scrub.c 116.0 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66
struct scrub_recover {
67
	refcount_t		refs;
68 69 70 71
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	refcount_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	refcount_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
205
	refcount_t              refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 252
				struct scrub_block *sblock,
				int retry_failed_mirror);
253
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255
					     struct scrub_block *sblock_good);
256 257 258
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
259 260 261
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
262 263 264 265 266
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
267 268
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
269 270
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
271 272
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
273
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274
		       u64 physical, struct btrfs_device *dev, u64 flags,
275 276
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
277
static void scrub_bio_end_io(struct bio *bio);
278 279
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
280 281 282 283 284
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
285
static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
286 287 288 289 290 291
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
292
static void scrub_wr_bio_end_io(struct bio *bio);
293 294 295 296
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
297
				      struct scrub_copy_nocow_ctx *ctx);
298 299 300
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
301
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
303
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
304 305


306 307
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
308
	refcount_inc(&sctx->refs);
309 310 311 312 313 314 315
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
316
	scrub_put_ctx(sctx);
317 318
}

319
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
320 321 322 323 324 325 326 327 328
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

329
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
330 331 332
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
333
}
334

335 336
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
337 338 339 340 341 342 343 344
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

345 346 347 348 349 350
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

351 352 353 354 355 356
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
357
	struct btrfs_fs_info *fs_info = sctx->fs_info;
358

359
	refcount_inc(&sctx->refs);
360 361 362 363 364 365 366 367 368 369 370 371 372
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
373 374 375 376 377 378 379 380 381 382

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

383 384 385 386 387 388
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
389
	struct btrfs_fs_info *fs_info = sctx->fs_info;
390 391 392 393 394 395 396 397 398 399 400 401

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
402
	scrub_put_ctx(sctx);
403 404
}

405
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
406
{
407
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
408
		struct btrfs_ordered_sum *sum;
409
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
410 411 412 413 414 415
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

416
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
417 418 419
{
	int i;

420
	if (!sctx)
A
Arne Jansen 已提交
421 422
		return;

423 424
	scrub_free_wr_ctx(&sctx->wr_ctx);

425
	/* this can happen when scrub is cancelled */
426 427
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
428 429

		for (i = 0; i < sbio->page_count; i++) {
430
			WARN_ON(!sbio->pagev[i]->page);
431 432 433 434 435
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

436
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
437
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
438 439 440 441 442 443

		if (!sbio)
			break;
		kfree(sbio);
	}

444 445
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
446 447
}

448 449
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
450
	if (refcount_dec_and_test(&sctx->refs))
451 452 453
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
454
static noinline_for_stack
455
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
456
{
457
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
458
	int		i;
459
	struct btrfs_fs_info *fs_info = dev->fs_info;
460
	int ret;
A
Arne Jansen 已提交
461

462
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
463
	if (!sctx)
A
Arne Jansen 已提交
464
		goto nomem;
465
	refcount_set(&sctx->refs, 1);
466
	sctx->is_dev_replace = is_dev_replace;
467
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
468
	sctx->curr = -1;
469
	sctx->fs_info = dev->fs_info;
470
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
471 472
		struct scrub_bio *sbio;

473
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
474 475
		if (!sbio)
			goto nomem;
476
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
477 478

		sbio->index = i;
479
		sbio->sctx = sctx;
480
		sbio->page_count = 0;
481 482
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
483

484
		if (i != SCRUB_BIOS_PER_SCTX - 1)
485
			sctx->bios[i]->next_free = i + 1;
486
		else
487 488 489
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
490 491
	sctx->nodesize = fs_info->nodesize;
	sctx->sectorsize = fs_info->sectorsize;
492 493
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
494 495 496 497 498 499 500
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
501

502
	ret = scrub_setup_wr_ctx(&sctx->wr_ctx,
503 504 505 506 507
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
508
	return sctx;
A
Arne Jansen 已提交
509 510

nomem:
511
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
512 513 514
	return ERR_PTR(-ENOMEM);
}

515 516
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
517 518 519 520 521 522 523
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
524
	struct scrub_warning *swarn = warn_ctx;
525
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
526 527 528
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
529
	struct btrfs_key key;
530 531 532 533 534 535 536 537 538 539

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

540 541 542
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
543 544 545 546 547
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
548 549 550 551 552 553 554 555 556 557 558 559 560
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
561 562 563 564 565
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
566 567 568 569 570 571 572 573 574 575
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
576 577 578 579 580 581 582 583
		btrfs_warn_in_rcu(fs_info,
				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
				  (unsigned long long)swarn->sector,
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
584 585 586 587 588

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
589 590 591 592 593 594
	btrfs_warn_in_rcu(fs_info,
			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
			  (unsigned long long)swarn->sector,
			  root, inum, offset, ret);
595 596 597 598 599

	free_ipath(ipath);
	return 0;
}

600
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601
{
602 603
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
604 605 606 607 608
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
609 610 611
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
612
	u64 ref_root;
613
	u32 item_size;
614
	u8 ref_level = 0;
615
	int ret;
616

617
	WARN_ON(sblock->page_count < 1);
618
	dev = sblock->pagev[0]->dev;
619
	fs_info = sblock->sctx->fs_info;
620

621
	path = btrfs_alloc_path();
622 623
	if (!path)
		return;
624

625 626
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
627
	swarn.errstr = errstr;
628
	swarn.dev = NULL;
629

630 631
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
632 633 634
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
635
	extent_item_pos = swarn.logical - found_key.objectid;
636 637 638 639 640 641
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

642
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643
		do {
644 645 646
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
647
			btrfs_warn_in_rcu(fs_info,
J
Jeff Mahoney 已提交
648 649
				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
				errstr, swarn.logical,
650
				rcu_str_deref(dev->name),
651 652 653 654 655
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
656
		btrfs_release_path(path);
657
	} else {
658
		btrfs_release_path(path);
659
		swarn.path = path;
660
		swarn.dev = dev;
661 662
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
663 664 665 666 667 668 669
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

670
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
671
{
672
	struct page *page = NULL;
673
	unsigned long index;
674
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
675
	int ret;
676
	int corrected = 0;
677
	struct btrfs_key key;
678
	struct inode *inode = NULL;
679
	struct btrfs_fs_info *fs_info;
680 681
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
682
	int srcu_index;
683 684 685 686

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
687 688 689 690 691 692 693

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
694
		return PTR_ERR(local_root);
695
	}
696 697 698 699

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
700 701
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
702 703 704
	if (IS_ERR(inode))
		return PTR_ERR(inode);

705
	index = offset >> PAGE_SHIFT;
706 707

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
734
		ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE,
735
					fixup->logical, page,
736
					offset - page_offset(page),
737 738 739 740 741 742 743 744 745 746
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
747
					EXTENT_DAMAGED);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
765
						EXTENT_DAMAGED);
766 767 768 769 770
	}

out:
	if (page)
		put_page(page);
771 772

	iput(inode);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
790
	struct btrfs_fs_info *fs_info;
791 792
	int ret;
	struct scrub_fixup_nodatasum *fixup;
793
	struct scrub_ctx *sctx;
794 795 796 797 798
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799
	sctx = fixup->sctx;
800
	fs_info = fixup->root->fs_info;
801 802 803

	path = btrfs_alloc_path();
	if (!path) {
804 805 806
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
826 827
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
					  scrub_fixup_readpage, fixup);
828 829 830 831 832 833
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

834 835 836
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
837 838 839

out:
	if (trans && !IS_ERR(trans))
840
		btrfs_end_transaction(trans);
841
	if (uncorrectable) {
842 843 844
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
845
		btrfs_dev_replace_stats_inc(
846 847
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
848
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
849
			fixup->logical, rcu_str_deref(fixup->dev->name));
850 851 852 853 854
	}

	btrfs_free_path(path);
	kfree(fixup);

855
	scrub_pending_trans_workers_dec(sctx);
856 857
}

858 859
static inline void scrub_get_recover(struct scrub_recover *recover)
{
860
	refcount_inc(&recover->refs);
861 862
}

863 864
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
865
{
866
	if (refcount_dec_and_test(&recover->refs)) {
867
		btrfs_bio_counter_dec(fs_info);
868
		btrfs_put_bbio(recover->bbio);
869 870 871 872
		kfree(recover);
	}
}

A
Arne Jansen 已提交
873
/*
874 875 876 877 878 879
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
880
 */
881
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
882
{
883
	struct scrub_ctx *sctx = sblock_to_check->sctx;
884
	struct btrfs_device *dev;
885 886 887 888 889 890 891 892 893 894 895 896
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
897
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
898 899 900
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
901
	fs_info = sctx->fs_info;
902 903 904 905 906 907 908 909 910 911 912
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
913
	length = sblock_to_check->page_count * PAGE_SIZE;
914 915 916 917
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
918
			BTRFS_EXTENT_FLAG_DATA);
919 920
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
921

922 923 924 925 926
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

956 957
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
958
	if (!sblocks_for_recheck) {
959 960 961 962 963
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
964
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
965
		goto out;
A
Arne Jansen 已提交
966 967
	}

968
	/* setup the context, map the logical blocks and alloc the pages */
969
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
970
	if (ret) {
971 972 973 974
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
975
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 977 978 979
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
980

981
	/* build and submit the bios for the failed mirror, check checksums */
982
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
983

984 985 986 987 988 989 990 991 992 993
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
994 995
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
996
		sblock_to_check->data_corrected = 1;
997
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
998

999 1000
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1001
		goto out;
A
Arne Jansen 已提交
1002 1003
	}

1004
	if (!sblock_bad->no_io_error_seen) {
1005 1006 1007
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1008 1009
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1010
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011
	} else if (sblock_bad->checksum_error) {
1012 1013 1014
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1015 1016
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1017
		btrfs_dev_stat_inc_and_print(dev,
1018
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019
	} else if (sblock_bad->header_error) {
1020 1021 1022
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1023 1024 1025
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1026
		if (sblock_bad->generation_error)
1027
			btrfs_dev_stat_inc_and_print(dev,
1028 1029
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1030
			btrfs_dev_stat_inc_and_print(dev,
1031
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032
	}
A
Arne Jansen 已提交
1033

1034 1035 1036 1037
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1038

1039 1040
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1041

1042 1043
		WARN_ON(sctx->is_dev_replace);

1044 1045
nodatasum_case:

1046 1047
		/*
		 * !is_metadata and !have_csum, this means that the data
1048
		 * might not be COWed, that it might be modified
1049 1050 1051 1052 1053 1054 1055
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1056
		fixup_nodatasum->sctx = sctx;
1057
		fixup_nodatasum->dev = dev;
1058 1059 1060
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061
		scrub_pending_trans_workers_inc(sctx);
1062 1063
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1064 1065
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1066
		goto out;
A
Arne Jansen 已提交
1067 1068
	}

1069 1070
	/*
	 * now build and submit the bios for the other mirrors, check
1071 1072
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1088
		struct scrub_block *sblock_other;
1089

1090 1091 1092 1093 1094
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1095
		scrub_recheck_block(fs_info, sblock_other, 0);
1096 1097

		if (!sblock_other->header_error &&
1098 1099
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1100 1101
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1102
				goto corrected_error;
1103 1104
			} else {
				ret = scrub_repair_block_from_good_copy(
1105 1106 1107
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1108
			}
1109 1110
		}
	}
A
Arne Jansen 已提交
1111

1112 1113
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1114 1115 1116

	/*
	 * In case of I/O errors in the area that is supposed to be
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1129
	 * the final checksum succeeds. But this would be a rare
1130 1131 1132 1133 1134 1135 1136 1137
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1138
	 */
1139
	success = 1;
1140 1141
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1142
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143
		struct scrub_block *sblock_other = NULL;
1144

1145 1146
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1147
			continue;
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1160 1161
				}
			}
1162 1163
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1164
		}
A
Arne Jansen 已提交
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1180
					&fs_info->dev_replace.num_write_errors);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1191
		}
A
Arne Jansen 已提交
1192 1193
	}

1194
	if (success && !sctx->is_dev_replace) {
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1205
			scrub_recheck_block(fs_info, sblock_bad, 1);
1206
			if (!sblock_bad->header_error &&
1207 1208 1209 1210 1211 1212 1213
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1214 1215
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1216
			sblock_to_check->data_corrected = 1;
1217
			spin_unlock(&sctx->stat_lock);
1218 1219
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1220
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1221
		}
1222 1223
	} else {
did_not_correct_error:
1224 1225 1226
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1227 1228
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1229
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1230
	}
A
Arne Jansen 已提交
1231

1232 1233 1234 1235 1236 1237
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1238
			struct scrub_recover *recover;
1239 1240
			int page_index;

1241 1242 1243
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1244 1245
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1246
					scrub_put_recover(fs_info, recover);
1247 1248 1249
					sblock->pagev[page_index]->recover =
									NULL;
				}
1250 1251
				scrub_page_put(sblock->pagev[page_index]);
			}
1252 1253 1254
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1255

1256 1257
	return 0;
}
A
Arne Jansen 已提交
1258

1259
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260
{
Z
Zhao Lei 已提交
1261 1262 1263 1264 1265
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1266 1267 1268
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1269 1270
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1271 1272 1273 1274 1275 1276 1277
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1278
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1299
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300 1301
				     struct scrub_block *sblocks_for_recheck)
{
1302
	struct scrub_ctx *sctx = original_sblock->sctx;
1303
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1304 1305
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1306 1307 1308
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1309 1310 1311 1312 1313 1314
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1315
	int page_index = 0;
1316
	int mirror_index;
1317
	int nmirrors;
1318 1319 1320
	int ret;

	/*
1321
	 * note: the two members refs and outstanding_pages
1322 1323 1324 1325 1326
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1327 1328 1329
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1330

1331 1332 1333 1334
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1335
		btrfs_bio_counter_inc_blocked(fs_info);
1336
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1337
				logical, &mapped_length, &bbio);
1338
		if (ret || !bbio || mapped_length < sublen) {
1339
			btrfs_put_bbio(bbio);
1340
			btrfs_bio_counter_dec(fs_info);
1341 1342
			return -EIO;
		}
A
Arne Jansen 已提交
1343

1344 1345
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1346
			btrfs_put_bbio(bbio);
1347
			btrfs_bio_counter_dec(fs_info);
1348 1349 1350
			return -ENOMEM;
		}

1351
		refcount_set(&recover->refs, 1);
1352 1353 1354
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1355
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1356

1357
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1358

1359
		for (mirror_index = 0; mirror_index < nmirrors;
1360 1361 1362 1363 1364
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1365
			sblock->sctx = sctx;
1366

1367 1368 1369
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1370 1371 1372
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1373
				scrub_put_recover(fs_info, recover);
1374 1375
				return -ENOMEM;
			}
1376 1377
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1378 1379 1380
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1381
			page->logical = logical;
1382 1383 1384 1385 1386
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1387

Z
Zhao Lei 已提交
1388 1389 1390
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1391
						      mapped_length,
1392 1393
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1394 1395 1396 1397 1398 1399 1400
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1401 1402 1403 1404
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1405 1406
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1407
			sblock->page_count++;
1408 1409 1410
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1411 1412 1413

			scrub_get_recover(recover);
			page->recover = recover;
1414
		}
1415
		scrub_put_recover(fs_info, recover);
1416 1417 1418 1419 1420 1421
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1422 1423
}

1424 1425 1426 1427 1428
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1429
static void scrub_bio_wait_endio(struct bio *bio)
1430 1431 1432
{
	struct scrub_bio_ret *ret = bio->bi_private;

1433
	ret->error = bio->bi_error;
1434 1435 1436 1437 1438
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1439
	return page->recover &&
1440
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1456
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1457
				    page->recover->map_length,
1458
				    page->mirror_num, 0);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1469 1470 1471 1472 1473 1474 1475
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1476
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1477 1478
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1479
{
1480
	int page_num;
I
Ilya Dryomov 已提交
1481

1482
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1483

1484 1485
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1486
		struct scrub_page *page = sblock->pagev[page_num];
1487

1488
		if (page->dev->bdev == NULL) {
1489 1490 1491 1492 1493
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1494
		WARN_ON(!page->page);
1495
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1496 1497 1498 1499 1500
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1501
		bio->bi_bdev = page->dev->bdev;
1502

1503
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1504
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1505 1506
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
				page->io_error = 1;
1507
				sblock->no_io_error_seen = 0;
1508
			}
1509 1510
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;
M
Mike Christie 已提交
1511
			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1512

1513 1514
			if (btrfsic_submit_bio_wait(bio)) {
				page->io_error = 1;
1515
				sblock->no_io_error_seen = 0;
1516
			}
1517
		}
1518

1519 1520
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1521

1522
	if (sblock->no_io_error_seen)
1523
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1524 1525
}

M
Miao Xie 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1536
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1537
{
1538 1539 1540
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1541

1542 1543 1544 1545
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1546 1547
}

1548
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1549
					     struct scrub_block *sblock_good)
1550 1551 1552
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1553

1554 1555
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1556

1557 1558
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1559
							   page_num, 1);
1560 1561
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1562
	}
1563 1564 1565 1566 1567 1568 1569 1570

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1571 1572
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1573
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1574

1575 1576
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1577 1578 1579 1580 1581
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1582
		if (!page_bad->dev->bdev) {
1583
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1584
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1585 1586 1587
			return -EIO;
		}

1588
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1589 1590
		if (!bio)
			return -EIO;
1591
		bio->bi_bdev = page_bad->dev->bdev;
1592
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1593
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1594 1595 1596 1597 1598

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1599
		}
1600

1601
		if (btrfsic_submit_bio_wait(bio)) {
1602 1603
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1604
			btrfs_dev_replace_stats_inc(
1605
				&fs_info->dev_replace.num_write_errors);
1606 1607 1608
			bio_put(bio);
			return -EIO;
		}
1609
		bio_put(bio);
A
Arne Jansen 已提交
1610 1611
	}

1612 1613 1614
	return 0;
}

1615 1616
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1617
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1618 1619
	int page_num;

1620 1621 1622 1623 1624 1625 1626
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1627 1628 1629 1630 1631 1632
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1633
				&fs_info->dev_replace.num_write_errors);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1646
		memset(mapped_buffer, 0, PAGE_SIZE);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1664
					      GFP_KERNEL);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1681 1682
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					wr_ctx->pages_per_wr_bio);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1693
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1694
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1742
	btrfsic_submit_bio(sbio->bio);
1743 1744
}

1745
static void scrub_wr_bio_end_io(struct bio *bio)
1746 1747
{
	struct scrub_bio *sbio = bio->bi_private;
1748
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1749

1750
	sbio->err = bio->bi_error;
1751 1752
	sbio->bio = bio;

1753 1754
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1755
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
1767
			&sbio->sctx->fs_info->dev_replace;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1787 1788 1789 1790
{
	u64 flags;
	int ret;

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1803 1804
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1816 1817

	return ret;
A
Arne Jansen 已提交
1818 1819
}

1820
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1821
{
1822
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1823
	u8 csum[BTRFS_CSUM_SIZE];
1824 1825 1826
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1827
	u32 crc = ~(u32)0;
1828 1829
	u64 len;
	int index;
A
Arne Jansen 已提交
1830

1831
	BUG_ON(sblock->page_count < 1);
1832
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1833 1834
		return 0;

1835 1836
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1837
	buffer = kmap_atomic(page);
1838

1839
	len = sctx->sectorsize;
1840 1841 1842 1843
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1844
		crc = btrfs_csum_data(buffer, crc, l);
1845
		kunmap_atomic(buffer);
1846 1847 1848 1849 1850
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1851 1852
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1853
		buffer = kmap_atomic(page);
1854 1855
	}

A
Arne Jansen 已提交
1856
	btrfs_csum_final(crc, csum);
1857
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1858
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1859

1860
	return sblock->checksum_error;
A
Arne Jansen 已提交
1861 1862
}

1863
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1864
{
1865
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1866
	struct btrfs_header *h;
1867
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1868 1869 1870 1871 1872 1873
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1874
	u32 crc = ~(u32)0;
1875 1876 1877 1878
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1879
	page = sblock->pagev[0]->page;
1880
	mapped_buffer = kmap_atomic(page);
1881
	h = (struct btrfs_header *)mapped_buffer;
1882
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1883 1884 1885 1886 1887 1888

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1889
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1890
		sblock->header_error = 1;
A
Arne Jansen 已提交
1891

1892 1893 1894 1895
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1896

M
Miao Xie 已提交
1897
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1898
		sblock->header_error = 1;
A
Arne Jansen 已提交
1899 1900 1901

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1902
		sblock->header_error = 1;
A
Arne Jansen 已提交
1903

1904
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1905 1906 1907 1908 1909 1910
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1911
		crc = btrfs_csum_data(p, crc, l);
1912
		kunmap_atomic(mapped_buffer);
1913 1914 1915 1916 1917
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1918 1919
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1920
		mapped_buffer = kmap_atomic(page);
1921 1922 1923 1924 1925
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1926
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1927
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1928

1929
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1930 1931
}

1932
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1933 1934
{
	struct btrfs_super_block *s;
1935
	struct scrub_ctx *sctx = sblock->sctx;
1936 1937 1938 1939 1940 1941
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1942
	u32 crc = ~(u32)0;
1943 1944
	int fail_gen = 0;
	int fail_cor = 0;
1945 1946
	u64 len;
	int index;
A
Arne Jansen 已提交
1947

1948
	BUG_ON(sblock->page_count < 1);
1949
	page = sblock->pagev[0]->page;
1950
	mapped_buffer = kmap_atomic(page);
1951
	s = (struct btrfs_super_block *)mapped_buffer;
1952
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1953

1954
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1955
		++fail_cor;
A
Arne Jansen 已提交
1956

1957
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1958
		++fail_gen;
A
Arne Jansen 已提交
1959

M
Miao Xie 已提交
1960
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1961
		++fail_cor;
A
Arne Jansen 已提交
1962

1963 1964 1965 1966 1967 1968 1969
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1970
		crc = btrfs_csum_data(p, crc, l);
1971
		kunmap_atomic(mapped_buffer);
1972 1973 1974 1975 1976
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1977 1978
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1979
		mapped_buffer = kmap_atomic(page);
1980 1981 1982 1983 1984
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1985
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1986
		++fail_cor;
A
Arne Jansen 已提交
1987

1988
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1989 1990 1991 1992 1993
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1994 1995 1996
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1997
		if (fail_cor)
1998
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1999 2000
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2001
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2002
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2003 2004
	}

2005
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2006 2007
}

2008 2009
static void scrub_block_get(struct scrub_block *sblock)
{
2010
	refcount_inc(&sblock->refs);
2011 2012 2013 2014
}

static void scrub_block_put(struct scrub_block *sblock)
{
2015
	if (refcount_dec_and_test(&sblock->refs)) {
2016 2017
		int i;

2018 2019 2020
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2021
		for (i = 0; i < sblock->page_count; i++)
2022
			scrub_page_put(sblock->pagev[i]);
2023 2024 2025 2026
		kfree(sblock);
	}
}

2027 2028
static void scrub_page_get(struct scrub_page *spage)
{
2029
	atomic_inc(&spage->refs);
2030 2031 2032 2033
}

static void scrub_page_put(struct scrub_page *spage)
{
2034
	if (atomic_dec_and_test(&spage->refs)) {
2035 2036 2037 2038 2039 2040
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2041
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2042 2043 2044
{
	struct scrub_bio *sbio;

2045
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2046
		return;
A
Arne Jansen 已提交
2047

2048 2049
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2050
	scrub_pending_bio_inc(sctx);
2051
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2052 2053
}

2054 2055
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2056
{
2057
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2058
	struct scrub_bio *sbio;
2059
	int ret;
A
Arne Jansen 已提交
2060 2061 2062 2063 2064

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2065 2066 2067 2068 2069 2070 2071 2072
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2073
		} else {
2074 2075
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2076 2077
		}
	}
2078
	sbio = sctx->bios[sctx->curr];
2079
	if (sbio->page_count == 0) {
2080 2081
		struct bio *bio;

2082 2083
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2084
		sbio->dev = spage->dev;
2085 2086
		bio = sbio->bio;
		if (!bio) {
2087 2088
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					sctx->pages_per_rd_bio);
2089 2090 2091 2092
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2093 2094 2095

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2096
		bio->bi_bdev = sbio->dev->bdev;
2097
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2098
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2099
		sbio->err = 0;
2100 2101 2102
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2103 2104
		   spage->logical ||
		   sbio->dev != spage->dev) {
2105
		scrub_submit(sctx);
A
Arne Jansen 已提交
2106 2107
		goto again;
	}
2108

2109 2110 2111 2112 2113 2114 2115 2116
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2117
		scrub_submit(sctx);
2118 2119 2120
		goto again;
	}

2121
	scrub_block_get(sblock); /* one for the page added to the bio */
2122 2123
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2124
	if (sbio->page_count == sctx->pages_per_rd_bio)
2125
		scrub_submit(sctx);
2126 2127 2128 2129

	return 0;
}

2130
static void scrub_missing_raid56_end_io(struct bio *bio)
2131 2132
{
	struct scrub_block *sblock = bio->bi_private;
2133
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2134

2135
	if (bio->bi_error)
2136 2137
		sblock->no_io_error_seen = 0;

2138 2139
	bio_put(bio);

2140 2141 2142 2143 2144 2145 2146
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2147
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2148 2149 2150 2151 2152 2153
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2154
	if (sblock->no_io_error_seen)
2155
		scrub_recheck_block_checksum(sblock);
2156 2157 2158 2159 2160

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2161
		btrfs_err_rl_in_rcu(fs_info,
2162
			"IO error rebuilding logical %llu for dev %s",
2163 2164 2165 2166 2167
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2168
		btrfs_err_rl_in_rcu(fs_info,
2169
			"failed to rebuild valid logical %llu for dev %s",
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2190
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2191 2192
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2193
	struct btrfs_bio *bbio = NULL;
2194 2195 2196 2197 2198
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2199
	btrfs_bio_counter_inc_blocked(fs_info);
2200
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2201
			&length, &bbio);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2224
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2244
	btrfs_bio_counter_dec(fs_info);
2245 2246 2247 2248 2249 2250
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2251
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2252
		       u64 physical, struct btrfs_device *dev, u64 flags,
2253 2254
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2255 2256 2257 2258
{
	struct scrub_block *sblock;
	int index;

2259
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2260
	if (!sblock) {
2261 2262 2263
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2264
		return -ENOMEM;
A
Arne Jansen 已提交
2265
	}
2266

2267 2268
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2269
	refcount_set(&sblock->refs, 1);
2270
	sblock->sctx = sctx;
2271 2272 2273
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2274
		struct scrub_page *spage;
2275 2276
		u64 l = min_t(u64, len, PAGE_SIZE);

2277
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2278 2279
		if (!spage) {
leave_nomem:
2280 2281 2282
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2283
			scrub_block_put(sblock);
2284 2285
			return -ENOMEM;
		}
2286 2287 2288
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2289
		spage->sblock = sblock;
2290
		spage->dev = dev;
2291 2292 2293 2294
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2295
		spage->physical_for_dev_replace = physical_for_dev_replace;
2296 2297 2298
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2299
			memcpy(spage->csum, csum, sctx->csum_size);
2300 2301 2302 2303
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2304
		spage->page = alloc_page(GFP_KERNEL);
2305 2306
		if (!spage->page)
			goto leave_nomem;
2307 2308 2309
		len -= l;
		logical += l;
		physical += l;
2310
		physical_for_dev_replace += l;
2311 2312
	}

2313
	WARN_ON(sblock->page_count == 0);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2324

2325 2326 2327 2328 2329
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2330
		}
A
Arne Jansen 已提交
2331

2332 2333 2334
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2335

2336 2337
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2338 2339 2340
	return 0;
}

2341
static void scrub_bio_end_io(struct bio *bio)
2342 2343
{
	struct scrub_bio *sbio = bio->bi_private;
2344
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2345

2346
	sbio->err = bio->bi_error;
2347 2348
	sbio->bio = bio;

2349
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2350 2351 2352 2353 2354
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2355
	struct scrub_ctx *sctx = sbio->sctx;
2356 2357
	int i;

2358
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2380 2381 2382 2383
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2384 2385 2386 2387 2388 2389 2390 2391

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2392
	scrub_pending_bio_dec(sctx);
2393 2394
}

2395 2396 2397 2398
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2399
	u32 offset;
2400
	int nsectors;
2401
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2402 2403 2404 2405 2406 2407 2408

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2409
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2434 2435
static void scrub_block_complete(struct scrub_block *sblock)
{
2436 2437
	int corrupted = 0;

2438
	if (!sblock->no_io_error_seen) {
2439
		corrupted = 1;
2440
		scrub_handle_errored_block(sblock);
2441 2442 2443 2444 2445 2446
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2447 2448
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2449 2450
			scrub_write_block_to_dev_replace(sblock);
	}
2451 2452 2453 2454 2455 2456 2457 2458 2459

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2460 2461
}

2462
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2463 2464
{
	struct btrfs_ordered_sum *sum = NULL;
2465
	unsigned long index;
A
Arne Jansen 已提交
2466 2467
	unsigned long num_sectors;

2468 2469
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2470 2471 2472 2473 2474 2475
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2476
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2477 2478 2479 2480 2481 2482 2483
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2484
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2485
	num_sectors = sum->len / sctx->sectorsize;
2486 2487
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2488 2489 2490
		list_del(&sum->list);
		kfree(sum);
	}
2491
	return 1;
A
Arne Jansen 已提交
2492 2493 2494
}

/* scrub extent tries to collect up to 64 kB for each bio */
2495
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2496
			u64 physical, struct btrfs_device *dev, u64 flags,
2497
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2498 2499 2500
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2501 2502 2503
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2504 2505 2506 2507 2508
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2509
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2510 2511 2512 2513 2514
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2515
	} else {
2516
		blocksize = sctx->sectorsize;
2517
		WARN_ON(1);
2518
	}
A
Arne Jansen 已提交
2519 2520

	while (len) {
2521
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2522 2523 2524 2525
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2526
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2527
			if (have_csum == 0)
2528
				++sctx->stat.no_csum;
2529 2530 2531 2532 2533 2534
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2535
		}
2536
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2537 2538 2539
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2540 2541 2542 2543 2544
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2545
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2546 2547 2548 2549
	}
	return 0;
}

2550 2551 2552 2553 2554 2555 2556 2557 2558
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2559
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2560 2561 2562 2563 2564 2565 2566 2567 2568
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2569
	refcount_set(&sblock->refs, 1);
2570 2571 2572 2573 2574 2575 2576 2577 2578
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2579
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2609
		spage->page = alloc_page(GFP_KERNEL);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2644 2645 2646 2647 2648
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2664
			have_csum = scrub_find_csum(sctx, logical, csum);
2665 2666 2667 2668 2669 2670 2671 2672
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2673
skip:
2674 2675 2676 2677 2678 2679 2680
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2681 2682 2683 2684 2685 2686 2687 2688
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2689 2690
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2691 2692 2693 2694 2695
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2696 2697
	u32 stripe_index;
	u32 rot;
2698 2699 2700

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2701 2702 2703
	if (stripe_start)
		*stripe_start = last_offset;

2704 2705 2706 2707
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2708 2709
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2710 2711

		/* Work out the disk rotation on this stripe-set */
2712
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2713 2714
		/* calculate which stripe this data locates */
		rot += i;
2715
		stripe_index = rot % map->num_stripes;
2716 2717 2718 2719 2720 2721 2722 2723 2724
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2757
static void scrub_parity_bio_endio(struct bio *bio)
2758 2759
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2760
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2761

2762
	if (bio->bi_error)
2763 2764 2765 2766
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2767 2768 2769

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
2770
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2771 2772 2773 2774 2775
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2776
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2787
	length = sparity->logic_end - sparity->logic_start;
2788 2789

	btrfs_bio_counter_inc_blocked(fs_info);
2790
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2791
			       &length, &bbio);
2792
	if (ret || !bbio || !bbio->raid_map)
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2803
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2804
					      length, sparity->scrub_dev,
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2817
	btrfs_bio_counter_dec(fs_info);
2818
	btrfs_put_bbio(bbio);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2830
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2831 2832 2833 2834
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2835
	refcount_inc(&sparity->refs);
2836 2837 2838 2839
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2840
	if (!refcount_dec_and_test(&sparity->refs))
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2853
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2854 2855 2856
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2857
	struct btrfs_bio *bbio = NULL;
2858 2859 2860 2861 2862 2863 2864 2865 2866
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2867
	u64 mapped_length;
2868 2869 2870 2871 2872 2873 2874
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2875
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2892
	refcount_set(&sparity->refs, 1);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2941 2942 2943 2944
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2945
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2946
				bytes = fs_info->nodesize;
2947 2948 2949 2950 2951 2952
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2953
			if (key.objectid >= logic_end) {
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2966 2967 2968 2969
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2970 2971
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2972
					  key.objectid, logic_start);
2973 2974 2975
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2995
			mapped_length = extent_len;
2996
			bbio = NULL;
2997 2998 2999
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3026 3027 3028

			scrub_free_csums(sctx);

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3060
						logic_end - logic_start);
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3071
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3072 3073
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3074 3075
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3076
{
3077
	struct btrfs_path *path, *ppath;
3078
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3079 3080 3081
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3082
	struct blk_plug plug;
A
Arne Jansen 已提交
3083 3084 3085 3086 3087 3088 3089
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3090
	u64 logic_end;
3091
	u64 physical_end;
A
Arne Jansen 已提交
3092
	u64 generation;
3093
	int mirror_num;
A
Arne Jansen 已提交
3094 3095
	struct reada_control *reada1;
	struct reada_control *reada2;
3096
	struct btrfs_key key;
A
Arne Jansen 已提交
3097
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3098 3099
	u64 increment = map->stripe_len;
	u64 offset;
3100 3101 3102
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3103 3104
	u64 stripe_logical;
	u64 stripe_end;
3105 3106
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3107
	int stop_loop = 0;
D
David Woodhouse 已提交
3108

3109
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3110
	offset = 0;
3111
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3112 3113 3114
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3115
		mirror_num = 1;
A
Arne Jansen 已提交
3116 3117 3118 3119
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3120
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3121 3122
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3123
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3124 3125
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3126
		mirror_num = num % map->num_stripes + 1;
3127
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3128
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3129 3130
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3131 3132
	} else {
		increment = map->stripe_len;
3133
		mirror_num = 1;
A
Arne Jansen 已提交
3134 3135 3136 3137 3138 3139
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3140 3141
	ppath = btrfs_alloc_path();
	if (!ppath) {
3142
		btrfs_free_path(path);
3143 3144 3145
		return -ENOMEM;
	}

3146 3147 3148 3149 3150
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3151 3152 3153
	path->search_commit_root = 1;
	path->skip_locking = 1;

3154 3155
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3156
	/*
A
Arne Jansen 已提交
3157 3158 3159
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3160 3161
	 */
	logical = base + offset;
3162
	physical_end = physical + nstripes * map->stripe_len;
3163
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3164
		get_raid56_logic_offset(physical_end, num,
3165
					map, &logic_end, NULL);
3166 3167 3168 3169
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3170
	wait_event(sctx->list_wait,
3171
		   atomic_read(&sctx->bios_in_flight) == 0);
3172
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3173 3174

	/* FIXME it might be better to start readahead at commit root */
3175 3176 3177
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3178
	key_end.objectid = logic_end;
3179 3180
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3181
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3182

3183 3184 3185
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3186 3187
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3188
	key_end.offset = logic_end;
3189
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3190 3191 3192 3193 3194 3195

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3196 3197 3198 3199 3200

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3201
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3202 3203 3204 3205 3206

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3207
	while (physical < physical_end) {
A
Arne Jansen 已提交
3208 3209 3210 3211
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3212
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3213 3214 3215 3216 3217 3218 3219 3220
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3221
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3222
			scrub_submit(sctx);
3223 3224 3225
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3226
			wait_event(sctx->list_wait,
3227
				   atomic_read(&sctx->bios_in_flight) == 0);
3228
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3229
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3230 3231
		}

3232 3233 3234 3235 3236 3237
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3238
				/* it is parity strip */
3239
				stripe_logical += base;
3240
				stripe_end = stripe_logical + increment;
3241 3242 3243 3244 3245 3246 3247 3248 3249
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3250 3251 3252 3253
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3254
		key.objectid = logical;
L
Liu Bo 已提交
3255
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3256 3257 3258 3259

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3260

3261
		if (ret > 0) {
3262
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3263 3264
			if (ret < 0)
				goto out;
3265 3266 3267 3268 3269 3270 3271 3272 3273
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3274 3275
		}

L
Liu Bo 已提交
3276
		stop_loop = 0;
A
Arne Jansen 已提交
3277
		while (1) {
3278 3279
			u64 bytes;

A
Arne Jansen 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3289
				stop_loop = 1;
A
Arne Jansen 已提交
3290 3291 3292 3293
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3294 3295 3296 3297
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3298
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3299
				bytes = fs_info->nodesize;
3300 3301 3302 3303
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3304 3305
				goto next;

L
Liu Bo 已提交
3306 3307 3308 3309 3310 3311
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3312 3313 3314 3315 3316 3317

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3318 3319 3320 3321
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3322
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3323
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3324
				       key.objectid, logical);
3325 3326 3327
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3328 3329 3330
				goto next;
			}

L
Liu Bo 已提交
3331 3332 3333 3334
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3335 3336 3337
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3338 3339 3340
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3341
			}
L
Liu Bo 已提交
3342
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3343
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3344 3345
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3346 3347
			}

L
Liu Bo 已提交
3348
			extent_physical = extent_logical - logical + physical;
3349 3350 3351 3352 3353 3354 3355
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3356

3357 3358 3359 3360 3361
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3362 3363 3364
			if (ret)
				goto out;

3365 3366 3367
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3368
					   extent_logical - logical + physical);
3369 3370 3371

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3372 3373 3374
			if (ret)
				goto out;

L
Liu Bo 已提交
3375 3376
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3377
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3378 3379 3380 3381
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3392
								increment;
3393 3394 3395 3396 3397 3398 3399 3400
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3401 3402 3403 3404
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3405 3406 3407 3408 3409
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3410
				if (physical >= physical_end) {
L
Liu Bo 已提交
3411 3412 3413 3414
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3415 3416 3417
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3418
		btrfs_release_path(path);
3419
skip:
A
Arne Jansen 已提交
3420 3421
		logical += increment;
		physical += map->stripe_len;
3422
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3423 3424 3425 3426 3427
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3428
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3429 3430
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3431
	}
3432
out:
A
Arne Jansen 已提交
3433
	/* push queued extents */
3434
	scrub_submit(sctx);
3435 3436 3437
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3438

3439
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3440
	btrfs_free_path(path);
3441
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3442 3443 3444
	return ret < 0 ? ret : 0;
}

3445
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3446 3447
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3448 3449 3450
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3451
{
3452 3453
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3454 3455 3456
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3457
	int ret = 0;
A
Arne Jansen 已提交
3458 3459 3460 3461 3462

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3475

3476
	map = em->map_lookup;
A
Arne Jansen 已提交
3477 3478 3479 3480 3481 3482 3483
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3484
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3485
		    map->stripes[i].physical == dev_offset) {
3486
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3487 3488
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3500
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3501 3502
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3503 3504 3505
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3506 3507
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3508 3509
	u64 length;
	u64 chunk_offset;
3510
	int ret = 0;
3511
	int ro_set;
A
Arne Jansen 已提交
3512 3513 3514 3515 3516
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3517
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3518 3519 3520 3521 3522

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3523
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3524 3525 3526
	path->search_commit_root = 1;
	path->skip_locking = 1;

3527
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3528 3529 3530 3531 3532 3533
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3534 3535 3536 3537 3538
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3539 3540 3541 3542
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3543
					break;
3544 3545 3546
				}
			} else {
				ret = 0;
3547 3548
			}
		}
A
Arne Jansen 已提交
3549 3550 3551 3552 3553 3554

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3555
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3556 3557
			break;

3558
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3570 3571
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3572 3573 3574 3575 3576 3577 3578 3579

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3580 3581 3582 3583 3584 3585

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3586 3587 3588 3589 3590 3591 3592 3593 3594
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3595
		ret = btrfs_inc_block_group_ro(fs_info, cache);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
			ret = btrfs_wait_ordered_roots(fs_info, -1,
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3627
					ret = btrfs_commit_transaction(trans);
3628 3629 3630 3631 3632 3633 3634
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3635
		scrub_pause_off(fs_info);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3649 3650
			btrfs_warn(fs_info,
				   "failed setting block group ro, ret=%d\n",
3651
				   ret);
3652 3653 3654 3655
			btrfs_put_block_group(cache);
			break;
		}

3656
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3657 3658 3659
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3660
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3661
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3662
				  found_key.offset, cache, is_dev_replace);
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3682 3683

		scrub_pause_on(fs_info);
3684 3685 3686 3687 3688 3689

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3690 3691
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3692 3693
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3694
		scrub_pause_off(fs_info);
3695

3696 3697 3698 3699 3700
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3701
		if (ro_set)
3702
			btrfs_dec_block_group_ro(cache);
3703

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3726 3727 3728
		btrfs_put_block_group(cache);
		if (ret)
			break;
3729 3730
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3731 3732 3733 3734 3735 3736 3737
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3738
skip:
A
Arne Jansen 已提交
3739
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3740
		btrfs_release_path(path);
A
Arne Jansen 已提交
3741 3742 3743
	}

	btrfs_free_path(path);
3744

3745
	return ret;
A
Arne Jansen 已提交
3746 3747
}

3748 3749
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3750 3751 3752 3753 3754
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3755
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3756

3757
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3758 3759
		return -EIO;

3760
	/* Seed devices of a new filesystem has their own generation. */
3761
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3762 3763
		gen = scrub_dev->generation;
	else
3764
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3765 3766 3767

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3768 3769
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3770 3771
			break;

3772
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3773
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3774
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3775 3776 3777
		if (ret)
			return ret;
	}
3778
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3779 3780 3781 3782 3783 3784 3785

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3786 3787
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3788
{
3789
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3790
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3791

A
Arne Jansen 已提交
3792
	if (fs_info->scrub_workers_refcnt == 0) {
3793
		if (is_dev_replace)
3794
			fs_info->scrub_workers =
3795
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3796
						      1, 4);
3797
		else
3798
			fs_info->scrub_workers =
3799
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3800
						      max_active, 4);
3801 3802 3803
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3804
		fs_info->scrub_wr_completion_workers =
3805
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3806
					      max_active, 2);
3807 3808 3809
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3810
		fs_info->scrub_nocow_workers =
3811
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3812 3813
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3814
		fs_info->scrub_parity_workers =
3815
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3816
					      max_active, 2);
3817 3818
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3819
	}
A
Arne Jansen 已提交
3820
	++fs_info->scrub_workers_refcnt;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3831 3832
}

3833
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3834
{
3835
	if (--fs_info->scrub_workers_refcnt == 0) {
3836 3837 3838
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3839
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3840
	}
A
Arne Jansen 已提交
3841 3842 3843
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3844 3845
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3846
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3847
{
3848
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3849 3850
	int ret;
	struct btrfs_device *dev;
3851
	struct rcu_string *name;
A
Arne Jansen 已提交
3852

3853
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3854 3855
		return -EINVAL;

3856
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3857 3858 3859 3860 3861
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3862 3863
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3864 3865
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3866 3867 3868
		return -EINVAL;
	}

3869
	if (fs_info->sectorsize != PAGE_SIZE) {
3870
		/* not supported for data w/o checksums */
3871
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3872
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3873
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3874 3875 3876
		return -EINVAL;
	}

3877
	if (fs_info->nodesize >
3878
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3879
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3880 3881 3882 3883
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3884 3885
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3886
		       fs_info->nodesize,
3887
		       SCRUB_MAX_PAGES_PER_BLOCK,
3888
		       fs_info->sectorsize,
3889 3890 3891 3892
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3893

3894 3895
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3896
	if (!dev || (dev->missing && !is_dev_replace)) {
3897
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3898 3899 3900
		return -ENODEV;
	}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3911
	mutex_lock(&fs_info->scrub_lock);
3912
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3913
		mutex_unlock(&fs_info->scrub_lock);
3914 3915
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3916 3917
	}

3918
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3919 3920 3921
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3922
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
3923
		mutex_unlock(&fs_info->scrub_lock);
3924
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3925 3926
		return -EINPROGRESS;
	}
3927
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3928 3929 3930 3931 3932 3933 3934 3935

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3936
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3937
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3938
		mutex_unlock(&fs_info->scrub_lock);
3939 3940
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3941
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3942
	}
3943 3944
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3945
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3946

3947 3948 3949 3950
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3951
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3952 3953 3954
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3955
	if (!is_dev_replace) {
3956 3957 3958 3959
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3960
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3961
		ret = scrub_supers(sctx, dev);
3962
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3963
	}
A
Arne Jansen 已提交
3964 3965

	if (!ret)
3966 3967
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3968

3969
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3970 3971 3972
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3973
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3974

A
Arne Jansen 已提交
3975
	if (progress)
3976
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3977 3978 3979

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3980
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3981 3982
	mutex_unlock(&fs_info->scrub_lock);

3983
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3984 3985 3986 3987

	return ret;
}

3988
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4003
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4004 4005 4006 4007 4008
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4009
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4030 4031
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4032
{
4033
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4034 4035

	mutex_lock(&fs_info->scrub_lock);
4036 4037
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4038 4039 4040
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4041
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4052

4053
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4054 4055 4056
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4057
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4058

4059 4060
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4061
	if (dev)
4062 4063 4064
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4065
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4066

4067
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4068
}
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4081
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4082 4083 4084
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4085
		btrfs_put_bbio(bbio);
4086 4087 4088 4089 4090 4091
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4092
	btrfs_put_bbio(bbio);
4093 4094
}

4095
static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
4107
	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4125
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4142 4143
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4144
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4145 4146
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4147 4148 4149 4150

	return 0;
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4168 4169 4170 4171 4172
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4173 4174
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4200
					  record_inode_for_nocow, nocow_ctx);
4201
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4202 4203 4204 4205
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4206 4207 4208 4209
		not_written = 1;
		goto out;
	}

4210
	btrfs_end_transaction(trans);
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4228
out:
4229 4230 4231 4232 4233 4234 4235 4236
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4237
	if (trans && !IS_ERR(trans))
4238
		btrfs_end_transaction(trans);
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4249
static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4250 4251 4252 4253 4254 4255 4256 4257 4258
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

4259
	io_tree = &inode->io_tree;
4260

4261
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4262
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4293 4294
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4295
{
4296
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4297
	struct btrfs_key key;
4298 4299
	struct inode *inode;
	struct page *page;
4300
	struct btrfs_root *local_root;
4301
	struct extent_io_tree *io_tree;
4302
	u64 physical_for_dev_replace;
4303
	u64 nocow_ctx_logical;
4304
	u64 len = nocow_ctx->len;
4305
	unsigned long index;
4306
	int srcu_index;
4307 4308
	int ret = 0;
	int err = 0;
4309 4310 4311 4312

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4313 4314 4315

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4316
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4317 4318
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4319
		return PTR_ERR(local_root);
4320
	}
4321 4322 4323 4324 4325

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4326
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4327 4328 4329
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4330
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4331
	inode_lock(inode);
4332 4333
	inode_dio_wait(inode);

4334
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4335
	io_tree = &BTRFS_I(inode)->io_tree;
4336
	nocow_ctx_logical = nocow_ctx->logical;
4337

4338 4339
	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
			nocow_ctx_logical);
4340 4341 4342
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4343 4344
	}

4345 4346
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4347
again:
4348 4349
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4350
			btrfs_err(fs_info, "find_or_create_page() failed");
4351
			ret = -ENOMEM;
4352
			goto out;
4353 4354 4355 4356 4357 4358 4359
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4360
			err = extent_read_full_page(io_tree, page,
4361 4362
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4363 4364
			if (err) {
				ret = err;
4365 4366
				goto next_page;
			}
4367

4368
			lock_page(page);
4369 4370 4371 4372 4373 4374 4375
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4376
				unlock_page(page);
4377
				put_page(page);
4378 4379
				goto again;
			}
4380 4381 4382 4383 4384
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4385

4386
		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4387 4388 4389 4390 4391 4392
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4393 4394 4395 4396
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4397
next_page:
4398
		unlock_page(page);
4399
		put_page(page);
4400 4401 4402 4403

		if (ret)
			break;

4404 4405 4406 4407
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4408
	}
4409
	ret = COPY_COMPLETE;
4410
out:
A
Al Viro 已提交
4411
	inode_unlock(inode);
4412
	iput(inode);
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4427
		btrfs_warn_rl(dev->fs_info,
4428
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4429 4430
		return -EIO;
	}
4431
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4432 4433 4434 4435 4436 4437
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4438 4439
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4440
	bio->bi_bdev = dev->bdev;
4441
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4442 4443
	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
4444 4445 4446 4447 4448 4449
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4450
	if (btrfsic_submit_bio_wait(bio))
4451 4452 4453 4454 4455
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}