scrub.c 111.1 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127 128 129
	};
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

144
	atomic_t		refs;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

163 164 165 166 167 168 169 170
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

171
struct scrub_ctx {
172
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
174 175
	int			first_free;
	int			curr;
176 177
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
178 179 180 181 182
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
183
	int			readonly;
184
	int			pages_per_rd_bio;
185 186
	u32			sectorsize;
	u32			nodesize;
187 188

	int			is_dev_replace;
189
	struct scrub_wr_ctx	wr_ctx;
190

A
Arne Jansen 已提交
191 192 193 194 195
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
196 197 198 199 200 201 202 203 204

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
205 206
};

207
struct scrub_fixup_nodatasum {
208
	struct scrub_ctx	*sctx;
209
	struct btrfs_device	*dev;
210 211 212 213 214 215
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

216 217 218 219 220 221 222
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

223 224 225 226 227 228
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
229
	struct list_head	inodes;
230 231 232
	struct btrfs_work	work;
};

233 234 235 236 237 238 239 240 241
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

242 243 244 245
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
246
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
247
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
248
				     struct scrub_block *sblocks_for_recheck);
249 250 251
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
252
				u16 csum_size, int retry_failed_mirror);
253 254 255 256 257 258
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
259
					     struct scrub_block *sblock_good);
260 261 262
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
263 264 265
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
266 267 268 269 270
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
271 272
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
273 274
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
275 276
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
277
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
278
		       u64 physical, struct btrfs_device *dev, u64 flags,
279 280
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
281
static void scrub_bio_end_io(struct bio *bio, int err);
282 283
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
303
				      struct scrub_copy_nocow_ctx *ctx);
304 305 306
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
307
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
308
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
310 311


312 313
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
314
	atomic_inc(&sctx->refs);
315 316 317 318 319 320 321
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
322
	scrub_put_ctx(sctx);
323 324
}

325
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
326 327 328 329 330 331 332 333 334
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

335
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
336 337 338
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
339
}
340

341 342
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
343 344 345 346 347 348 349 350
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

351 352 353 354 355 356
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

357 358 359 360 361 362 363 364
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

365
	atomic_inc(&sctx->refs);
366 367 368 369 370 371 372 373 374 375 376 377 378
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
379 380 381 382 383 384 385 386 387 388

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
408
	scrub_put_ctx(sctx);
409 410
}

411
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
412
{
413
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
414
		struct btrfs_ordered_sum *sum;
415
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
416 417 418 419 420 421
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

422
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
423 424 425
{
	int i;

426
	if (!sctx)
A
Arne Jansen 已提交
427 428
		return;

429 430
	scrub_free_wr_ctx(&sctx->wr_ctx);

431
	/* this can happen when scrub is cancelled */
432 433
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
434 435

		for (i = 0; i < sbio->page_count; i++) {
436
			WARN_ON(!sbio->pagev[i]->page);
437 438 439 440 441
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

442
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
443
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
444 445 446 447 448 449

		if (!sbio)
			break;
		kfree(sbio);
	}

450 451
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
452 453
}

454 455 456 457 458 459
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
460
static noinline_for_stack
461
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
462
{
463
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
464 465
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
466 467
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
468

469 470 471 472 473 474 475 476 477 478 479 480
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
481 482
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
483
		goto nomem;
484
	atomic_set(&sctx->refs, 1);
485
	sctx->is_dev_replace = is_dev_replace;
486
	sctx->pages_per_rd_bio = pages_per_rd_bio;
487
	sctx->curr = -1;
488
	sctx->dev_root = dev->dev_root;
489
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
490 491 492 493 494
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
495
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
496 497

		sbio->index = i;
498
		sbio->sctx = sctx;
499
		sbio->page_count = 0;
500 501
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
502

503
		if (i != SCRUB_BIOS_PER_SCTX - 1)
504
			sctx->bios[i]->next_free = i + 1;
505
		else
506 507 508 509 510
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
511 512
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
513 514 515 516 517 518 519
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
520 521 522 523 524 525 526

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
527
	return sctx;
A
Arne Jansen 已提交
528 529

nomem:
530
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
531 532 533
	return ERR_PTR(-ENOMEM);
}

534 535
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
536 537 538 539 540 541 542
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
543
	struct scrub_warning *swarn = warn_ctx;
544 545 546 547
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
548
	struct btrfs_key key;
549 550 551 552 553 554 555 556 557 558

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

559 560 561
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
562 563 564 565 566
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
567 568 569 570 571 572 573 574 575 576 577 578 579
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
580 581 582 583 584
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
585 586 587 588 589 590 591 592 593 594
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
595
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
596 597
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
598
			swarn->logical, rcu_str_deref(swarn->dev->name),
599 600
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
601
			(char *)(unsigned long)ipath->fspath->val[i]);
602 603 604 605 606

	free_ipath(ipath);
	return 0;

err:
607
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
608 609
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
610
		swarn->logical, rcu_str_deref(swarn->dev->name),
611 612 613 614 615 616
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

617
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
618
{
619 620
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
621 622 623 624 625
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
626 627 628
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
629
	u64 ref_root;
630
	u32 item_size;
631
	u8 ref_level;
632
	int ret;
633

634
	WARN_ON(sblock->page_count < 1);
635
	dev = sblock->pagev[0]->dev;
636 637
	fs_info = sblock->sctx->dev_root->fs_info;

638
	path = btrfs_alloc_path();
639 640
	if (!path)
		return;
641

642 643
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
644
	swarn.errstr = errstr;
645
	swarn.dev = NULL;
646

647 648
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
649 650 651
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
652
	extent_item_pos = swarn.logical - found_key.objectid;
653 654 655 656 657 658
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

659
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
660
		do {
661 662 663
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
664
			printk_in_rcu(KERN_WARNING
665
				"BTRFS: %s at logical %llu on dev %s, "
666
				"sector %llu: metadata %s (level %d) in tree "
667 668
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
669 670 671 672 673
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
674
		btrfs_release_path(path);
675
	} else {
676
		btrfs_release_path(path);
677
		swarn.path = path;
678
		swarn.dev = dev;
679 680
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
681 682 683 684 685 686 687
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

688
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
689
{
690
	struct page *page = NULL;
691
	unsigned long index;
692
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
693
	int ret;
694
	int corrected = 0;
695
	struct btrfs_key key;
696
	struct inode *inode = NULL;
697
	struct btrfs_fs_info *fs_info;
698 699
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
700
	int srcu_index;
701 702 703 704

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
705 706 707 708 709 710 711

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
712
		return PTR_ERR(local_root);
713
	}
714 715 716 717

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
718 719
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
720 721 722 723 724 725
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
752
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
753
					fixup->logical, page,
754
					offset - page_offset(page),
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
789 790

	iput(inode);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
810
	struct scrub_ctx *sctx;
811 812 813 814 815
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
816
	sctx = fixup->sctx;
817 818 819

	path = btrfs_alloc_path();
	if (!path) {
820 821 822
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

851 852 853
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
854 855 856 857 858

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
859 860 861
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
862 863 864
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
865 866
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
867
			fixup->logical, rcu_str_deref(fixup->dev->name));
868 869 870 871 872
	}

	btrfs_free_path(path);
	kfree(fixup);

873
	scrub_pending_trans_workers_dec(sctx);
874 875
}

876 877 878 879 880 881 882 883
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
884
		btrfs_put_bbio(recover->bbio);
885 886 887 888
		kfree(recover);
	}
}

A
Arne Jansen 已提交
889
/*
890 891 892 893 894 895
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
896
 */
897
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
898
{
899
	struct scrub_ctx *sctx = sblock_to_check->sctx;
900
	struct btrfs_device *dev;
901 902 903 904 905 906 907 908 909 910 911 912 913 914
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
915
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
916 917 918
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
919
	fs_info = sctx->dev_root->fs_info;
920 921 922 923 924 925 926 927 928 929 930
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
931
	length = sblock_to_check->page_count * PAGE_SIZE;
932 933 934 935 936
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
937
			BTRFS_EXTENT_FLAG_DATA);
938 939 940
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
941

942 943 944 945 946
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

976 977
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
978
	if (!sblocks_for_recheck) {
979 980 981 982 983
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
984
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
985
		goto out;
A
Arne Jansen 已提交
986 987
	}

988
	/* setup the context, map the logical blocks and alloc the pages */
989
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
990
	if (ret) {
991 992 993 994
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
995
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
996 997 998 999
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1000

1001
	/* build and submit the bios for the failed mirror, check checksums */
1002
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
1003
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1015 1016
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1017
		sblock_to_check->data_corrected = 1;
1018
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1019

1020 1021
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1022
		goto out;
A
Arne Jansen 已提交
1023 1024
	}

1025
	if (!sblock_bad->no_io_error_seen) {
1026 1027 1028
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1029 1030
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1031
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1032
	} else if (sblock_bad->checksum_error) {
1033 1034 1035
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1036 1037
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1038
		btrfs_dev_stat_inc_and_print(dev,
1039
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1040
	} else if (sblock_bad->header_error) {
1041 1042 1043
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1044 1045 1046
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1047
		if (sblock_bad->generation_error)
1048
			btrfs_dev_stat_inc_and_print(dev,
1049 1050
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1051
			btrfs_dev_stat_inc_and_print(dev,
1052
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1053
	}
A
Arne Jansen 已提交
1054

1055 1056 1057 1058
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1059

1060 1061
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1062

1063 1064
		WARN_ON(sctx->is_dev_replace);

1065 1066
nodatasum_case:

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1077
		fixup_nodatasum->sctx = sctx;
1078
		fixup_nodatasum->dev = dev;
1079 1080 1081
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1082
		scrub_pending_trans_workers_inc(sctx);
1083 1084
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1085 1086
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1087
		goto out;
A
Arne Jansen 已提交
1088 1089
	}

1090 1091
	/*
	 * now build and submit the bios for the other mirrors, check
1092 1093
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1109
		struct scrub_block *sblock_other;
1110

1111 1112 1113 1114 1115
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1116 1117
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1118
				    sctx->csum_size, 0);
1119 1120

		if (!sblock_other->header_error &&
1121 1122
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1123 1124
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1125
				goto corrected_error;
1126 1127
			} else {
				ret = scrub_repair_block_from_good_copy(
1128 1129 1130
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1131
			}
1132 1133
		}
	}
A
Arne Jansen 已提交
1134

1135 1136
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1137 1138 1139

	/*
	 * In case of I/O errors in the area that is supposed to be
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1161
	 */
1162
	success = 1;
1163 1164
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1165
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1166
		struct scrub_block *sblock_other = NULL;
1167

1168 1169
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1170
			continue;
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1183 1184
				}
			}
1185 1186
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1187
		}
A
Arne Jansen 已提交
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1216
		}
A
Arne Jansen 已提交
1217 1218
	}

1219
	if (success && !sctx->is_dev_replace) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1230 1231
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1232
					    generation, sctx->csum_size, 1);
1233
			if (!sblock_bad->header_error &&
1234 1235 1236 1237 1238 1239 1240
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1241 1242
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1243
			sblock_to_check->data_corrected = 1;
1244
			spin_unlock(&sctx->stat_lock);
1245
			printk_ratelimited_in_rcu(KERN_ERR
1246
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1247
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1248
		}
1249 1250
	} else {
did_not_correct_error:
1251 1252 1253
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1254
		printk_ratelimited_in_rcu(KERN_ERR
1255
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1256
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1257
	}
A
Arne Jansen 已提交
1258

1259 1260 1261 1262 1263 1264
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1265
			struct scrub_recover *recover;
1266 1267
			int page_index;

1268 1269 1270
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1271 1272 1273 1274 1275 1276
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1277 1278
				scrub_page_put(sblock->pagev[page_index]);
			}
1279 1280 1281
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1282

1283 1284
	return 0;
}
A
Arne Jansen 已提交
1285

1286
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1287
{
Z
Zhao Lei 已提交
1288 1289 1290 1291 1292
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1293 1294 1295
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1296 1297
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1298 1299 1300 1301 1302 1303 1304
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1305
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1326
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1327 1328
				     struct scrub_block *sblocks_for_recheck)
{
1329 1330 1331 1332
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1333 1334 1335 1336 1337 1338
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1339
	int page_index = 0;
1340
	int mirror_index;
1341
	int nmirrors;
1342 1343 1344
	int ret;

	/*
1345
	 * note: the two members refs and outstanding_pages
1346 1347 1348 1349 1350
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1351 1352 1353
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1354

1355 1356 1357 1358
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1359
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1360
				       &mapped_length, &bbio, 0, 1);
1361
		if (ret || !bbio || mapped_length < sublen) {
1362
			btrfs_put_bbio(bbio);
1363 1364
			return -EIO;
		}
A
Arne Jansen 已提交
1365

1366 1367
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1368
			btrfs_put_bbio(bbio);
1369 1370 1371 1372 1373 1374 1375
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1376
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1377

1378
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1379

1380
		for (mirror_index = 0; mirror_index < nmirrors;
1381 1382 1383 1384 1385
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1386 1387 1388 1389
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1390 1391 1392
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1393
				scrub_put_recover(recover);
1394 1395
				return -ENOMEM;
			}
1396 1397 1398
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1399

Z
Zhao Lei 已提交
1400 1401 1402
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1403
						      mapped_length,
1404 1405
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1406 1407 1408 1409 1410 1411 1412
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1413 1414 1415 1416
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1417 1418
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1419
			sblock->page_count++;
1420 1421 1422
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1423 1424 1425

			scrub_get_recover(recover);
			page->recover = recover;
1426
		}
1427
		scrub_put_recover(recover);
1428 1429 1430 1431 1432 1433
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1451
	return page->recover &&
1452
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1470
				    page->mirror_num, 0);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1481 1482 1483 1484 1485 1486 1487
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1488 1489 1490
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1491
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1492
{
1493
	int page_num;
I
Ilya Dryomov 已提交
1494

1495 1496 1497
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1498

1499 1500
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1501
		struct scrub_page *page = sblock->pagev[page_num];
1502

1503
		if (page->dev->bdev == NULL) {
1504 1505 1506 1507 1508
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1509
		WARN_ON(!page->page);
1510
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1511 1512 1513 1514 1515
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1516
		bio->bi_bdev = page->dev->bdev;
1517

1518
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1519 1520 1521 1522 1523 1524 1525 1526 1527
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1528

1529 1530
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1531

1532 1533 1534 1535 1536
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1537
	return;
A
Arne Jansen 已提交
1538 1539
}

M
Miao Xie 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1550 1551 1552 1553 1554
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1555
{
1556 1557 1558 1559 1560
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1561
	WARN_ON(!sblock->pagev[0]->page);
1562 1563 1564
	if (is_metadata) {
		struct btrfs_header *h;

1565
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1566 1567
		h = (struct btrfs_header *)mapped_buffer;

1568
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1569
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1570
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1571
			   BTRFS_UUID_SIZE)) {
1572
			sblock->header_error = 1;
1573
		} else if (generation != btrfs_stack_header_generation(h)) {
1574 1575 1576
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1577 1578 1579 1580
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1581

1582
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1583
	}
A
Arne Jansen 已提交
1584

1585 1586
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1587
			crc = btrfs_csum_data(
1588 1589 1590
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1591
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1592

1593
		kunmap_atomic(mapped_buffer);
1594 1595 1596
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1597
		WARN_ON(!sblock->pagev[page_num]->page);
1598

1599
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1600 1601 1602 1603 1604
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1605 1606
}

1607
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1608
					     struct scrub_block *sblock_good)
1609 1610 1611
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1612

1613 1614
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1615

1616 1617
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1618
							   page_num, 1);
1619 1620
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1621
	}
1622 1623 1624 1625 1626 1627 1628 1629

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1630 1631
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1632

1633 1634
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1635 1636 1637 1638 1639
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1640
		if (!page_bad->dev->bdev) {
1641 1642 1643
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1644 1645 1646
			return -EIO;
		}

1647
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1648 1649
		if (!bio)
			return -EIO;
1650
		bio->bi_bdev = page_bad->dev->bdev;
1651
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1652 1653 1654 1655 1656

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1657
		}
1658

1659
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1660 1661
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1662 1663 1664
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1665 1666 1667
			bio_put(bio);
			return -EIO;
		}
1668
		bio_put(bio);
A
Arne Jansen 已提交
1669 1670
	}

1671 1672 1673
	return 0;
}

1674 1675 1676 1677
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1678 1679 1680 1681 1682 1683 1684
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1740
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1751
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1810 1811
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1812
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1844 1845 1846 1847
{
	u64 flags;
	int ret;

1848 1849
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1861 1862

	return ret;
A
Arne Jansen 已提交
1863 1864
}

1865
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1866
{
1867
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1868
	u8 csum[BTRFS_CSUM_SIZE];
1869 1870 1871
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1872 1873
	u32 crc = ~(u32)0;
	int fail = 0;
1874 1875
	u64 len;
	int index;
A
Arne Jansen 已提交
1876

1877
	BUG_ON(sblock->page_count < 1);
1878
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1879 1880
		return 0;

1881 1882
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1883
	buffer = kmap_atomic(page);
1884

1885
	len = sctx->sectorsize;
1886 1887 1888 1889
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1890
		crc = btrfs_csum_data(buffer, crc, l);
1891
		kunmap_atomic(buffer);
1892 1893 1894 1895 1896
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1897 1898
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1899
		buffer = kmap_atomic(page);
1900 1901
	}

A
Arne Jansen 已提交
1902
	btrfs_csum_final(crc, csum);
1903
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1904 1905 1906 1907 1908
		fail = 1;

	return fail;
}

1909
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1910
{
1911
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1912
	struct btrfs_header *h;
1913
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1914
	struct btrfs_fs_info *fs_info = root->fs_info;
1915 1916 1917 1918 1919 1920
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1921 1922 1923
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1924 1925 1926 1927
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1928
	page = sblock->pagev[0]->page;
1929
	mapped_buffer = kmap_atomic(page);
1930
	h = (struct btrfs_header *)mapped_buffer;
1931
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1932 1933 1934 1935 1936 1937 1938

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1939
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1940 1941
		++fail;

1942
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1943 1944
		++fail;

M
Miao Xie 已提交
1945
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1946 1947 1948 1949 1950 1951
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1952
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1953 1954 1955 1956 1957 1958
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1959
		crc = btrfs_csum_data(p, crc, l);
1960
		kunmap_atomic(mapped_buffer);
1961 1962 1963 1964 1965
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1966 1967
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1968
		mapped_buffer = kmap_atomic(page);
1969 1970 1971 1972 1973
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1974
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1975 1976 1977 1978 1979
		++crc_fail;

	return fail || crc_fail;
}

1980
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1981 1982
{
	struct btrfs_super_block *s;
1983
	struct scrub_ctx *sctx = sblock->sctx;
1984 1985 1986 1987 1988 1989
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1990
	u32 crc = ~(u32)0;
1991 1992
	int fail_gen = 0;
	int fail_cor = 0;
1993 1994
	u64 len;
	int index;
A
Arne Jansen 已提交
1995

1996
	BUG_ON(sblock->page_count < 1);
1997
	page = sblock->pagev[0]->page;
1998
	mapped_buffer = kmap_atomic(page);
1999
	s = (struct btrfs_super_block *)mapped_buffer;
2000
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2001

2002
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2003
		++fail_cor;
A
Arne Jansen 已提交
2004

2005
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2006
		++fail_gen;
A
Arne Jansen 已提交
2007

M
Miao Xie 已提交
2008
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2009
		++fail_cor;
A
Arne Jansen 已提交
2010

2011 2012 2013 2014 2015 2016 2017
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2018
		crc = btrfs_csum_data(p, crc, l);
2019
		kunmap_atomic(mapped_buffer);
2020 2021 2022 2023 2024
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2025 2026
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2027
		mapped_buffer = kmap_atomic(page);
2028 2029 2030 2031 2032
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2033
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2034
		++fail_cor;
A
Arne Jansen 已提交
2035

2036
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2037 2038 2039 2040 2041
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2042 2043 2044
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2045
		if (fail_cor)
2046
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2047 2048
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2049
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2050
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2051 2052
	}

2053
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2054 2055
}

2056 2057
static void scrub_block_get(struct scrub_block *sblock)
{
2058
	atomic_inc(&sblock->refs);
2059 2060 2061 2062
}

static void scrub_block_put(struct scrub_block *sblock)
{
2063
	if (atomic_dec_and_test(&sblock->refs)) {
2064 2065
		int i;

2066 2067 2068
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2069
		for (i = 0; i < sblock->page_count; i++)
2070
			scrub_page_put(sblock->pagev[i]);
2071 2072 2073 2074
		kfree(sblock);
	}
}

2075 2076
static void scrub_page_get(struct scrub_page *spage)
{
2077
	atomic_inc(&spage->refs);
2078 2079 2080 2081
}

static void scrub_page_put(struct scrub_page *spage)
{
2082
	if (atomic_dec_and_test(&spage->refs)) {
2083 2084 2085 2086 2087 2088
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2089
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2090 2091 2092
{
	struct scrub_bio *sbio;

2093
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2094
		return;
A
Arne Jansen 已提交
2095

2096 2097
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2098
	scrub_pending_bio_inc(sctx);
2099
	btrfsic_submit_bio(READ, sbio->bio);
A
Arne Jansen 已提交
2100 2101
}

2102 2103
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2104
{
2105
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2106
	struct scrub_bio *sbio;
2107
	int ret;
A
Arne Jansen 已提交
2108 2109 2110 2111 2112

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2113 2114 2115 2116 2117 2118 2119 2120
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2121
		} else {
2122 2123
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2124 2125
		}
	}
2126
	sbio = sctx->bios[sctx->curr];
2127
	if (sbio->page_count == 0) {
2128 2129
		struct bio *bio;

2130 2131
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2132
		sbio->dev = spage->dev;
2133 2134
		bio = sbio->bio;
		if (!bio) {
2135
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2136 2137 2138 2139
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2140 2141 2142

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2143
		bio->bi_bdev = sbio->dev->bdev;
2144
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2145
		sbio->err = 0;
2146 2147 2148
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2149 2150
		   spage->logical ||
		   sbio->dev != spage->dev) {
2151
		scrub_submit(sctx);
A
Arne Jansen 已提交
2152 2153
		goto again;
	}
2154

2155 2156 2157 2158 2159 2160 2161 2162
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2163
		scrub_submit(sctx);
2164 2165 2166
		goto again;
	}

2167
	scrub_block_get(sblock); /* one for the page added to the bio */
2168 2169
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2170
	if (sbio->page_count == sctx->pages_per_rd_bio)
2171
		scrub_submit(sctx);
2172 2173 2174 2175

	return 0;
}

2176
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2177
		       u64 physical, struct btrfs_device *dev, u64 flags,
2178 2179
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2180 2181 2182 2183 2184 2185
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2186 2187 2188
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2189
		return -ENOMEM;
A
Arne Jansen 已提交
2190
	}
2191

2192 2193
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2194
	atomic_set(&sblock->refs, 1);
2195
	sblock->sctx = sctx;
2196 2197 2198
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2199
		struct scrub_page *spage;
2200 2201
		u64 l = min_t(u64, len, PAGE_SIZE);

2202 2203 2204
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2205 2206 2207
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2208
			scrub_block_put(sblock);
2209 2210
			return -ENOMEM;
		}
2211 2212 2213
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2214
		spage->sblock = sblock;
2215
		spage->dev = dev;
2216 2217 2218 2219
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2220
		spage->physical_for_dev_replace = physical_for_dev_replace;
2221 2222 2223
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2224
			memcpy(spage->csum, csum, sctx->csum_size);
2225 2226 2227 2228
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2229 2230 2231
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2232 2233 2234
		len -= l;
		logical += l;
		physical += l;
2235
		physical_for_dev_replace += l;
2236 2237
	}

2238
	WARN_ON(sblock->page_count == 0);
2239
	for (index = 0; index < sblock->page_count; index++) {
2240
		struct scrub_page *spage = sblock->pagev[index];
2241 2242
		int ret;

2243
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2244 2245
		if (ret) {
			scrub_block_put(sblock);
2246
			return ret;
2247
		}
2248
	}
A
Arne Jansen 已提交
2249

2250
	if (force)
2251
		scrub_submit(sctx);
A
Arne Jansen 已提交
2252

2253 2254
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2255 2256 2257
	return 0;
}

2258 2259 2260
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2261
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2262 2263 2264 2265

	sbio->err = err;
	sbio->bio = bio;

2266
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2267 2268 2269 2270 2271
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2272
	struct scrub_ctx *sctx = sbio->sctx;
2273 2274
	int i;

2275
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2297 2298 2299 2300
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2301 2302 2303 2304 2305 2306 2307 2308

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2309
	scrub_pending_bio_dec(sctx);
2310 2311
}

2312 2313 2314 2315
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2316
	u32 offset;
2317 2318 2319 2320 2321 2322 2323 2324 2325
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2326
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2351 2352
static void scrub_block_complete(struct scrub_block *sblock)
{
2353 2354
	int corrupted = 0;

2355
	if (!sblock->no_io_error_seen) {
2356
		corrupted = 1;
2357
		scrub_handle_errored_block(sblock);
2358 2359 2360 2361 2362 2363
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2364 2365
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2366 2367
			scrub_write_block_to_dev_replace(sblock);
	}
2368 2369 2370 2371 2372 2373 2374 2375 2376

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2377 2378
}

2379
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2380 2381 2382
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2383
	unsigned long index;
A
Arne Jansen 已提交
2384 2385
	unsigned long num_sectors;

2386 2387
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2388 2389 2390 2391 2392 2393
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2394
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2395 2396 2397 2398 2399 2400 2401
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2402
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2403
	num_sectors = sum->len / sctx->sectorsize;
2404 2405
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2406 2407 2408
		list_del(&sum->list);
		kfree(sum);
	}
2409
	return 1;
A
Arne Jansen 已提交
2410 2411 2412
}

/* scrub extent tries to collect up to 64 kB for each bio */
2413
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2414
			u64 physical, struct btrfs_device *dev, u64 flags,
2415
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2416 2417 2418
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2419 2420 2421
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2422 2423 2424 2425 2426
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2427
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2428 2429 2430 2431 2432
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2433
	} else {
2434
		blocksize = sctx->sectorsize;
2435
		WARN_ON(1);
2436
	}
A
Arne Jansen 已提交
2437 2438

	while (len) {
2439
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2440 2441 2442 2443
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2444
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2445
			if (have_csum == 0)
2446
				++sctx->stat.no_csum;
2447 2448 2449 2450 2451 2452
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2453
		}
2454
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2455 2456 2457
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2458 2459 2460 2461 2462
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2463
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2464 2465 2466 2467
	}
	return 0;
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2487
	atomic_set(&sblock->refs, 1);
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2586
skip:
2587 2588 2589 2590 2591 2592 2593
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2594 2595 2596 2597 2598 2599 2600 2601
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2602 2603
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2604 2605 2606 2607 2608
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2609 2610
	u32 stripe_index;
	u32 rot;
2611 2612 2613

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2614 2615 2616
	if (stripe_start)
		*stripe_start = last_offset;

2617 2618 2619 2620
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2621 2622
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2623 2624

		/* Work out the disk rotation on this stripe-set */
2625
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2626 2627
		/* calculate which stripe this data locates */
		rot += i;
2628
		stripe_index = rot % map->num_stripes;
2629 2630 2631 2632 2633 2634 2635 2636 2637
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2670 2671 2672 2673 2674 2675 2676 2677 2678
static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2679 2680 2681 2682 2683

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
			 &sparity->work);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2700
	length = sparity->logic_end - sparity->logic_start;
2701
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2702
			       sparity->logic_start,
2703 2704
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2716
					      length, sparity->scrub_dev,
2717 2718 2719 2720 2721 2722
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2723
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2724 2725 2726 2727 2728 2729 2730 2731

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2732
	btrfs_put_bbio(bbio);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2749
	atomic_inc(&sparity->refs);
2750 2751 2752 2753
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2754
	if (!atomic_dec_and_test(&sparity->refs))
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2804
	atomic_set(&sparity->refs, 1);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2853 2854 2855 2856
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2857 2858 2859 2860 2861 2862 2863 2864
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2865
			if (key.objectid >= logic_end) {
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2878 2879 2880 2881 2882 2883
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					  key.objectid, logic_start);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
2921 2922 2923

			scrub_free_csums(sctx);

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
2955
						logic_end - logic_start);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2966
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2967 2968
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2969 2970
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2971
{
2972
	struct btrfs_path *path, *ppath;
2973
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2974 2975 2976
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2977
	struct blk_plug plug;
A
Arne Jansen 已提交
2978 2979 2980 2981 2982 2983 2984 2985
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2986
	u64 logic_end;
2987
	u64 physical_end;
A
Arne Jansen 已提交
2988
	u64 generation;
2989
	int mirror_num;
A
Arne Jansen 已提交
2990 2991 2992 2993
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2994 2995
	u64 increment = map->stripe_len;
	u64 offset;
2996 2997 2998
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2999 3000
	u64 stripe_logical;
	u64 stripe_end;
3001 3002
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3003
	int stop_loop = 0;
D
David Woodhouse 已提交
3004

3005
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3006
	offset = 0;
3007
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3008 3009 3010
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3011
		mirror_num = 1;
A
Arne Jansen 已提交
3012 3013 3014 3015
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3016
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3017 3018
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3019
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3020 3021
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3022
		mirror_num = num % map->num_stripes + 1;
3023
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3024
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3025 3026
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3027 3028
	} else {
		increment = map->stripe_len;
3029
		mirror_num = 1;
A
Arne Jansen 已提交
3030 3031 3032 3033 3034 3035
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3036 3037
	ppath = btrfs_alloc_path();
	if (!ppath) {
3038
		btrfs_free_path(path);
3039 3040 3041
		return -ENOMEM;
	}

3042 3043 3044 3045 3046
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3047 3048 3049
	path->search_commit_root = 1;
	path->skip_locking = 1;

3050 3051
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3052
	/*
A
Arne Jansen 已提交
3053 3054 3055
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3056 3057
	 */
	logical = base + offset;
3058
	physical_end = physical + nstripes * map->stripe_len;
3059
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3060
		get_raid56_logic_offset(physical_end, num,
3061
					map, &logic_end, NULL);
3062 3063 3064 3065
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3066
	wait_event(sctx->list_wait,
3067
		   atomic_read(&sctx->bios_in_flight) == 0);
3068
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3069 3070 3071 3072 3073

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3074
	key_end.objectid = logic_end;
3075 3076
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3077 3078 3079 3080 3081 3082 3083
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3084
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3085 3086 3087 3088 3089 3090 3091
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3092 3093 3094 3095 3096

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3097
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3098 3099 3100 3101 3102

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3103
	while (physical < physical_end) {
A
Arne Jansen 已提交
3104 3105 3106 3107
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3108
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3109 3110 3111 3112 3113 3114 3115 3116
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3117
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3118
			scrub_submit(sctx);
3119 3120 3121
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3122
			wait_event(sctx->list_wait,
3123
				   atomic_read(&sctx->bios_in_flight) == 0);
3124
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3125
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3126 3127
		}

3128 3129 3130 3131 3132 3133 3134 3135
		/* for raid56, we skip parity stripe */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
				stripe_logical += base;
3136
				stripe_end = stripe_logical + increment;
3137 3138 3139 3140 3141 3142 3143 3144 3145
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3146 3147 3148 3149
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3150
		key.objectid = logical;
L
Liu Bo 已提交
3151
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3152 3153 3154 3155

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3156

3157
		if (ret > 0) {
3158
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3159 3160
			if (ret < 0)
				goto out;
3161 3162 3163 3164 3165 3166 3167 3168 3169
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3170 3171
		}

L
Liu Bo 已提交
3172
		stop_loop = 0;
A
Arne Jansen 已提交
3173
		while (1) {
3174 3175
			u64 bytes;

A
Arne Jansen 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3185
				stop_loop = 1;
A
Arne Jansen 已提交
3186 3187 3188 3189
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3190 3191 3192 3193
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3194
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3195
				bytes = root->nodesize;
3196 3197 3198 3199
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3200 3201
				goto next;

L
Liu Bo 已提交
3202 3203 3204 3205 3206 3207
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3208 3209 3210 3211 3212 3213

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3214 3215 3216 3217
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3218 3219 3220
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3221
				       key.objectid, logical);
A
Arne Jansen 已提交
3222 3223 3224
				goto next;
			}

L
Liu Bo 已提交
3225 3226 3227 3228
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3229 3230 3231
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3232 3233 3234
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3235
			}
L
Liu Bo 已提交
3236
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3237
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3238 3239
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3240 3241
			}

L
Liu Bo 已提交
3242
			extent_physical = extent_logical - logical + physical;
3243 3244 3245 3246 3247 3248 3249
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3250

3251 3252 3253 3254 3255
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3256 3257 3258
			if (ret)
				goto out;

3259 3260 3261
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3262
					   extent_logical - logical + physical);
3263 3264 3265

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3266 3267 3268
			if (ret)
				goto out;

L
Liu Bo 已提交
3269 3270
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3271
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3272 3273 3274 3275
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3286
								increment;
3287 3288 3289 3290 3291 3292 3293 3294
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3295 3296 3297 3298
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3299 3300 3301 3302 3303
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3304
				if (physical >= physical_end) {
L
Liu Bo 已提交
3305 3306 3307 3308
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3309 3310 3311
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3312
		btrfs_release_path(path);
3313
skip:
A
Arne Jansen 已提交
3314 3315
		logical += increment;
		physical += map->stripe_len;
3316
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3317 3318 3319 3320 3321
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3322
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3323 3324
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3325
	}
3326
out:
A
Arne Jansen 已提交
3327
	/* push queued extents */
3328
	scrub_submit(sctx);
3329 3330 3331
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3332

3333
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3334
	btrfs_free_path(path);
3335
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3336 3337 3338
	return ret < 0 ? ret : 0;
}

3339
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3340 3341 3342
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3343
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3344 3345
{
	struct btrfs_mapping_tree *map_tree =
3346
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3347 3348 3349
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3350
	int ret = 0;
A
Arne Jansen 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3367
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3368
		    map->stripes[i].physical == dev_offset) {
3369
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3370 3371
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3383
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3384 3385
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3386 3387 3388
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3389
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3390 3391 3392 3393 3394
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
3395
	int ret = 0;
A
Arne Jansen 已提交
3396 3397 3398 3399 3400
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3401
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3411
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3412 3413 3414 3415 3416 3417
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3418 3419 3420 3421 3422
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3423 3424 3425 3426
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3427
					break;
3428 3429 3430
				}
			} else {
				ret = 0;
3431 3432
			}
		}
A
Arne Jansen 已提交
3433 3434 3435 3436 3437 3438

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3439
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3440 3441
			break;

3442
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3454 3455
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3466 3467 3468 3469 3470 3471

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
		scrub_pause_off(fs_info);
		if (ret) {
			btrfs_put_block_group(cache);
			break;
		}

3488 3489 3490
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3491
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3513 3514

		scrub_pause_on(fs_info);
3515 3516 3517 3518 3519 3520

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3521 3522
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3523 3524
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3525
		scrub_pause_off(fs_info);
3526

3527 3528
		btrfs_dec_block_group_ro(root, cache);

A
Arne Jansen 已提交
3529 3530 3531
		btrfs_put_block_group(cache);
		if (ret)
			break;
3532 3533
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3534 3535 3536 3537 3538 3539 3540
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3541

3542 3543
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3544
skip:
A
Arne Jansen 已提交
3545
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3546
		btrfs_release_path(path);
A
Arne Jansen 已提交
3547 3548 3549
	}

	btrfs_free_path(path);
3550

3551
	return ret;
A
Arne Jansen 已提交
3552 3553
}

3554 3555
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3556 3557 3558 3559 3560
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3561
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3562

3563
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3564 3565
		return -EIO;

3566 3567 3568 3569 3570
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3571 3572 3573

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3574 3575
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3576 3577
			break;

3578
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3579
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3580
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3581 3582 3583
		if (ret)
			return ret;
	}
3584
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3585 3586 3587 3588 3589 3590 3591

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3592 3593
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3594
{
3595
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3596
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3597

A
Arne Jansen 已提交
3598
	if (fs_info->scrub_workers_refcnt == 0) {
3599
		if (is_dev_replace)
3600 3601 3602
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3603
		else
3604 3605 3606
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
3607 3608 3609
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3610 3611 3612
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
3613 3614 3615
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3616 3617
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3618 3619
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3620 3621 3622
		fs_info->scrub_parity_workers =
			btrfs_alloc_workqueue("btrfs-scrubparity", flags,
					      max_active, 2);
3623 3624
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3625
	}
A
Arne Jansen 已提交
3626
	++fs_info->scrub_workers_refcnt;
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3637 3638
}

3639
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3640
{
3641
	if (--fs_info->scrub_workers_refcnt == 0) {
3642 3643 3644
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3645
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3646
	}
A
Arne Jansen 已提交
3647 3648 3649
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3650 3651
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3652
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3653
{
3654
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3655 3656
	int ret;
	struct btrfs_device *dev;
3657
	struct rcu_string *name;
A
Arne Jansen 已提交
3658

3659
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3660 3661
		return -EINVAL;

3662
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3663 3664 3665 3666 3667
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3668 3669
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3670
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3671 3672 3673
		return -EINVAL;
	}

3674
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3675
		/* not supported for data w/o checksums */
3676 3677 3678
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3679
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3680 3681 3682
		return -EINVAL;
	}

3683 3684 3685 3686 3687 3688 3689 3690
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3691 3692
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3693 3694 3695 3696 3697 3698 3699
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3700

3701 3702
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3703
	if (!dev || (dev->missing && !is_dev_replace)) {
3704
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3705 3706 3707
		return -ENODEV;
	}

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3718
	mutex_lock(&fs_info->scrub_lock);
3719
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3720
		mutex_unlock(&fs_info->scrub_lock);
3721 3722
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3723 3724
	}

3725 3726 3727 3728 3729
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3730
		mutex_unlock(&fs_info->scrub_lock);
3731
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3732 3733
		return -EINPROGRESS;
	}
3734
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3735 3736 3737 3738 3739 3740 3741 3742

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3743
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3744
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3745
		mutex_unlock(&fs_info->scrub_lock);
3746 3747
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3748
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3749
	}
3750 3751
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3752
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3753

3754 3755 3756 3757
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3758
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3759 3760 3761
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3762
	if (!is_dev_replace) {
3763 3764 3765 3766
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3767
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3768
		ret = scrub_supers(sctx, dev);
3769
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3770
	}
A
Arne Jansen 已提交
3771 3772

	if (!ret)
3773 3774
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3775

3776
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3777 3778 3779
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3780
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3781

A
Arne Jansen 已提交
3782
	if (progress)
3783
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3784 3785 3786

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3787
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3788 3789
	mutex_unlock(&fs_info->scrub_lock);

3790
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3791 3792 3793 3794

	return ret;
}

3795
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3812
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3813 3814 3815 3816 3817 3818 3819
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3820
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3841 3842
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3843
{
3844
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3845 3846

	mutex_lock(&fs_info->scrub_lock);
3847 3848
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3849 3850 3851
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3852
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3863

A
Arne Jansen 已提交
3864 3865 3866 3867
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3868
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3869 3870

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3871
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3872
	if (dev)
3873 3874 3875
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3876 3877
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3878
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3879
}
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3896
		btrfs_put_bbio(bbio);
3897 3898 3899 3900 3901 3902
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
3903
	btrfs_put_bbio(bbio);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3956 3957
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3958
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3959 3960
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3961 3962 3963 3964

	return 0;
}

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4017
					  record_inode_for_nocow, nocow_ctx);
4018
	if (ret != 0 && ret != -ENOENT) {
4019 4020
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4021 4022
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4023 4024 4025 4026
		not_written = 1;
		goto out;
	}

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4045
out:
4046 4047 4048 4049 4050 4051 4052 4053
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4110 4111
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4112
{
4113
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4114
	struct btrfs_key key;
4115 4116
	struct inode *inode;
	struct page *page;
4117
	struct btrfs_root *local_root;
4118
	struct extent_io_tree *io_tree;
4119
	u64 physical_for_dev_replace;
4120
	u64 nocow_ctx_logical;
4121
	u64 len = nocow_ctx->len;
4122
	unsigned long index;
4123
	int srcu_index;
4124 4125
	int ret = 0;
	int err = 0;
4126 4127 4128 4129

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4130 4131 4132

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4133
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4134 4135
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4136
		return PTR_ERR(local_root);
4137
	}
4138 4139 4140 4141 4142

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4143
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4144 4145 4146
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4147 4148 4149 4150
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4151
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4152
	io_tree = &BTRFS_I(inode)->io_tree;
4153
	nocow_ctx_logical = nocow_ctx->logical;
4154

4155 4156 4157 4158
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4159 4160
	}

4161 4162
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4163
again:
4164 4165
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4166
			btrfs_err(fs_info, "find_or_create_page() failed");
4167
			ret = -ENOMEM;
4168
			goto out;
4169 4170 4171 4172 4173 4174 4175
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4176
			err = extent_read_full_page(io_tree, page,
4177 4178
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4179 4180
			if (err) {
				ret = err;
4181 4182
				goto next_page;
			}
4183

4184
			lock_page(page);
4185 4186 4187 4188 4189 4190 4191
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4192
				unlock_page(page);
4193 4194 4195
				page_cache_release(page);
				goto again;
			}
4196 4197 4198 4199 4200
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4201 4202 4203 4204 4205 4206 4207 4208

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4209 4210 4211 4212
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4213
next_page:
4214 4215 4216 4217 4218 4219
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4220 4221
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4222
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4223 4224
		len -= PAGE_CACHE_SIZE;
	}
4225
	ret = COPY_COMPLETE;
4226
out:
4227
	mutex_unlock(&inode->i_mutex);
4228
	iput(inode);
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4244
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4245 4246
		return -EIO;
	}
4247
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4248 4249 4250 4251 4252 4253
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4254 4255
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4256 4257 4258 4259 4260 4261 4262 4263 4264
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4265
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4266 4267 4268 4269 4270
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}