
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1415
	if (unlikely(tsynvalid))
1416
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;
}

/**
1474
 * i40e_page_is_reusable - check if any reuse is possible
1475
 * @page: page struct to check
1476 1477 1478
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1479
 */
1480
static inline bool i40e_page_is_reusable(struct page *page)
1481
{
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 * @page: page address from rx_buffer
 * @truesize: actual size of the buffer in this page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   struct page *page,
				   const unsigned int truesize)
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

	/* Inc ref count on page before passing it up to the stack */
	get_page(page);

	return true;
1546 1547 1548 1549 1550 1551
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
1552
 * @size: packet length from rx_desc
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
1565
			     unsigned int size,
1566 1567 1568
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
1569
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1570 1571 1572 1573 1574
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
1575 1576 1577 1578
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1579 1580 1581 1582

	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1583
	if (size <= I40E_RX_HDR_SIZE) {
1584 1585
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

1586 1587
		/* page is reusable, we can reuse buffer as-is */
		if (likely(i40e_page_is_reusable(page)))
1588 1589 1590 1591 1592 1593 1594
			return true;

		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

1595 1596 1597 1598 1599
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1600

1601 1602 1603 1604
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1605

1606 1607 1608
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1609

1610 1611 1612
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1613

1614
	return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1615 1616 1617 1618 1619 1620
}

/**
 * i40e_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
1621
 *
1622 1623 1624 1625 1626 1627 1628
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1629 1630
				     union i40e_rx_desc *rx_desc,
				     struct sk_buff *skb)
1631
{
1632 1633 1634 1635 1636
	u64 local_status_error_len =
		le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	unsigned int size =
		(local_status_error_len & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	struct i40e_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
1673
				      size,
1674 1675 1676
				      DMA_FROM_DEVICE);

	/* pull page into skb */
1677
	if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1703
 **/
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

#define staterrlen rx_desc->wb.qword1.status_error_len
	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
		i40e_clean_programming_status(rx_ring, rx_desc);
		return true;
	}
	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1744 1745
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1746
	struct sk_buff *skb = rx_ring->skb;
1747
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1748
	bool failure = false;
1749

1750 1751
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1752
		u16 vlan_tag;
1753 1754 1755
		u8 rx_ptype;
		u64 qword;

1756 1757
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1758
			failure = failure ||
1759
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1760 1761 1762
			cleaned_count = 0;
		}

1763 1764 1765 1766 1767 1768 1769
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
1770 1771
		if (!i40e_test_staterr(rx_desc,
				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1772 1773
			break;

1774 1775 1776 1777
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1778
		dma_rmb();
1779

1780
		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc, skb);
1781 1782
		if (!skb)
			break;
1783 1784 1785

		cleaned_count++;

1786
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1787 1788
			continue;

1789 1790 1791 1792 1793 1794
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1795 1796 1797 1798
			dev_kfree_skb_any(skb);
			continue;
		}

1799 1800
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1801
			continue;
1802
		}
1803 1804 1805 1806

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1807 1808 1809 1810
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1811 1812
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1813 1814

#ifdef I40E_FCOE
1815 1816 1817
		if (unlikely(
		    i40e_rx_is_fcoe(rx_ptype) &&
		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1818 1819 1820 1821
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
1822 1823 1824 1825

		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1826
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1827
		skb = NULL;
1828

1829 1830 1831
		/* update budget accounting */
		total_rx_packets++;
	}
1832

1833 1834
	rx_ring->skb = skb;

1835
	u64_stats_update_begin(&rx_ring->syncp);
1836 1837
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
1838
	u64_stats_update_end(&rx_ring->syncp);
1839 1840 1841
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1842
	/* guarantee a trip back through this routine if there was a failure */
1843
	return failure ? budget : total_rx_packets;
1844 1845
}

1846 1847 1848 1849 1850
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1851 1852 1853
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1854 1855 1856 1857 1858 1859 1860 1861
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
1862 1863 1864 1865 1866 1867 1868 1869 1870
static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
{
	return !!(vsi->rx_rings[idx]->rx_itr_setting);
}

static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
{
	return !!(vsi->tx_rings[idx]->tx_itr_setting);
}
1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1882 1883
	bool rx = false, tx = false;
	u32 rxval, txval;
1884
	int vector;
1885
	int idx = q_vector->v_idx;
1886
	int rx_itr_setting, tx_itr_setting;
1887 1888

	vector = (q_vector->v_idx + vsi->base_vector);
1889

1890 1891 1892
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1893 1894
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1895 1896 1897
	rx_itr_setting = get_rx_itr_enabled(vsi, idx);
	tx_itr_setting = get_tx_itr_enabled(vsi, idx);

1898
	if (q_vector->itr_countdown > 0 ||
1899 1900
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1901 1902 1903
		goto enable_int;
	}

1904
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1905 1906
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1907
	}
1908

1909
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1910 1911
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1912
	}
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1941
enable_int:
1942 1943
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1944 1945 1946 1947 1948

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
1965
	struct i40e_ring *ring;
1966
	bool clean_complete = true;
1967
	bool arm_wb = false;
1968
	int budget_per_ring;
1969
	int work_done = 0;
1970 1971 1972 1973 1974 1975

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

1976 1977
	/* Clear hung_detected bit */
	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1978 1979 1980
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1981
	i40e_for_each_ring(ring, q_vector->tx) {
1982
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1983 1984 1985 1986
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1987
		ring->arm_wb = false;
1988
	}
1989

1990 1991 1992 1993
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1994 1995 1996 1997
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1998

1999
	i40e_for_each_ring(ring, q_vector->rx) {
2000
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2001 2002

		work_done += cleaned;
2003 2004 2005
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2006
	}
2007 2008

	/* If work not completed, return budget and polling will return */
2009
	if (!clean_complete) {
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2022
tx_only:
2023 2024 2025 2026 2027
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2028
		}
2029
	}
2030

2031 2032 2033
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2034
	/* Work is done so exit the polling mode and re-enable the interrupt */
2035
	napi_complete_done(napi, work_done);
2036 2037 2038 2039 2040 2041 2042 2043

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2044
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2045 2046 2047
	else
		i40e_update_enable_itr(vsi, q_vector);

2048
	return min(work_done, budget - 1);
2049 2050 2051 2052 2053 2054
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2055
 * @tx_flags: send tx flags
2056 2057
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2058
		     u32 tx_flags)
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2070
	int l4_proto;
2071
	u16 i;
2072 2073

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2074
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2075 2076
		return;

2077 2078 2079
	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
		return;

2080 2081 2082 2083
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2084
	/* Currently only IPv4/IPv6 with TCP is supported */
2085 2086
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2087

2088 2089 2090
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2091

2092 2093 2094 2095
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2096
		/* access ihl as u8 to avoid unaligned access on ia64 */
2097 2098
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2099
	} else {
2100 2101 2102
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2103 2104
	}

2105
	if (l4_proto != IPPROTO_TCP)
2106 2107
		return;

2108 2109
	th = (struct tcphdr *)(hdr.network + hlen);

2110 2111 2112
	/* Due to lack of space, no more new filters can be programmed */
	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
		return;
2113 2114
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2115 2116 2117 2118 2119 2120
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2121 2122 2123

	tx_ring->atr_count++;

2124 2125 2126 2127 2128
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2129 2130 2131 2132 2133
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2134 2135 2136 2137 2138
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2139 2140 2141

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2142
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2143 2144 2145 2146 2147 2148 2149 2150 2151
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2152
	dtype_cmd |= (th->fin || th->rst) ?
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2164
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2165
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2166 2167 2168 2169 2170 2171 2172 2173 2174
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2175

2176 2177
	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2178 2179
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2180
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2181
	fdir_desc->rsvd = cpu_to_le32(0);
2182
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2183
	fdir_desc->fd_id = cpu_to_le32(0);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2198
#ifdef I40E_FCOE
2199
inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2200 2201
				      struct i40e_ring *tx_ring,
				      u32 *flags)
2202 2203 2204 2205
#else
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2206
#endif
2207 2208 2209 2210
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2224
	/* if we have a HW VLAN tag being added, default to the HW one */
2225 2226
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2227 2228
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2229
	} else if (protocol == htons(ETH_P_8021Q)) {
2230
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2231

2232 2233 2234 2235 2236 2237 2238 2239 2240
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2241 2242 2243
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2244
	/* Insert 802.1p priority into VLAN header */
2245 2246
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2247 2248 2249 2250 2251
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2252 2253 2254 2255 2256
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2257 2258 2259 2260 2261 2262 2263
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2264 2265

out:
2266 2267 2268 2269 2270 2271
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2272
 * @first:    pointer to first Tx buffer for xmit
2273
 * @hdr_len:  ptr to the size of the packet header
2274
 * @cd_type_cmd_tso_mss: Quad Word 1
2275 2276 2277
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2278 2279
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2280
{
2281
	struct sk_buff *skb = first->skb;
2282
	u64 cd_cmd, cd_tso_len, cd_mss;
2283 2284 2285 2286 2287
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2288 2289
	union {
		struct tcphdr *tcp;
2290
		struct udphdr *udp;
2291 2292 2293
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2294
	u16 gso_segs, gso_size;
2295 2296
	int err;

2297 2298 2299
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2300 2301 2302
	if (!skb_is_gso(skb))
		return 0;

2303 2304 2305
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2306

2307 2308
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2309

2310 2311 2312 2313
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2314
	} else {
2315 2316 2317
		ip.v6->payload_len = 0;
	}

2318
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2319
					 SKB_GSO_GRE_CSUM |
2320
					 SKB_GSO_IPXIP4 |
2321
					 SKB_GSO_IPXIP6 |
2322
					 SKB_GSO_UDP_TUNNEL |
2323
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2324 2325 2326 2327
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2328 2329 2330 2331
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2332 2333
			paylen = skb->len - l4_offset;
			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
2334 2335
		}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2347 2348
	}

2349 2350 2351 2352
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2353 2354
	paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2355 2356 2357

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2358

2359 2360 2361 2362 2363 2364 2365 2366
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2367 2368 2369
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2370
	cd_mss = gso_size;
2371 2372 2373
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2374 2375 2376
	return 1;
}

J
Jacob Keller 已提交
2377 2378 2379 2380 2381
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2382
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2402 2403 2404
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2405 2406
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2419 2420 2421
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2422
 * @tx_flags: pointer to Tx flags currently set
2423 2424
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2425
 * @tx_ring: Tx descriptor ring
2426 2427
 * @cd_tunneling: ptr to context desc bits
 **/
2428 2429 2430 2431
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2432
{
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2443
	unsigned char *exthdr;
2444
	u32 offset, cmd = 0;
2445
	__be16 frag_off;
2446 2447
	u8 l4_proto = 0;

2448 2449 2450
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2451 2452
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2453

2454 2455 2456
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2457
	if (skb->encapsulation) {
2458
		u32 tunnel = 0;
2459 2460
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2461 2462 2463 2464
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2465 2466
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2467
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2468 2469

			exthdr = ip.hdr + sizeof(*ip.v6);
2470
			l4_proto = ip.v6->nexthdr;
2471 2472 2473
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2474 2475 2476 2477
		}

		/* define outer transport */
		switch (l4_proto) {
2478
		case IPPROTO_UDP:
2479
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2480
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2481
			break;
2482
		case IPPROTO_GRE:
2483
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2484
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2485
			break;
2486 2487 2488 2489 2490
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2491
		default:
2492 2493 2494 2495 2496
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2497
		}
2498

2499 2500 2501 2502 2503 2504 2505
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2506 2507 2508 2509
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2510 2511
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2512
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2513 2514 2515
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2516 2517 2518
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2519 2520
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2521
		l4_proto = 0;
2522

2523 2524 2525 2526 2527
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2528
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2529 2530 2531
	}

	/* Enable IP checksum offloads */
2532
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2533
		l4_proto = ip.v4->protocol;
2534 2535 2536
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2537 2538 2539
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2540
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2541
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2542 2543 2544 2545 2546 2547

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2548
	}
2549

2550 2551
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2552 2553

	/* Enable L4 checksum offloads */
2554
	switch (l4_proto) {
2555 2556
	case IPPROTO_TCP:
		/* enable checksum offloads */
2557 2558
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2559 2560 2561
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2562 2563 2564
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2565 2566 2567
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2568 2569 2570
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2571 2572
		break;
	default:
2573 2574 2575 2576
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2577
	}
2578 2579 2580

	*td_cmd |= cmd;
	*td_offset |= offset;
2581 2582

	return 1;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2597
	int i = tx_ring->next_to_use;
2598

2599 2600
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2601 2602 2603
		return;

	/* grab the next descriptor */
2604 2605 2606 2607
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2608 2609 2610 2611

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2612
	context_desc->rsvd = cpu_to_le16(0);
2613 2614 2615
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2616 2617 2618 2619 2620 2621 2622
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2623
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2639
/**
2640
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2641 2642
 * @skb:      send buffer
 *
2643 2644 2645 2646 2647 2648 2649 2650
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2651
 **/
2652
bool __i40e_chk_linearize(struct sk_buff *skb)
2653
{
2654
	const struct skb_frag_struct *frag, *stale;
2655
	int nr_frags, sum;
2656

2657
	/* no need to check if number of frags is less than 7 */
2658
	nr_frags = skb_shinfo(skb)->nr_frags;
2659
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2660
		return false;
2661

2662
	/* We need to walk through the list and validate that each group
2663
	 * of 6 fragments totals at least gso_size.
2664
	 */
2665
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2666 2667 2668 2669 2670 2671 2672 2673
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2674
	sum = 1 - skb_shinfo(skb)->gso_size;
2675

2676 2677 2678 2679 2680 2681
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2682 2683 2684 2685 2686 2687

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2688
		sum += skb_frag_size(frag++);
2689 2690 2691 2692 2693

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2694
		if (!nr_frags--)
2695 2696
			break;

2697
		sum -= skb_frag_size(stale++);
2698 2699
	}

2700
	return false;
2701 2702
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2713
#ifdef I40E_FCOE
2714
inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2715 2716
			struct i40e_tx_buffer *first, u32 tx_flags,
			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2717 2718 2719 2720
#else
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2721
#endif
2722 2723 2724
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2725
	struct skb_frag_struct *frag;
2726 2727
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2728
	u16 i = tx_ring->next_to_use;
2729 2730
	u32 td_tag = 0;
	dma_addr_t dma;
2731
	u16 desc_count = 1;
2732 2733 2734 2735 2736 2737 2738

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2739 2740 2741 2742
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2743
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2744 2745 2746
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2747 2748
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2749 2750 2751 2752 2753 2754 2755
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2756 2757
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2758 2759 2760
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2761 2762
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2763
					   max_data, td_tag);
2764 2765 2766

			tx_desc++;
			i++;
2767 2768
			desc_count++;

2769 2770 2771 2772 2773
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2774 2775
			dma += max_data;
			size -= max_data;
2776

2777
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2778 2779
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2780 2781 2782 2783

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
2784 2785
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
2786 2787 2788

		tx_desc++;
		i++;
2789 2790
		desc_count++;

2791 2792 2793 2794 2795
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
2796 2797
		size = skb_frag_size(frag);
		data_len -= size;
2798

A
Alexander Duyck 已提交
2799 2800
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
2801

A
Alexander Duyck 已提交
2802 2803
		tx_bi = &tx_ring->tx_bi[i];
	}
2804

2805
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
2806 2807 2808 2809 2810 2811 2812

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
2813
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

2824
	/* Algorithm to optimize tail and RS bit setting:
2825 2826 2827 2828 2829 2830
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
2831
	 *
2832 2833 2834 2835 2836
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
2837
	 *
2838
	 * Note: If there are less than 4 descriptors
2839 2840 2841
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
2852 2853 2854 2855
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2868

A
Alexander Duyck 已提交
2869
	/* notify HW of packet */
2870
	if (desc_count) {
2871
		writel(i, tx_ring->tail);
2872 2873 2874 2875 2876

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2877
	}
2878

2879 2880 2881
	return;

dma_error:
A
Alexander Duyck 已提交
2882
	dev_info(tx_ring->dev, "TX DMA map failed\n");
2883 2884 2885 2886

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
2887
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2916
	int tso, count;
J
Jacob Keller 已提交
2917
	int tsyn;
J
Jesse Brandeburg 已提交
2918

2919 2920 2921
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2922
	count = i40e_xmit_descriptor_count(skb);
2923
	if (i40e_chk_linearize(skb, count)) {
2924 2925 2926 2927
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2928
		count = i40e_txd_use_count(skb->len);
2929 2930
		tx_ring->tx_stats.tx_linearize++;
	}
2931 2932 2933 2934 2935 2936 2937 2938 2939

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2940
		return NETDEV_TX_BUSY;
2941
	}
2942

2943 2944 2945 2946 2947 2948
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2949 2950 2951 2952 2953
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
2954
	protocol = vlan_get_protocol(skb);
2955 2956

	/* setup IPv4/IPv6 offloads */
2957
	if (protocol == htons(ETH_P_IP))
2958
		tx_flags |= I40E_TX_FLAGS_IPV4;
2959
	else if (protocol == htons(ETH_P_IPV6))
2960 2961
		tx_flags |= I40E_TX_FLAGS_IPV6;

2962
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2963 2964 2965 2966 2967 2968

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

2969 2970 2971 2972 2973 2974
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
2975 2976 2977 2978 2979
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

2980 2981
	skb_tx_timestamp(skb);

2982 2983 2984
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2985 2986 2987 2988 2989 2990 2991
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
2992
	i40e_atr(tx_ring, skb, tx_flags);
2993 2994 2995 2996 2997 2998 2999

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3000 3001
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3016
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3017 3018 3019 3020

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3021 3022
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3023 3024 3025

	return i40e_xmit_frame_ring(skb, tx_ring);
}