scrub.c 92.9 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65 66

struct scrub_page {
67 68
	struct scrub_block	*sblock;
	struct page		*page;
69
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
70 71
	u64			flags;  /* extent flags */
	u64			generation;
72 73
	u64			logical;
	u64			physical;
74
	u64			physical_for_dev_replace;
75
	atomic_t		ref_count;
76 77 78 79 80
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
81 82 83 84 85
	u8			csum[BTRFS_CSUM_SIZE];
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88 89 90 91
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105 106
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115
	};
};

116 117 118 119 120 121 122 123
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

124
struct scrub_ctx {
125
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
127 128
	int			first_free;
	int			curr;
129 130
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
131 132 133 134 135
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
136
	int			readonly;
137
	int			pages_per_rd_bio;
138 139
	u32			sectorsize;
	u32			nodesize;
140 141

	int			is_dev_replace;
142
	struct scrub_wr_ctx	wr_ctx;
143

A
Arne Jansen 已提交
144 145 146 147 148 149 150
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

151
struct scrub_fixup_nodatasum {
152
	struct scrub_ctx	*sctx;
153
	struct btrfs_device	*dev;
154 155 156 157 158 159
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

160 161 162 163 164 165 166
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

167 168 169 170 171 172
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
173
	struct list_head	inodes;
174 175 176
	struct btrfs_work	work;
};

177 178 179 180 181 182 183 184 185 186 187 188 189
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	char			*scratch_buf;
	char			*msg_buf;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
	int			msg_bufsize;
	int			scratch_bufsize;
};

190

191 192 193 194
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
195
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
196
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
197
				     struct btrfs_fs_info *fs_info,
198
				     struct scrub_block *original_sblock,
199
				     u64 length, u64 logical,
200
				     struct scrub_block *sblocks_for_recheck);
201 202 203 204
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size);
205 206 207 208 209 210 211 212 213 214 215
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
216 217 218
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
219 220 221 222 223
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
224 225
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
226 227
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
228
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
229
		       u64 physical, struct btrfs_device *dev, u64 flags,
230 231
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
232
static void scrub_bio_end_io(struct bio *bio, int err);
233 234
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
254
				      struct scrub_copy_nocow_ctx *ctx);
255 256 257
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
258
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
259
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
260 261


262 263 264 265 266 267 268 269 270 271 272
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

273
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
274 275 276 277 278 279 280 281 282
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

283 284 285 286 287 288 289 290 291 292 293 294 295
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
317 318 319 320 321 322 323 324 325 326

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

348
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
349
{
350
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
351
		struct btrfs_ordered_sum *sum;
352
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
353 354 355 356 357 358
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

359
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
360 361 362
{
	int i;

363
	if (!sctx)
A
Arne Jansen 已提交
364 365
		return;

366 367
	scrub_free_wr_ctx(&sctx->wr_ctx);

368
	/* this can happen when scrub is cancelled */
369 370
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
371 372

		for (i = 0; i < sbio->page_count; i++) {
373
			WARN_ON(!sbio->pagev[i]->page);
374 375 376 377 378
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

379
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
380
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
381 382 383 384 385 386

		if (!sbio)
			break;
		kfree(sbio);
	}

387 388
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
389 390 391
}

static noinline_for_stack
392
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
393
{
394
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
395 396
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
397 398
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
399

400 401 402 403 404 405 406 407 408 409 410 411
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
412 413
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
414
		goto nomem;
415
	sctx->is_dev_replace = is_dev_replace;
416
	sctx->pages_per_rd_bio = pages_per_rd_bio;
417
	sctx->curr = -1;
418
	sctx->dev_root = dev->dev_root;
419
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
420 421 422 423 424
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
425
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
426 427

		sbio->index = i;
428
		sbio->sctx = sctx;
429
		sbio->page_count = 0;
430 431
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
432

433
		if (i != SCRUB_BIOS_PER_SCTX - 1)
434
			sctx->bios[i]->next_free = i + 1;
435
		else
436 437 438 439 440
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
441 442
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
443 444 445 446 447 448 449
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
450 451 452 453 454 455 456

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
457
	return sctx;
A
Arne Jansen 已提交
458 459

nomem:
460
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
461 462 463
	return ERR_PTR(-ENOMEM);
}

464 465
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
466 467 468 469 470 471 472
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
473
	struct scrub_warning *swarn = warn_ctx;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
502 503 504 505 506
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
507 508 509 510 511 512 513 514 515 516
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
517
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
518 519
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
520
			swarn->logical, rcu_str_deref(swarn->dev->name),
521 522
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
523
			(char *)(unsigned long)ipath->fspath->val[i]);
524 525 526 527 528

	free_ipath(ipath);
	return 0;

err:
529
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
530 531
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
532
		swarn->logical, rcu_str_deref(swarn->dev->name),
533 534 535 536 537 538
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

539
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
540
{
541 542
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
543 544 545 546 547
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
548 549 550
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
551
	u64 ref_root;
552
	u32 item_size;
553 554
	u8 ref_level;
	const int bufsize = 4096;
555
	int ret;
556

557
	WARN_ON(sblock->page_count < 1);
558
	dev = sblock->pagev[0]->dev;
559 560
	fs_info = sblock->sctx->dev_root->fs_info;

561 562 563 564
	path = btrfs_alloc_path();

	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
565 566
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
567
	swarn.errstr = errstr;
568
	swarn.dev = NULL;
569 570 571 572 573 574
	swarn.msg_bufsize = bufsize;
	swarn.scratch_bufsize = bufsize;

	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
		goto out;

575 576
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
577 578 579
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
580
	extent_item_pos = swarn.logical - found_key.objectid;
581 582 583 584 585 586
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

587
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
588
		do {
589 590 591
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
592
			printk_in_rcu(KERN_WARNING
593
				"BTRFS: %s at logical %llu on dev %s, "
594
				"sector %llu: metadata %s (level %d) in tree "
595 596
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
597 598 599 600 601
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
602
		btrfs_release_path(path);
603
	} else {
604
		btrfs_release_path(path);
605
		swarn.path = path;
606
		swarn.dev = dev;
607 608
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
609 610 611 612 613 614 615 616 617
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
	kfree(swarn.scratch_buf);
	kfree(swarn.msg_buf);
}

618
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
619
{
620
	struct page *page = NULL;
621
	unsigned long index;
622
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
623
	int ret;
624
	int corrected = 0;
625
	struct btrfs_key key;
626
	struct inode *inode = NULL;
627
	struct btrfs_fs_info *fs_info;
628 629
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
630
	int srcu_index;
631 632 633 634

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
635 636 637 638 639 640 641

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
642
		return PTR_ERR(local_root);
643
	}
644 645 646 647

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
648 649
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
650 651 652 653 654 655
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
682 683
		fs_info = BTRFS_I(inode)->root->fs_info;
		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
					fixup->logical, page,
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
719 720

	iput(inode);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
740
	struct scrub_ctx *sctx;
741 742 743 744 745
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
746
	sctx = fixup->sctx;
747 748 749

	path = btrfs_alloc_path();
	if (!path) {
750 751 752
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

781 782 783
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
784 785 786 787 788

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
789 790 791
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
792 793 794
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
795 796
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
797
			fixup->logical, rcu_str_deref(fixup->dev->name));
798 799 800 801 802
	}

	btrfs_free_path(path);
	kfree(fixup);

803
	scrub_pending_trans_workers_dec(sctx);
804 805
}

A
Arne Jansen 已提交
806
/*
807 808 809 810 811 812
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
813
 */
814
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
815
{
816
	struct scrub_ctx *sctx = sblock_to_check->sctx;
817
	struct btrfs_device *dev;
818 819 820 821 822 823 824 825 826 827 828 829 830 831
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
832
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
833 834 835
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
836
	fs_info = sctx->dev_root->fs_info;
837 838 839 840 841 842 843 844 845 846 847
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
848
	length = sblock_to_check->page_count * PAGE_SIZE;
849 850 851 852 853
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
854
			BTRFS_EXTENT_FLAG_DATA);
855 856 857
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
858

859 860 861 862 863
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
897 898 899 900 901
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
902
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
903
		goto out;
A
Arne Jansen 已提交
904 905
	}

906
	/* setup the context, map the logical blocks and alloc the pages */
907
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
908 909
					logical, sblocks_for_recheck);
	if (ret) {
910 911 912 913
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
914
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
915 916 917 918
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
919

920
	/* build and submit the bios for the failed mirror, check checksums */
921 922
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
			    csum, generation, sctx->csum_size);
A
Arne Jansen 已提交
923

924 925 926 927 928 929 930 931 932 933
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
934 935 936
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
937

938 939
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
940
		goto out;
A
Arne Jansen 已提交
941 942
	}

943
	if (!sblock_bad->no_io_error_seen) {
944 945 946
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
947 948
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
949
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
950
	} else if (sblock_bad->checksum_error) {
951 952 953
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
954 955
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
956
		btrfs_dev_stat_inc_and_print(dev,
957
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
958
	} else if (sblock_bad->header_error) {
959 960 961
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
962 963 964
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
965
		if (sblock_bad->generation_error)
966
			btrfs_dev_stat_inc_and_print(dev,
967 968
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
969
			btrfs_dev_stat_inc_and_print(dev,
970
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
971
	}
A
Arne Jansen 已提交
972

973 974 975 976
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
977

978 979
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
980

981 982 983
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

984 985 986 987 988 989 990 991 992 993
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
994
		fixup_nodatasum->sctx = sctx;
995
		fixup_nodatasum->dev = dev;
996 997 998
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
999
		scrub_pending_trans_workers_inc(sctx);
1000 1001
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1002 1003
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1004
		goto out;
A
Arne Jansen 已提交
1005 1006
	}

1007 1008
	/*
	 * now build and submit the bios for the other mirrors, check
1009 1010
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1026
		struct scrub_block *sblock_other;
1027

1028 1029 1030 1031 1032
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1033 1034 1035 1036 1037
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
				    sctx->csum_size);

		if (!sblock_other->header_error &&
1038 1039
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1040 1041 1042 1043 1044 1045 1046 1047 1048
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
1049 1050 1051 1052
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1053 1054

	/*
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1134 1135
	 */

1136 1137 1138 1139 1140 1141
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1142
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143 1144

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1145
			continue;
1146 1147 1148 1149 1150 1151 1152

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1153 1154
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1155 1156 1157 1158 1159 1160 1161 1162 1163

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1164
		}
A
Arne Jansen 已提交
1165

1166 1167 1168 1169
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1170 1171
	}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1183 1184 1185 1186
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
					    generation, sctx->csum_size);
			if (!sblock_bad->header_error &&
1187 1188 1189 1190 1191 1192 1193
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1194 1195 1196
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
			spin_unlock(&sctx->stat_lock);
1197
			printk_ratelimited_in_rcu(KERN_ERR
1198
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1199
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1200
		}
1201 1202
	} else {
did_not_correct_error:
1203 1204 1205
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1206
		printk_ratelimited_in_rcu(KERN_ERR
1207
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1208
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1209
	}
A
Arne Jansen 已提交
1210

1211 1212 1213 1214 1215 1216 1217 1218
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
			int page_index;

1219 1220 1221 1222 1223
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
				scrub_page_put(sblock->pagev[page_index]);
			}
1224 1225 1226
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1227

1228 1229
	return 0;
}
A
Arne Jansen 已提交
1230

1231
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1232
				     struct btrfs_fs_info *fs_info,
1233
				     struct scrub_block *original_sblock,
1234 1235 1236 1237 1238 1239 1240 1241
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
	int page_index;
	int mirror_index;
	int ret;

	/*
1242
	 * note: the two members ref_count and outstanding_pages
1243 1244 1245 1246 1247 1248 1249 1250 1251
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
		u64 sublen = min_t(u64, length, PAGE_SIZE);
		u64 mapped_length = sublen;
		struct btrfs_bio *bbio = NULL;
A
Arne Jansen 已提交
1252

1253 1254 1255 1256
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1257 1258
		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
				      &mapped_length, &bbio, 0);
1259 1260 1261 1262
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
			return -EIO;
		}
A
Arne Jansen 已提交
1263

1264
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1265 1266 1267 1268 1269 1270 1271 1272 1273
		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1274 1275 1276 1277
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1278 1279 1280
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1281
				kfree(bbio);
1282 1283
				return -ENOMEM;
			}
1284 1285 1286 1287
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
			page->physical = bbio->stripes[mirror_index].physical;
1288 1289 1290 1291
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1292 1293 1294
			/* for missing devices, dev->bdev is NULL */
			page->dev = bbio->stripes[mirror_index].dev;
			page->mirror_num = mirror_index + 1;
1295
			sblock->page_count++;
1296 1297 1298
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1299 1300 1301 1302 1303 1304 1305 1306
		}
		kfree(bbio);
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1307 1308
}

1309 1310 1311 1312 1313 1314 1315
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1316 1317 1318 1319
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size)
I
Ilya Dryomov 已提交
1320
{
1321
	int page_num;
I
Ilya Dryomov 已提交
1322

1323 1324 1325
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1326

1327 1328
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1329
		struct scrub_page *page = sblock->pagev[page_num];
1330

1331
		if (page->dev->bdev == NULL) {
1332 1333 1334 1335 1336
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1337
		WARN_ON(!page->page);
1338
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1339 1340 1341 1342 1343
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1344
		bio->bi_bdev = page->dev->bdev;
1345
		bio->bi_iter.bi_sector = page->physical >> 9;
1346

1347
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1348
		if (btrfsic_submit_bio_wait(READ, bio))
1349
			sblock->no_io_error_seen = 0;
1350

1351 1352
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1353

1354 1355 1356 1357 1358
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1359
	return;
A
Arne Jansen 已提交
1360 1361
}

1362 1363 1364 1365 1366
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1367
{
1368 1369 1370 1371 1372
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1373
	WARN_ON(!sblock->pagev[0]->page);
1374 1375 1376
	if (is_metadata) {
		struct btrfs_header *h;

1377
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1378 1379
		h = (struct btrfs_header *)mapped_buffer;

1380
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1381 1382
		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1383
			   BTRFS_UUID_SIZE)) {
1384
			sblock->header_error = 1;
1385
		} else if (generation != btrfs_stack_header_generation(h)) {
1386 1387 1388
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1389 1390 1391 1392
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1393

1394
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1395
	}
A
Arne Jansen 已提交
1396

1397 1398
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1399
			crc = btrfs_csum_data(
1400 1401 1402
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1403
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1404

1405
		kunmap_atomic(mapped_buffer);
1406 1407 1408
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1409
		WARN_ON(!sblock->pagev[page_num]->page);
1410

1411
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1412 1413 1414 1415 1416
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1417 1418
}

1419 1420 1421 1422 1423 1424
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1425

1426 1427
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1428

1429 1430 1431 1432 1433 1434
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1435
	}
1436 1437 1438 1439 1440 1441 1442 1443

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1444 1445
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1446

1447 1448
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1449 1450 1451 1452 1453
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1454
		if (!page_bad->dev->bdev) {
1455 1456 1457
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1458 1459 1460
			return -EIO;
		}

1461
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1462 1463
		if (!bio)
			return -EIO;
1464
		bio->bi_bdev = page_bad->dev->bdev;
1465
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1466 1467 1468 1469 1470

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1471
		}
1472

1473
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1474 1475
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1476 1477 1478
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1479 1480 1481
			bio_put(bio);
			return -EIO;
		}
1482
		bio_put(bio);
A
Arne Jansen 已提交
1483 1484
	}

1485 1486 1487
	return 0;
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1547
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1558
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1617 1618
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1619
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1651 1652 1653 1654
{
	u64 flags;
	int ret;

1655 1656
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1668 1669

	return ret;
A
Arne Jansen 已提交
1670 1671
}

1672
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1673
{
1674
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1675
	u8 csum[BTRFS_CSUM_SIZE];
1676 1677 1678
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1679 1680
	u32 crc = ~(u32)0;
	int fail = 0;
1681 1682
	u64 len;
	int index;
A
Arne Jansen 已提交
1683

1684
	BUG_ON(sblock->page_count < 1);
1685
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1686 1687
		return 0;

1688 1689
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1690
	buffer = kmap_atomic(page);
1691

1692
	len = sctx->sectorsize;
1693 1694 1695 1696
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1697
		crc = btrfs_csum_data(buffer, crc, l);
1698
		kunmap_atomic(buffer);
1699 1700 1701 1702 1703
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1704 1705
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1706
		buffer = kmap_atomic(page);
1707 1708
	}

A
Arne Jansen 已提交
1709
	btrfs_csum_final(crc, csum);
1710
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1711 1712 1713 1714 1715
		fail = 1;

	return fail;
}

1716
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1717
{
1718
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1719
	struct btrfs_header *h;
1720
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1721
	struct btrfs_fs_info *fs_info = root->fs_info;
1722 1723 1724 1725 1726 1727
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1728 1729 1730
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1731 1732 1733 1734
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1735
	page = sblock->pagev[0]->page;
1736
	mapped_buffer = kmap_atomic(page);
1737
	h = (struct btrfs_header *)mapped_buffer;
1738
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1739 1740 1741 1742 1743 1744 1745

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1746
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1747 1748
		++fail;

1749
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758
		++fail;

	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1759
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1760 1761 1762 1763 1764 1765
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1766
		crc = btrfs_csum_data(p, crc, l);
1767
		kunmap_atomic(mapped_buffer);
1768 1769 1770 1771 1772
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1773 1774
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1775
		mapped_buffer = kmap_atomic(page);
1776 1777 1778 1779 1780
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1781
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1782 1783 1784 1785 1786
		++crc_fail;

	return fail || crc_fail;
}

1787
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1788 1789
{
	struct btrfs_super_block *s;
1790
	struct scrub_ctx *sctx = sblock->sctx;
1791
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1792
	struct btrfs_fs_info *fs_info = root->fs_info;
1793 1794 1795 1796 1797 1798
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1799
	u32 crc = ~(u32)0;
1800 1801
	int fail_gen = 0;
	int fail_cor = 0;
1802 1803
	u64 len;
	int index;
A
Arne Jansen 已提交
1804

1805
	BUG_ON(sblock->page_count < 1);
1806
	page = sblock->pagev[0]->page;
1807
	mapped_buffer = kmap_atomic(page);
1808
	s = (struct btrfs_super_block *)mapped_buffer;
1809
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1810

1811
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1812
		++fail_cor;
A
Arne Jansen 已提交
1813

1814
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1815
		++fail_gen;
A
Arne Jansen 已提交
1816 1817

	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1818
		++fail_cor;
A
Arne Jansen 已提交
1819

1820 1821 1822 1823 1824 1825 1826
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1827
		crc = btrfs_csum_data(p, crc, l);
1828
		kunmap_atomic(mapped_buffer);
1829 1830 1831 1832 1833
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1834 1835
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1836
		mapped_buffer = kmap_atomic(page);
1837 1838 1839 1840 1841
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1842
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1843
		++fail_cor;
A
Arne Jansen 已提交
1844

1845
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1846 1847 1848 1849 1850
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1851 1852 1853
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1854
		if (fail_cor)
1855
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1856 1857
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1858
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1859
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1860 1861
	}

1862
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1863 1864
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

		for (i = 0; i < sblock->page_count; i++)
1876
			scrub_page_put(sblock->pagev[i]);
1877 1878 1879 1880
		kfree(sblock);
	}
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1895
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1896 1897 1898
{
	struct scrub_bio *sbio;

1899
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1900
		return;
A
Arne Jansen 已提交
1901

1902 1903
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1904
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
1915
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1916 1917 1918 1919
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
1920 1921
}

1922 1923
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1924
{
1925
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1926
	struct scrub_bio *sbio;
1927
	int ret;
A
Arne Jansen 已提交
1928 1929 1930 1931 1932

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1933 1934 1935 1936 1937 1938 1939 1940
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1941
		} else {
1942 1943
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1944 1945
		}
	}
1946
	sbio = sctx->bios[sctx->curr];
1947
	if (sbio->page_count == 0) {
1948 1949
		struct bio *bio;

1950 1951
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
1952
		sbio->dev = spage->dev;
1953 1954
		bio = sbio->bio;
		if (!bio) {
1955
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1956 1957 1958 1959
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
1960 1961 1962

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
1963
		bio->bi_bdev = sbio->dev->bdev;
1964
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1965
		sbio->err = 0;
1966 1967 1968
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1969 1970
		   spage->logical ||
		   sbio->dev != spage->dev) {
1971
		scrub_submit(sctx);
A
Arne Jansen 已提交
1972 1973
		goto again;
	}
1974

1975 1976 1977 1978 1979 1980 1981 1982
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
1983
		scrub_submit(sctx);
1984 1985 1986
		goto again;
	}

1987
	scrub_block_get(sblock); /* one for the page added to the bio */
1988 1989
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
1990
	if (sbio->page_count == sctx->pages_per_rd_bio)
1991
		scrub_submit(sctx);
1992 1993 1994 1995

	return 0;
}

1996
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1997
		       u64 physical, struct btrfs_device *dev, u64 flags,
1998 1999
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2000 2001 2002 2003 2004 2005
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2006 2007 2008
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2009
		return -ENOMEM;
A
Arne Jansen 已提交
2010
	}
2011

2012 2013
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2014
	atomic_set(&sblock->ref_count, 1);
2015
	sblock->sctx = sctx;
2016 2017 2018
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2019
		struct scrub_page *spage;
2020 2021
		u64 l = min_t(u64, len, PAGE_SIZE);

2022 2023 2024
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2025 2026 2027
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2028
			scrub_block_put(sblock);
2029 2030
			return -ENOMEM;
		}
2031 2032 2033
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2034
		spage->sblock = sblock;
2035
		spage->dev = dev;
2036 2037 2038 2039
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2040
		spage->physical_for_dev_replace = physical_for_dev_replace;
2041 2042 2043
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2044
			memcpy(spage->csum, csum, sctx->csum_size);
2045 2046 2047 2048
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2049 2050 2051
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2052 2053 2054
		len -= l;
		logical += l;
		physical += l;
2055
		physical_for_dev_replace += l;
2056 2057
	}

2058
	WARN_ON(sblock->page_count == 0);
2059
	for (index = 0; index < sblock->page_count; index++) {
2060
		struct scrub_page *spage = sblock->pagev[index];
2061 2062
		int ret;

2063
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2064 2065
		if (ret) {
			scrub_block_put(sblock);
2066
			return ret;
2067
		}
2068
	}
A
Arne Jansen 已提交
2069

2070
	if (force)
2071
		scrub_submit(sctx);
A
Arne Jansen 已提交
2072

2073 2074
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2075 2076 2077
	return 0;
}

2078 2079 2080
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2081
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2082 2083 2084 2085

	sbio->err = err;
	sbio->bio = bio;

2086
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2087 2088 2089 2090 2091
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2092
	struct scrub_ctx *sctx = sbio->sctx;
2093 2094
	int i;

2095
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2117 2118 2119 2120
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2121 2122 2123 2124 2125 2126 2127 2128

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2129
	scrub_pending_bio_dec(sctx);
2130 2131 2132 2133
}

static void scrub_block_complete(struct scrub_block *sblock)
{
2134
	if (!sblock->no_io_error_seen) {
2135
		scrub_handle_errored_block(sblock);
2136 2137 2138 2139 2140 2141 2142 2143 2144
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock);
	}
2145 2146
}

2147
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2148 2149 2150
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2151
	unsigned long index;
A
Arne Jansen 已提交
2152 2153
	unsigned long num_sectors;

2154 2155
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2156 2157 2158 2159 2160 2161
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2162
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2163 2164 2165 2166 2167 2168 2169
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2170
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2171
	num_sectors = sum->len / sctx->sectorsize;
2172 2173
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2174 2175 2176
		list_del(&sum->list);
		kfree(sum);
	}
2177
	return 1;
A
Arne Jansen 已提交
2178 2179 2180
}

/* scrub extent tries to collect up to 64 kB for each bio */
2181
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2182
			u64 physical, struct btrfs_device *dev, u64 flags,
2183
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2184 2185 2186
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2187 2188 2189
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2190 2191 2192 2193 2194
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2195
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2196 2197 2198 2199 2200
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2201
	} else {
2202
		blocksize = sctx->sectorsize;
2203
		WARN_ON(1);
2204
	}
A
Arne Jansen 已提交
2205 2206

	while (len) {
2207
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2208 2209 2210 2211
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2212
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2213
			if (have_csum == 0)
2214
				++sctx->stat.no_csum;
2215 2216 2217 2218 2219 2220
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2221
		}
2222
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2223 2224 2225
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2226 2227 2228 2229 2230
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2231
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2232 2233 2234 2235
	}
	return 0;
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
				   struct map_lookup *map, u64 *offset)
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2267
		stripe_index = rot % map->num_stripes;
2268 2269 2270 2271 2272 2273 2274 2275 2276
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2277
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2278 2279
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2280 2281
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2282 2283
{
	struct btrfs_path *path;
2284
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2285 2286 2287
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2288
	struct blk_plug plug;
A
Arne Jansen 已提交
2289 2290 2291 2292 2293 2294 2295 2296
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2297
	u64 logic_end;
2298
	u64 physical_end;
A
Arne Jansen 已提交
2299
	u64 generation;
2300
	int mirror_num;
A
Arne Jansen 已提交
2301 2302 2303 2304
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2305 2306
	u64 increment = map->stripe_len;
	u64 offset;
2307 2308 2309 2310 2311
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
2312
	int stop_loop = 0;
D
David Woodhouse 已提交
2313

A
Arne Jansen 已提交
2314
	nstripes = length;
2315
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
2316 2317 2318 2319 2320
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2321
		mirror_num = 1;
A
Arne Jansen 已提交
2322 2323 2324 2325
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2326
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2327 2328
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2329
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2330 2331
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2332
		mirror_num = num % map->num_stripes + 1;
2333 2334 2335 2336 2337
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical, num, map, &offset);
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
2338 2339
	} else {
		increment = map->stripe_len;
2340
		mirror_num = 1;
A
Arne Jansen 已提交
2341 2342 2343 2344 2345 2346
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2347 2348 2349 2350 2351
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
2352 2353 2354 2355
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
2356 2357 2358
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
2359 2360
	 */
	logical = base + offset;
2361 2362 2363 2364 2365 2366 2367 2368 2369
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
					map, &logic_end);
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
2370
	wait_event(sctx->list_wait,
2371
		   atomic_read(&sctx->bios_in_flight) == 0);
2372
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2373 2374 2375 2376 2377

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
2378
	key_end.objectid = logic_end;
2379 2380
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
2381 2382 2383 2384 2385 2386 2387
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2388
	key_end.offset = logic_end;
A
Arne Jansen 已提交
2389 2390 2391 2392 2393 2394 2395
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
2396 2397 2398 2399 2400

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
2401
	blk_start_plug(&plug);
A
Arne Jansen 已提交
2402 2403 2404 2405 2406

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
					map, &logical);
			logical += base;
			if (ret)
				goto skip;
		}
A
Arne Jansen 已提交
2417 2418 2419 2420
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
2421
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
2422 2423 2424 2425 2426 2427 2428 2429
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
2430
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2431
			scrub_submit(sctx);
2432 2433 2434
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
2435
			wait_event(sctx->list_wait,
2436
				   atomic_read(&sctx->bios_in_flight) == 0);
2437
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2438
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2439 2440
		}

2441 2442 2443 2444
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
2445
		key.objectid = logical;
L
Liu Bo 已提交
2446
		key.offset = (u64)-1;
A
Arne Jansen 已提交
2447 2448 2449 2450

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
2451

2452
		if (ret > 0) {
2453
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
2454 2455
			if (ret < 0)
				goto out;
2456 2457 2458 2459 2460 2461 2462 2463 2464
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
2465 2466
		}

L
Liu Bo 已提交
2467
		stop_loop = 0;
A
Arne Jansen 已提交
2468
		while (1) {
2469 2470
			u64 bytes;

A
Arne Jansen 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
2480
				stop_loop = 1;
A
Arne Jansen 已提交
2481 2482 2483 2484
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2485
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2486
				bytes = root->nodesize;
2487 2488 2489 2490
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
2491 2492
				goto next;

L
Liu Bo 已提交
2493 2494 2495
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
2496

L
Liu Bo 已提交
2497 2498 2499 2500 2501 2502
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
2503 2504 2505 2506 2507 2508 2509 2510

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2511 2512 2513
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
2514
				       key.objectid, logical);
A
Arne Jansen 已提交
2515 2516 2517
				goto next;
			}

L
Liu Bo 已提交
2518 2519 2520 2521
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
2522 2523 2524
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
2525 2526 2527
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
2528
			}
L
Liu Bo 已提交
2529
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
2530
			    logical + map->stripe_len) {
L
Liu Bo 已提交
2531 2532
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
2533 2534
			}

L
Liu Bo 已提交
2535
			extent_physical = extent_logical - logical + physical;
2536 2537 2538 2539 2540 2541 2542
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
2543 2544 2545 2546 2547 2548 2549

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

2550 2551 2552
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
2553
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
2554 2555 2556
			if (ret)
				goto out;

2557
			scrub_free_csums(sctx);
L
Liu Bo 已提交
2558 2559
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
					do {
						physical += map->stripe_len;
						ret = get_raid56_logic_offset(
								physical, num,
								map, &logical);
						logical += base;
					} while (physical < physical_end && ret);
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
2577 2578 2579 2580 2581
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

2582
				if (physical >= physical_end) {
L
Liu Bo 已提交
2583 2584 2585 2586
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
2587 2588 2589
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
2590
		btrfs_release_path(path);
2591
skip:
A
Arne Jansen 已提交
2592 2593
		logical += increment;
		physical += map->stripe_len;
2594
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
2595 2596 2597 2598 2599
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
2600
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
2601 2602
		if (stop_loop)
			break;
A
Arne Jansen 已提交
2603
	}
2604
out:
A
Arne Jansen 已提交
2605
	/* push queued extents */
2606
	scrub_submit(sctx);
2607 2608 2609
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
2610

2611
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
2612 2613 2614 2615
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

2616
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2617 2618 2619
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
2620
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
2621 2622
{
	struct btrfs_mapping_tree *map_tree =
2623
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
2624 2625 2626
	struct map_lookup *map;
	struct extent_map *em;
	int i;
2627
	int ret = 0;
A
Arne Jansen 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
2644
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2645
		    map->stripes[i].physical == dev_offset) {
2646
			ret = scrub_stripe(sctx, map, scrub_dev, i,
2647 2648
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
2660
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2661 2662
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
2663 2664 2665
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
2666
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
2678
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

2688
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
2689 2690 2691 2692 2693 2694
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
2695 2696 2697 2698 2699 2700 2701 2702 2703
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
2704 2705 2706 2707 2708 2709

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

2710
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
2711 2712
			break;

2713
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

2725 2726
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2737 2738 2739 2740 2741 2742

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

2743 2744 2745
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
2746
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
2768 2769 2770 2771 2772 2773 2774 2775
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
2776 2777
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
2778 2779 2780 2781 2782 2783 2784
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
2785

A
Arne Jansen 已提交
2786 2787 2788
		btrfs_put_block_group(cache);
		if (ret)
			break;
2789 2790
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2791 2792 2793 2794 2795 2796 2797
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
2798

2799 2800
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
2801
skip:
A
Arne Jansen 已提交
2802
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
2803
		btrfs_release_path(path);
A
Arne Jansen 已提交
2804 2805 2806
	}

	btrfs_free_path(path);
2807 2808 2809 2810 2811 2812

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
2813 2814
}

2815 2816
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
2817 2818 2819 2820 2821
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
2822
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2823

2824
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2825 2826
		return -EIO;

A
Arne Jansen 已提交
2827 2828 2829 2830
	gen = root->fs_info->last_trans_committed;

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
2831
		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
A
Arne Jansen 已提交
2832 2833
			break;

2834
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2835
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2836
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
2837 2838 2839
		if (ret)
			return ret;
	}
2840
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2841 2842 2843 2844 2845 2846 2847

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
2848 2849
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
2850
{
2851
	int ret = 0;
2852 2853
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
2854

A
Arne Jansen 已提交
2855
	if (fs_info->scrub_workers_refcnt == 0) {
2856
		if (is_dev_replace)
2857 2858 2859
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
2860
		else
2861 2862 2863 2864 2865
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
2866
			goto out;
2867 2868 2869 2870 2871 2872
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
2873
			goto out;
2874 2875 2876 2877 2878
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
2879
			goto out;
2880
		}
A
Arne Jansen 已提交
2881
	}
A
Arne Jansen 已提交
2882
	++fs_info->scrub_workers_refcnt;
2883 2884
out:
	return ret;
A
Arne Jansen 已提交
2885 2886
}

2887
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2888
{
2889
	if (--fs_info->scrub_workers_refcnt == 0) {
2890 2891 2892
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2893
	}
A
Arne Jansen 已提交
2894 2895 2896
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

2897 2898
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
2899
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
2900
{
2901
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2902 2903
	int ret;
	struct btrfs_device *dev;
2904
	struct rcu_string *name;
A
Arne Jansen 已提交
2905

2906
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
2907 2908
		return -EINVAL;

2909
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2910 2911 2912 2913 2914
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
2915 2916
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2917
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2918 2919 2920
		return -EINVAL;
	}

2921
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2922
		/* not supported for data w/o checksums */
2923 2924 2925
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
2926
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
2927 2928 2929
		return -EINVAL;
	}

2930 2931 2932 2933 2934 2935 2936 2937
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
2938 2939
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2940 2941 2942 2943 2944 2945 2946
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
2947

2948 2949
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2950
	if (!dev || (dev->missing && !is_dev_replace)) {
2951
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2952 2953 2954
		return -ENODEV;
	}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

2965
	mutex_lock(&fs_info->scrub_lock);
2966
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
2967
		mutex_unlock(&fs_info->scrub_lock);
2968 2969
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
2970 2971
	}

2972 2973 2974 2975 2976
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
2977
		mutex_unlock(&fs_info->scrub_lock);
2978
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2979 2980
		return -EINPROGRESS;
	}
2981
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2982 2983 2984 2985 2986 2987 2988 2989

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

2990
	sctx = scrub_setup_ctx(dev, is_dev_replace);
2991
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
2992
		mutex_unlock(&fs_info->scrub_lock);
2993 2994
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
2995
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
2996
	}
2997 2998
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
2999
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3000

3001 3002 3003 3004
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3005
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3006 3007 3008
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3009
	if (!is_dev_replace) {
3010 3011 3012 3013
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3014
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3015
		ret = scrub_supers(sctx, dev);
3016
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3017
	}
A
Arne Jansen 已提交
3018 3019

	if (!ret)
3020 3021
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3022

3023
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3024 3025 3026
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3027
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3028

A
Arne Jansen 已提交
3029
	if (progress)
3030
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3031 3032 3033

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3034
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3035 3036
	mutex_unlock(&fs_info->scrub_lock);

3037
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3038 3039 3040 3041

	return ret;
}

3042
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3059
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3060 3061 3062 3063 3064 3065 3066
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3067
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3088 3089
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3090
{
3091
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3092 3093

	mutex_lock(&fs_info->scrub_lock);
3094 3095
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3096 3097 3098
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3099
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3110

A
Arne Jansen 已提交
3111 3112 3113 3114
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3115
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3116 3117

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3118
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3119
	if (dev)
3120 3121 3122
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3123 3124
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3125
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3126
}
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3203 3204
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3205
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3206 3207
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3208 3209 3210 3211

	return 0;
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3264
					  record_inode_for_nocow, nocow_ctx);
3265
	if (ret != 0 && ret != -ENOENT) {
3266 3267
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3268 3269
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3270 3271 3272 3273
		not_written = 1;
		goto out;
	}

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3292
out:
3293 3294 3295 3296 3297 3298 3299 3300
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

3313 3314
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
3315
{
3316
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3317
	struct btrfs_key key;
3318 3319
	struct inode *inode;
	struct page *page;
3320
	struct btrfs_root *local_root;
3321 3322 3323 3324
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	struct extent_state *cached_state = NULL;
	struct extent_io_tree *io_tree;
3325
	u64 physical_for_dev_replace;
3326 3327
	u64 len = nocow_ctx->len;
	u64 lockstart = offset, lockend = offset + len - 1;
3328
	unsigned long index;
3329
	int srcu_index;
3330 3331
	int ret = 0;
	int err = 0;
3332 3333 3334 3335

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
3336 3337 3338

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

3339
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3340 3341
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3342
		return PTR_ERR(local_root);
3343
	}
3344 3345 3346 3347 3348

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3349
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3350 3351 3352
	if (IS_ERR(inode))
		return PTR_ERR(inode);

3353 3354 3355 3356
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

3357
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > nocow_ctx->logical ||
	    em->block_start + em->block_len < nocow_ctx->logical + len) {
		free_extent_map(em);
		goto out_unlock;
	}
	free_extent_map(em);

3384 3385
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
3386
again:
3387 3388
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
3389
			btrfs_err(fs_info, "find_or_create_page() failed");
3390
			ret = -ENOMEM;
3391
			goto out;
3392 3393 3394 3395 3396 3397 3398
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
3399 3400 3401
			err = extent_read_full_page_nolock(io_tree, page,
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
3402 3403
			if (err) {
				ret = err;
3404 3405
				goto next_page;
			}
3406

3407
			lock_page(page);
3408 3409 3410 3411 3412 3413 3414
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
3415
				unlock_page(page);
3416 3417 3418
				page_cache_release(page);
				goto again;
			}
3419 3420 3421 3422 3423
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
3424 3425 3426 3427
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
3428
next_page:
3429 3430 3431 3432 3433 3434
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

3435 3436 3437 3438
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
		len -= PAGE_CACHE_SIZE;
	}
3439 3440 3441 3442
	ret = COPY_COMPLETE;
out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
3443
out:
3444
	mutex_unlock(&inode->i_mutex);
3445
	iput(inode);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
3461
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3462 3463
		return -EIO;
	}
3464
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3465 3466 3467 3468 3469 3470
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
3471 3472
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3473 3474 3475 3476 3477 3478 3479 3480 3481
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

3482
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3483 3484 3485 3486 3487
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}