scrub.c 92.8 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65 66

struct scrub_page {
67 68
	struct scrub_block	*sblock;
	struct page		*page;
69
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
70 71
	u64			flags;  /* extent flags */
	u64			generation;
72 73
	u64			logical;
	u64			physical;
74
	u64			physical_for_dev_replace;
75
	atomic_t		ref_count;
76 77 78 79 80
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
81 82 83 84 85
	u8			csum[BTRFS_CSUM_SIZE];
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88 89 90 91
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105 106
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115
	};
};

116 117 118 119 120 121 122 123
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

124
struct scrub_ctx {
125
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
127 128
	int			first_free;
	int			curr;
129 130
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
131 132 133 134 135
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
136
	int			readonly;
137
	int			pages_per_rd_bio;
138 139
	u32			sectorsize;
	u32			nodesize;
140 141

	int			is_dev_replace;
142
	struct scrub_wr_ctx	wr_ctx;
143

A
Arne Jansen 已提交
144 145 146 147 148 149 150
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

151
struct scrub_fixup_nodatasum {
152
	struct scrub_ctx	*sctx;
153
	struct btrfs_device	*dev;
154 155 156 157 158 159
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

160 161 162 163 164 165 166
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

167 168 169 170 171 172
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
173
	struct list_head	inodes;
174 175 176
	struct btrfs_work	work;
};

177 178 179 180 181 182 183 184 185
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

186 187 188 189
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
190
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
191
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
192
				     struct btrfs_fs_info *fs_info,
193
				     struct scrub_block *original_sblock,
194
				     u64 length, u64 logical,
195
				     struct scrub_block *sblocks_for_recheck);
196 197 198 199
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size);
200 201 202 203 204 205 206 207 208 209 210
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
211 212 213
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
214 215 216 217 218
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
219 220
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
221 222
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
223
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
224
		       u64 physical, struct btrfs_device *dev, u64 flags,
225 226
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
227
static void scrub_bio_end_io(struct bio *bio, int err);
228 229
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
249
				      struct scrub_copy_nocow_ctx *ctx);
250 251 252
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
253
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
255 256


257 258 259 260 261 262 263 264 265 266 267
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

268
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
269 270 271 272 273 274 275 276 277
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

278 279 280 281 282 283 284 285 286 287 288 289 290
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
312 313 314 315 316 317 318 319 320 321

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

343
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
344
{
345
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
346
		struct btrfs_ordered_sum *sum;
347
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
348 349 350 351 352 353
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

354
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
355 356 357
{
	int i;

358
	if (!sctx)
A
Arne Jansen 已提交
359 360
		return;

361 362
	scrub_free_wr_ctx(&sctx->wr_ctx);

363
	/* this can happen when scrub is cancelled */
364 365
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
366 367

		for (i = 0; i < sbio->page_count; i++) {
368
			WARN_ON(!sbio->pagev[i]->page);
369 370 371 372 373
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

374
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
375
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
376 377 378 379 380 381

		if (!sbio)
			break;
		kfree(sbio);
	}

382 383
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
384 385 386
}

static noinline_for_stack
387
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
388
{
389
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
390 391
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
392 393
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
394

395 396 397 398 399 400 401 402 403 404 405 406
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
407 408
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
409
		goto nomem;
410
	sctx->is_dev_replace = is_dev_replace;
411
	sctx->pages_per_rd_bio = pages_per_rd_bio;
412
	sctx->curr = -1;
413
	sctx->dev_root = dev->dev_root;
414
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
415 416 417 418 419
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
420
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
421 422

		sbio->index = i;
423
		sbio->sctx = sctx;
424
		sbio->page_count = 0;
425 426
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
427

428
		if (i != SCRUB_BIOS_PER_SCTX - 1)
429
			sctx->bios[i]->next_free = i + 1;
430
		else
431 432 433 434 435
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
436 437
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
438 439 440 441 442 443 444
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
445 446 447 448 449 450 451

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
452
	return sctx;
A
Arne Jansen 已提交
453 454

nomem:
455
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
456 457 458
	return ERR_PTR(-ENOMEM);
}

459 460
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
461 462 463 464 465 466 467
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
468
	struct scrub_warning *swarn = warn_ctx;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
497 498 499 500 501
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
502 503 504 505 506 507 508 509 510 511
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
512
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
513 514
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
515
			swarn->logical, rcu_str_deref(swarn->dev->name),
516 517
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
518
			(char *)(unsigned long)ipath->fspath->val[i]);
519 520 521 522 523

	free_ipath(ipath);
	return 0;

err:
524
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
525 526
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
527
		swarn->logical, rcu_str_deref(swarn->dev->name),
528 529 530 531 532 533
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

534
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
535
{
536 537
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
538 539 540 541 542
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
543 544 545
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
546
	u64 ref_root;
547
	u32 item_size;
548
	u8 ref_level;
549
	int ret;
550

551
	WARN_ON(sblock->page_count < 1);
552
	dev = sblock->pagev[0]->dev;
553 554
	fs_info = sblock->sctx->dev_root->fs_info;

555
	path = btrfs_alloc_path();
556 557
	if (!path)
		return;
558

559 560
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
561
	swarn.errstr = errstr;
562
	swarn.dev = NULL;
563

564 565
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
566 567 568
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
569
	extent_item_pos = swarn.logical - found_key.objectid;
570 571 572 573 574 575
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

576
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
577
		do {
578 579 580
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
581
			printk_in_rcu(KERN_WARNING
582
				"BTRFS: %s at logical %llu on dev %s, "
583
				"sector %llu: metadata %s (level %d) in tree "
584 585
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
586 587 588 589 590
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
591
		btrfs_release_path(path);
592
	} else {
593
		btrfs_release_path(path);
594
		swarn.path = path;
595
		swarn.dev = dev;
596 597
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
598 599 600 601 602 603 604
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

605
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
606
{
607
	struct page *page = NULL;
608
	unsigned long index;
609
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
610
	int ret;
611
	int corrected = 0;
612
	struct btrfs_key key;
613
	struct inode *inode = NULL;
614
	struct btrfs_fs_info *fs_info;
615 616
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
617
	int srcu_index;
618 619 620 621

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
622 623 624 625 626 627 628

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
629
		return PTR_ERR(local_root);
630
	}
631 632 633 634

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
635 636
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
637 638 639 640 641 642
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
669
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
670
					fixup->logical, page,
671
					offset - page_offset(page),
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
706 707

	iput(inode);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
727
	struct scrub_ctx *sctx;
728 729 730 731 732
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
733
	sctx = fixup->sctx;
734 735 736

	path = btrfs_alloc_path();
	if (!path) {
737 738 739
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

768 769 770
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
771 772 773 774 775

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
776 777 778
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
779 780 781
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
782 783
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
784
			fixup->logical, rcu_str_deref(fixup->dev->name));
785 786 787 788 789
	}

	btrfs_free_path(path);
	kfree(fixup);

790
	scrub_pending_trans_workers_dec(sctx);
791 792
}

A
Arne Jansen 已提交
793
/*
794 795 796 797 798 799
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
800
 */
801
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
802
{
803
	struct scrub_ctx *sctx = sblock_to_check->sctx;
804
	struct btrfs_device *dev;
805 806 807 808 809 810 811 812 813 814 815 816 817 818
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
819
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
820 821 822
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
823
	fs_info = sctx->dev_root->fs_info;
824 825 826 827 828 829 830 831 832 833 834
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
835
	length = sblock_to_check->page_count * PAGE_SIZE;
836 837 838 839 840
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
841
			BTRFS_EXTENT_FLAG_DATA);
842 843 844
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
845

846 847 848 849 850
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
884 885 886 887 888
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
889
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
890
		goto out;
A
Arne Jansen 已提交
891 892
	}

893
	/* setup the context, map the logical blocks and alloc the pages */
894
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
895 896
					logical, sblocks_for_recheck);
	if (ret) {
897 898 899 900
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
901
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
902 903 904 905
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
906

907
	/* build and submit the bios for the failed mirror, check checksums */
908 909
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
			    csum, generation, sctx->csum_size);
A
Arne Jansen 已提交
910

911 912 913 914 915 916 917 918 919 920
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
921 922 923
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
924

925 926
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
927
		goto out;
A
Arne Jansen 已提交
928 929
	}

930
	if (!sblock_bad->no_io_error_seen) {
931 932 933
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
934 935
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
936
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
937
	} else if (sblock_bad->checksum_error) {
938 939 940
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
941 942
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
943
		btrfs_dev_stat_inc_and_print(dev,
944
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
945
	} else if (sblock_bad->header_error) {
946 947 948
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
949 950 951
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
952
		if (sblock_bad->generation_error)
953
			btrfs_dev_stat_inc_and_print(dev,
954 955
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
956
			btrfs_dev_stat_inc_and_print(dev,
957
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
958
	}
A
Arne Jansen 已提交
959

960 961 962 963
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
964

965 966
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
967

968 969 970
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

971 972 973 974 975 976 977 978 979 980
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
981
		fixup_nodatasum->sctx = sctx;
982
		fixup_nodatasum->dev = dev;
983 984 985
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
986
		scrub_pending_trans_workers_inc(sctx);
987 988
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
989 990
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
991
		goto out;
A
Arne Jansen 已提交
992 993
	}

994 995
	/*
	 * now build and submit the bios for the other mirrors, check
996 997
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1013
		struct scrub_block *sblock_other;
1014

1015 1016 1017 1018 1019
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1020 1021 1022 1023 1024
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
				    sctx->csum_size);

		if (!sblock_other->header_error &&
1025 1026
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1027 1028 1029 1030 1031 1032 1033 1034 1035
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
1036 1037 1038 1039
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1040 1041

	/*
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1121 1122
	 */

1123 1124 1125 1126 1127 1128
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1129
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1130 1131

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1132
			continue;
1133 1134 1135 1136 1137 1138 1139

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1140 1141
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1142 1143 1144 1145 1146 1147 1148 1149 1150

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1151
		}
A
Arne Jansen 已提交
1152

1153 1154 1155 1156
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1157 1158
	}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1170 1171 1172 1173
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
					    generation, sctx->csum_size);
			if (!sblock_bad->header_error &&
1174 1175 1176 1177 1178 1179 1180
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1181 1182 1183
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
			spin_unlock(&sctx->stat_lock);
1184
			printk_ratelimited_in_rcu(KERN_ERR
1185
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1186
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1187
		}
1188 1189
	} else {
did_not_correct_error:
1190 1191 1192
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1193
		printk_ratelimited_in_rcu(KERN_ERR
1194
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1195
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1196
	}
A
Arne Jansen 已提交
1197

1198 1199 1200 1201 1202 1203 1204 1205
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
			int page_index;

1206 1207 1208 1209 1210
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
				scrub_page_put(sblock->pagev[page_index]);
			}
1211 1212 1213
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1214

1215 1216
	return 0;
}
A
Arne Jansen 已提交
1217

1218
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1219
				     struct btrfs_fs_info *fs_info,
1220
				     struct scrub_block *original_sblock,
1221 1222 1223 1224 1225 1226 1227 1228
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
	int page_index;
	int mirror_index;
	int ret;

	/*
1229
	 * note: the two members ref_count and outstanding_pages
1230 1231 1232 1233 1234 1235 1236 1237 1238
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
		u64 sublen = min_t(u64, length, PAGE_SIZE);
		u64 mapped_length = sublen;
		struct btrfs_bio *bbio = NULL;
A
Arne Jansen 已提交
1239

1240 1241 1242 1243
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1244 1245
		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
				      &mapped_length, &bbio, 0);
1246 1247 1248 1249
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
			return -EIO;
		}
A
Arne Jansen 已提交
1250

1251
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1252 1253 1254 1255 1256 1257 1258 1259 1260
		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1261 1262 1263 1264
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1265 1266 1267
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1268
				kfree(bbio);
1269 1270
				return -ENOMEM;
			}
1271 1272 1273 1274
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
			page->physical = bbio->stripes[mirror_index].physical;
1275 1276 1277 1278
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1279 1280 1281
			/* for missing devices, dev->bdev is NULL */
			page->dev = bbio->stripes[mirror_index].dev;
			page->mirror_num = mirror_index + 1;
1282
			sblock->page_count++;
1283 1284 1285
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1286 1287 1288 1289 1290 1291 1292 1293
		}
		kfree(bbio);
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1294 1295
}

1296 1297 1298 1299 1300 1301 1302
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1303 1304 1305 1306
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size)
I
Ilya Dryomov 已提交
1307
{
1308
	int page_num;
I
Ilya Dryomov 已提交
1309

1310 1311 1312
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1313

1314 1315
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1316
		struct scrub_page *page = sblock->pagev[page_num];
1317

1318
		if (page->dev->bdev == NULL) {
1319 1320 1321 1322 1323
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1324
		WARN_ON(!page->page);
1325
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1326 1327 1328 1329 1330
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1331
		bio->bi_bdev = page->dev->bdev;
1332
		bio->bi_iter.bi_sector = page->physical >> 9;
1333

1334
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1335
		if (btrfsic_submit_bio_wait(READ, bio))
1336
			sblock->no_io_error_seen = 0;
1337

1338 1339
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1340

1341 1342 1343 1344 1345
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1346
	return;
A
Arne Jansen 已提交
1347 1348
}

M
Miao Xie 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1359 1360 1361 1362 1363
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1364
{
1365 1366 1367 1368 1369
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1370
	WARN_ON(!sblock->pagev[0]->page);
1371 1372 1373
	if (is_metadata) {
		struct btrfs_header *h;

1374
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1375 1376
		h = (struct btrfs_header *)mapped_buffer;

1377
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1378
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1379
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1380
			   BTRFS_UUID_SIZE)) {
1381
			sblock->header_error = 1;
1382
		} else if (generation != btrfs_stack_header_generation(h)) {
1383 1384 1385
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1386 1387 1388 1389
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1390

1391
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1392
	}
A
Arne Jansen 已提交
1393

1394 1395
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1396
			crc = btrfs_csum_data(
1397 1398 1399
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1400
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1401

1402
		kunmap_atomic(mapped_buffer);
1403 1404 1405
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1406
		WARN_ON(!sblock->pagev[page_num]->page);
1407

1408
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1409 1410 1411 1412 1413
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1414 1415
}

1416 1417 1418 1419 1420 1421
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1422

1423 1424
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1425

1426 1427 1428 1429 1430 1431
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1432
	}
1433 1434 1435 1436 1437 1438 1439 1440

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1441 1442
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1443

1444 1445
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1446 1447 1448 1449 1450
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1451
		if (!page_bad->dev->bdev) {
1452 1453 1454
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1455 1456 1457
			return -EIO;
		}

1458
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1459 1460
		if (!bio)
			return -EIO;
1461
		bio->bi_bdev = page_bad->dev->bdev;
1462
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1463 1464 1465 1466 1467

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1468
		}
1469

1470
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1471 1472
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1473 1474 1475
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1476 1477 1478
			bio_put(bio);
			return -EIO;
		}
1479
		bio_put(bio);
A
Arne Jansen 已提交
1480 1481
	}

1482 1483 1484
	return 0;
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1544
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1555
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1614 1615
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1616
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1648 1649 1650 1651
{
	u64 flags;
	int ret;

1652 1653
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1665 1666

	return ret;
A
Arne Jansen 已提交
1667 1668
}

1669
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1670
{
1671
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1672
	u8 csum[BTRFS_CSUM_SIZE];
1673 1674 1675
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1676 1677
	u32 crc = ~(u32)0;
	int fail = 0;
1678 1679
	u64 len;
	int index;
A
Arne Jansen 已提交
1680

1681
	BUG_ON(sblock->page_count < 1);
1682
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1683 1684
		return 0;

1685 1686
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1687
	buffer = kmap_atomic(page);
1688

1689
	len = sctx->sectorsize;
1690 1691 1692 1693
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1694
		crc = btrfs_csum_data(buffer, crc, l);
1695
		kunmap_atomic(buffer);
1696 1697 1698 1699 1700
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1701 1702
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1703
		buffer = kmap_atomic(page);
1704 1705
	}

A
Arne Jansen 已提交
1706
	btrfs_csum_final(crc, csum);
1707
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1708 1709 1710 1711 1712
		fail = 1;

	return fail;
}

1713
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1714
{
1715
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1716
	struct btrfs_header *h;
1717
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1718
	struct btrfs_fs_info *fs_info = root->fs_info;
1719 1720 1721 1722 1723 1724
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1725 1726 1727
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1728 1729 1730 1731
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1732
	page = sblock->pagev[0]->page;
1733
	mapped_buffer = kmap_atomic(page);
1734
	h = (struct btrfs_header *)mapped_buffer;
1735
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1736 1737 1738 1739 1740 1741 1742

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1743
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1744 1745
		++fail;

1746
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1747 1748
		++fail;

M
Miao Xie 已提交
1749
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1750 1751 1752 1753 1754 1755
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1756
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1757 1758 1759 1760 1761 1762
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1763
		crc = btrfs_csum_data(p, crc, l);
1764
		kunmap_atomic(mapped_buffer);
1765 1766 1767 1768 1769
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1770 1771
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1772
		mapped_buffer = kmap_atomic(page);
1773 1774 1775 1776 1777
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1778
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1779 1780 1781 1782 1783
		++crc_fail;

	return fail || crc_fail;
}

1784
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1785 1786
{
	struct btrfs_super_block *s;
1787
	struct scrub_ctx *sctx = sblock->sctx;
1788 1789 1790 1791 1792 1793
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1794
	u32 crc = ~(u32)0;
1795 1796
	int fail_gen = 0;
	int fail_cor = 0;
1797 1798
	u64 len;
	int index;
A
Arne Jansen 已提交
1799

1800
	BUG_ON(sblock->page_count < 1);
1801
	page = sblock->pagev[0]->page;
1802
	mapped_buffer = kmap_atomic(page);
1803
	s = (struct btrfs_super_block *)mapped_buffer;
1804
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1805

1806
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1807
		++fail_cor;
A
Arne Jansen 已提交
1808

1809
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1810
		++fail_gen;
A
Arne Jansen 已提交
1811

M
Miao Xie 已提交
1812
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1813
		++fail_cor;
A
Arne Jansen 已提交
1814

1815 1816 1817 1818 1819 1820 1821
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1822
		crc = btrfs_csum_data(p, crc, l);
1823
		kunmap_atomic(mapped_buffer);
1824 1825 1826 1827 1828
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1829 1830
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1831
		mapped_buffer = kmap_atomic(page);
1832 1833 1834 1835 1836
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1837
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1838
		++fail_cor;
A
Arne Jansen 已提交
1839

1840
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1841 1842 1843 1844 1845
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1846 1847 1848
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1849
		if (fail_cor)
1850
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1851 1852
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1853
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1854
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1855 1856
	}

1857
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1858 1859
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

		for (i = 0; i < sblock->page_count; i++)
1871
			scrub_page_put(sblock->pagev[i]);
1872 1873 1874 1875
		kfree(sblock);
	}
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1890
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1891 1892 1893
{
	struct scrub_bio *sbio;

1894
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1895
		return;
A
Arne Jansen 已提交
1896

1897 1898
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1899
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
1910
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1911 1912 1913 1914
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
1915 1916
}

1917 1918
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1919
{
1920
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1921
	struct scrub_bio *sbio;
1922
	int ret;
A
Arne Jansen 已提交
1923 1924 1925 1926 1927

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1928 1929 1930 1931 1932 1933 1934 1935
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1936
		} else {
1937 1938
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1939 1940
		}
	}
1941
	sbio = sctx->bios[sctx->curr];
1942
	if (sbio->page_count == 0) {
1943 1944
		struct bio *bio;

1945 1946
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
1947
		sbio->dev = spage->dev;
1948 1949
		bio = sbio->bio;
		if (!bio) {
1950
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1951 1952 1953 1954
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
1955 1956 1957

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
1958
		bio->bi_bdev = sbio->dev->bdev;
1959
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1960
		sbio->err = 0;
1961 1962 1963
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1964 1965
		   spage->logical ||
		   sbio->dev != spage->dev) {
1966
		scrub_submit(sctx);
A
Arne Jansen 已提交
1967 1968
		goto again;
	}
1969

1970 1971 1972 1973 1974 1975 1976 1977
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
1978
		scrub_submit(sctx);
1979 1980 1981
		goto again;
	}

1982
	scrub_block_get(sblock); /* one for the page added to the bio */
1983 1984
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
1985
	if (sbio->page_count == sctx->pages_per_rd_bio)
1986
		scrub_submit(sctx);
1987 1988 1989 1990

	return 0;
}

1991
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1992
		       u64 physical, struct btrfs_device *dev, u64 flags,
1993 1994
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
1995 1996 1997 1998 1999 2000
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2001 2002 2003
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2004
		return -ENOMEM;
A
Arne Jansen 已提交
2005
	}
2006

2007 2008
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2009
	atomic_set(&sblock->ref_count, 1);
2010
	sblock->sctx = sctx;
2011 2012 2013
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2014
		struct scrub_page *spage;
2015 2016
		u64 l = min_t(u64, len, PAGE_SIZE);

2017 2018 2019
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2020 2021 2022
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2023
			scrub_block_put(sblock);
2024 2025
			return -ENOMEM;
		}
2026 2027 2028
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2029
		spage->sblock = sblock;
2030
		spage->dev = dev;
2031 2032 2033 2034
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2035
		spage->physical_for_dev_replace = physical_for_dev_replace;
2036 2037 2038
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2039
			memcpy(spage->csum, csum, sctx->csum_size);
2040 2041 2042 2043
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2044 2045 2046
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2047 2048 2049
		len -= l;
		logical += l;
		physical += l;
2050
		physical_for_dev_replace += l;
2051 2052
	}

2053
	WARN_ON(sblock->page_count == 0);
2054
	for (index = 0; index < sblock->page_count; index++) {
2055
		struct scrub_page *spage = sblock->pagev[index];
2056 2057
		int ret;

2058
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2059 2060
		if (ret) {
			scrub_block_put(sblock);
2061
			return ret;
2062
		}
2063
	}
A
Arne Jansen 已提交
2064

2065
	if (force)
2066
		scrub_submit(sctx);
A
Arne Jansen 已提交
2067

2068 2069
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2070 2071 2072
	return 0;
}

2073 2074 2075
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2076
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2077 2078 2079 2080

	sbio->err = err;
	sbio->bio = bio;

2081
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2082 2083 2084 2085 2086
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2087
	struct scrub_ctx *sctx = sbio->sctx;
2088 2089
	int i;

2090
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2112 2113 2114 2115
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2116 2117 2118 2119 2120 2121 2122 2123

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2124
	scrub_pending_bio_dec(sctx);
2125 2126 2127 2128
}

static void scrub_block_complete(struct scrub_block *sblock)
{
2129
	if (!sblock->no_io_error_seen) {
2130
		scrub_handle_errored_block(sblock);
2131 2132 2133 2134 2135 2136 2137 2138 2139
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock);
	}
2140 2141
}

2142
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2143 2144 2145
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2146
	unsigned long index;
A
Arne Jansen 已提交
2147 2148
	unsigned long num_sectors;

2149 2150
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2151 2152 2153 2154 2155 2156
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2157
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2158 2159 2160 2161 2162 2163 2164
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2165
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2166
	num_sectors = sum->len / sctx->sectorsize;
2167 2168
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2169 2170 2171
		list_del(&sum->list);
		kfree(sum);
	}
2172
	return 1;
A
Arne Jansen 已提交
2173 2174 2175
}

/* scrub extent tries to collect up to 64 kB for each bio */
2176
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2177
			u64 physical, struct btrfs_device *dev, u64 flags,
2178
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2179 2180 2181
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2182 2183 2184
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2185 2186 2187 2188 2189
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2190
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2191 2192 2193 2194 2195
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2196
	} else {
2197
		blocksize = sctx->sectorsize;
2198
		WARN_ON(1);
2199
	}
A
Arne Jansen 已提交
2200 2201

	while (len) {
2202
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2203 2204 2205 2206
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2207
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2208
			if (have_csum == 0)
2209
				++sctx->stat.no_csum;
2210 2211 2212 2213 2214 2215
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2216
		}
2217
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2218 2219 2220
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2221 2222 2223 2224 2225
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2226
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2227 2228 2229 2230
	}
	return 0;
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
				   struct map_lookup *map, u64 *offset)
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2262
		stripe_index = rot % map->num_stripes;
2263 2264 2265 2266 2267 2268 2269 2270 2271
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2272
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2273 2274
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2275 2276
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2277 2278
{
	struct btrfs_path *path;
2279
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2280 2281 2282
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2283
	struct blk_plug plug;
A
Arne Jansen 已提交
2284 2285 2286 2287 2288 2289 2290 2291
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2292
	u64 logic_end;
2293
	u64 physical_end;
A
Arne Jansen 已提交
2294
	u64 generation;
2295
	int mirror_num;
A
Arne Jansen 已提交
2296 2297 2298 2299
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2300 2301
	u64 increment = map->stripe_len;
	u64 offset;
2302 2303 2304 2305 2306
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
2307
	int stop_loop = 0;
D
David Woodhouse 已提交
2308

A
Arne Jansen 已提交
2309
	nstripes = length;
2310
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
2311 2312 2313 2314 2315
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2316
		mirror_num = 1;
A
Arne Jansen 已提交
2317 2318 2319 2320
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2321
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2322 2323
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2324
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2325 2326
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2327
		mirror_num = num % map->num_stripes + 1;
2328 2329 2330 2331 2332
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical, num, map, &offset);
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
2333 2334
	} else {
		increment = map->stripe_len;
2335
		mirror_num = 1;
A
Arne Jansen 已提交
2336 2337 2338 2339 2340 2341
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2342 2343 2344 2345 2346
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
2347 2348 2349 2350
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
2351 2352 2353
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
2354 2355
	 */
	logical = base + offset;
2356 2357 2358 2359 2360 2361 2362 2363 2364
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
					map, &logic_end);
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
2365
	wait_event(sctx->list_wait,
2366
		   atomic_read(&sctx->bios_in_flight) == 0);
2367
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2368 2369 2370 2371 2372

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
2373
	key_end.objectid = logic_end;
2374 2375
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
2376 2377 2378 2379 2380 2381 2382
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2383
	key_end.offset = logic_end;
A
Arne Jansen 已提交
2384 2385 2386 2387 2388 2389 2390
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
2391 2392 2393 2394 2395

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
2396
	blk_start_plug(&plug);
A
Arne Jansen 已提交
2397 2398 2399 2400 2401

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
					map, &logical);
			logical += base;
			if (ret)
				goto skip;
		}
A
Arne Jansen 已提交
2412 2413 2414 2415
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
2416
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
2417 2418 2419 2420 2421 2422 2423 2424
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
2425
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2426
			scrub_submit(sctx);
2427 2428 2429
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
2430
			wait_event(sctx->list_wait,
2431
				   atomic_read(&sctx->bios_in_flight) == 0);
2432
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2433
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2434 2435
		}

2436 2437 2438 2439
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
2440
		key.objectid = logical;
L
Liu Bo 已提交
2441
		key.offset = (u64)-1;
A
Arne Jansen 已提交
2442 2443 2444 2445

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
2446

2447
		if (ret > 0) {
2448
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
2449 2450
			if (ret < 0)
				goto out;
2451 2452 2453 2454 2455 2456 2457 2458 2459
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
2460 2461
		}

L
Liu Bo 已提交
2462
		stop_loop = 0;
A
Arne Jansen 已提交
2463
		while (1) {
2464 2465
			u64 bytes;

A
Arne Jansen 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
2475
				stop_loop = 1;
A
Arne Jansen 已提交
2476 2477 2478 2479
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2480
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2481
				bytes = root->nodesize;
2482 2483 2484 2485
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
2486 2487
				goto next;

L
Liu Bo 已提交
2488 2489 2490
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
2491

L
Liu Bo 已提交
2492 2493 2494 2495 2496 2497
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
2498 2499 2500 2501 2502 2503 2504 2505

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2506 2507 2508
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
2509
				       key.objectid, logical);
A
Arne Jansen 已提交
2510 2511 2512
				goto next;
			}

L
Liu Bo 已提交
2513 2514 2515 2516
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
2517 2518 2519
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
2520 2521 2522
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
2523
			}
L
Liu Bo 已提交
2524
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
2525
			    logical + map->stripe_len) {
L
Liu Bo 已提交
2526 2527
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
2528 2529
			}

L
Liu Bo 已提交
2530
			extent_physical = extent_logical - logical + physical;
2531 2532 2533 2534 2535 2536 2537
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
2538 2539 2540 2541 2542 2543 2544

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

2545 2546 2547
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
2548
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
2549 2550 2551
			if (ret)
				goto out;

2552
			scrub_free_csums(sctx);
L
Liu Bo 已提交
2553 2554
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
					do {
						physical += map->stripe_len;
						ret = get_raid56_logic_offset(
								physical, num,
								map, &logical);
						logical += base;
					} while (physical < physical_end && ret);
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
2572 2573 2574 2575 2576
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

2577
				if (physical >= physical_end) {
L
Liu Bo 已提交
2578 2579 2580 2581
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
2582 2583 2584
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
2585
		btrfs_release_path(path);
2586
skip:
A
Arne Jansen 已提交
2587 2588
		logical += increment;
		physical += map->stripe_len;
2589
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
2590 2591 2592 2593 2594
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
2595
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
2596 2597
		if (stop_loop)
			break;
A
Arne Jansen 已提交
2598
	}
2599
out:
A
Arne Jansen 已提交
2600
	/* push queued extents */
2601
	scrub_submit(sctx);
2602 2603 2604
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
2605

2606
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
2607 2608 2609 2610
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

2611
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2612 2613 2614
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
2615
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
2616 2617
{
	struct btrfs_mapping_tree *map_tree =
2618
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
2619 2620 2621
	struct map_lookup *map;
	struct extent_map *em;
	int i;
2622
	int ret = 0;
A
Arne Jansen 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
2639
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2640
		    map->stripes[i].physical == dev_offset) {
2641
			ret = scrub_stripe(sctx, map, scrub_dev, i,
2642 2643
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
2655
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2656 2657
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
2658 2659 2660
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
2661
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
2673
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

2683
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
2684 2685 2686 2687 2688 2689
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
2690 2691 2692 2693 2694 2695 2696 2697 2698
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
2699 2700 2701 2702 2703 2704

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

2705
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
2706 2707
			break;

2708
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

2720 2721
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2732 2733 2734 2735 2736 2737

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

2738 2739 2740
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
2741
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
2763 2764 2765 2766 2767 2768 2769 2770
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
2771 2772
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
2773 2774 2775 2776 2777 2778 2779
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
2780

A
Arne Jansen 已提交
2781 2782 2783
		btrfs_put_block_group(cache);
		if (ret)
			break;
2784 2785
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2786 2787 2788 2789 2790 2791 2792
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
2793

2794 2795
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
2796
skip:
A
Arne Jansen 已提交
2797
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
2798
		btrfs_release_path(path);
A
Arne Jansen 已提交
2799 2800 2801
	}

	btrfs_free_path(path);
2802 2803 2804 2805 2806 2807

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
2808 2809
}

2810 2811
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
2812 2813 2814 2815 2816
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
2817
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2818

2819
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2820 2821
		return -EIO;

2822 2823 2824 2825 2826
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
2827 2828 2829

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
2830 2831
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
2832 2833
			break;

2834
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2835
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2836
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
2837 2838 2839
		if (ret)
			return ret;
	}
2840
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2841 2842 2843 2844 2845 2846 2847

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
2848 2849
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
2850
{
2851
	int ret = 0;
2852 2853
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
2854

A
Arne Jansen 已提交
2855
	if (fs_info->scrub_workers_refcnt == 0) {
2856
		if (is_dev_replace)
2857 2858 2859
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
2860
		else
2861 2862 2863 2864 2865
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
2866
			goto out;
2867 2868 2869 2870 2871 2872
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
2873
			goto out;
2874 2875 2876 2877 2878
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
2879
			goto out;
2880
		}
A
Arne Jansen 已提交
2881
	}
A
Arne Jansen 已提交
2882
	++fs_info->scrub_workers_refcnt;
2883 2884
out:
	return ret;
A
Arne Jansen 已提交
2885 2886
}

2887
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2888
{
2889
	if (--fs_info->scrub_workers_refcnt == 0) {
2890 2891 2892
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2893
	}
A
Arne Jansen 已提交
2894 2895 2896
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

2897 2898
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
2899
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
2900
{
2901
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2902 2903
	int ret;
	struct btrfs_device *dev;
2904
	struct rcu_string *name;
A
Arne Jansen 已提交
2905

2906
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
2907 2908
		return -EINVAL;

2909
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2910 2911 2912 2913 2914
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
2915 2916
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2917
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2918 2919 2920
		return -EINVAL;
	}

2921
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2922
		/* not supported for data w/o checksums */
2923 2924 2925
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
2926
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
2927 2928 2929
		return -EINVAL;
	}

2930 2931 2932 2933 2934 2935 2936 2937
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
2938 2939
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2940 2941 2942 2943 2944 2945 2946
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
2947

2948 2949
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2950
	if (!dev || (dev->missing && !is_dev_replace)) {
2951
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2952 2953 2954
		return -ENODEV;
	}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

2965
	mutex_lock(&fs_info->scrub_lock);
2966
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
2967
		mutex_unlock(&fs_info->scrub_lock);
2968 2969
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
2970 2971
	}

2972 2973 2974 2975 2976
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
2977
		mutex_unlock(&fs_info->scrub_lock);
2978
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2979 2980
		return -EINPROGRESS;
	}
2981
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2982 2983 2984 2985 2986 2987 2988 2989

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

2990
	sctx = scrub_setup_ctx(dev, is_dev_replace);
2991
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
2992
		mutex_unlock(&fs_info->scrub_lock);
2993 2994
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
2995
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
2996
	}
2997 2998
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
2999
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3000

3001 3002 3003 3004
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3005
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3006 3007 3008
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3009
	if (!is_dev_replace) {
3010 3011 3012 3013
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3014
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3015
		ret = scrub_supers(sctx, dev);
3016
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3017
	}
A
Arne Jansen 已提交
3018 3019

	if (!ret)
3020 3021
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3022

3023
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3024 3025 3026
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3027
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3028

A
Arne Jansen 已提交
3029
	if (progress)
3030
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3031 3032 3033

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3034
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3035 3036
	mutex_unlock(&fs_info->scrub_lock);

3037
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3038 3039 3040 3041

	return ret;
}

3042
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3059
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3060 3061 3062 3063 3064 3065 3066
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3067
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3088 3089
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3090
{
3091
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3092 3093

	mutex_lock(&fs_info->scrub_lock);
3094 3095
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3096 3097 3098
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3099
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3110

A
Arne Jansen 已提交
3111 3112 3113 3114
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3115
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3116 3117

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3118
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3119
	if (dev)
3120 3121 3122
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3123 3124
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3125
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3126
}
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3203 3204
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3205
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3206 3207
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3208 3209 3210 3211

	return 0;
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3264
					  record_inode_for_nocow, nocow_ctx);
3265
	if (ret != 0 && ret != -ENOENT) {
3266 3267
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3268 3269
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3270 3271 3272 3273
		not_written = 1;
		goto out;
	}

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3292
out:
3293 3294 3295 3296 3297 3298 3299 3300
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

3313 3314
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
3315
{
3316
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3317
	struct btrfs_key key;
3318 3319
	struct inode *inode;
	struct page *page;
3320
	struct btrfs_root *local_root;
3321 3322 3323 3324
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	struct extent_state *cached_state = NULL;
	struct extent_io_tree *io_tree;
3325
	u64 physical_for_dev_replace;
3326 3327
	u64 len = nocow_ctx->len;
	u64 lockstart = offset, lockend = offset + len - 1;
3328
	unsigned long index;
3329
	int srcu_index;
3330 3331
	int ret = 0;
	int err = 0;
3332 3333 3334 3335

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
3336 3337 3338

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

3339
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3340 3341
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3342
		return PTR_ERR(local_root);
3343
	}
3344 3345 3346 3347 3348

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3349
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3350 3351 3352
	if (IS_ERR(inode))
		return PTR_ERR(inode);

3353 3354 3355 3356
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

3357
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > nocow_ctx->logical ||
	    em->block_start + em->block_len < nocow_ctx->logical + len) {
		free_extent_map(em);
		goto out_unlock;
	}
	free_extent_map(em);

3384 3385
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
3386
again:
3387 3388
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
3389
			btrfs_err(fs_info, "find_or_create_page() failed");
3390
			ret = -ENOMEM;
3391
			goto out;
3392 3393 3394 3395 3396 3397 3398
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
3399 3400 3401
			err = extent_read_full_page_nolock(io_tree, page,
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
3402 3403
			if (err) {
				ret = err;
3404 3405
				goto next_page;
			}
3406

3407
			lock_page(page);
3408 3409 3410 3411 3412 3413 3414
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
3415
				unlock_page(page);
3416 3417 3418
				page_cache_release(page);
				goto again;
			}
3419 3420 3421 3422 3423
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
3424 3425 3426 3427
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
3428
next_page:
3429 3430 3431 3432 3433 3434
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

3435 3436 3437 3438
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
		len -= PAGE_CACHE_SIZE;
	}
3439 3440 3441 3442
	ret = COPY_COMPLETE;
out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
3443
out:
3444
	mutex_unlock(&inode->i_mutex);
3445
	iput(inode);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
3461
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3462 3463
		return -EIO;
	}
3464
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3465 3466 3467 3468 3469 3470
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
3471 3472
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3473 3474 3475 3476 3477 3478 3479 3480 3481
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

3482
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3483 3484 3485 3486 3487
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}