scrub.c 109.5 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		ref_count;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114 115
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127 128 129
	};
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

	atomic_t		ref_count;

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

163 164 165 166 167 168 169 170
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

171
struct scrub_ctx {
172
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
174 175
	int			first_free;
	int			curr;
176 177
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
178 179 180 181 182
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
183
	int			readonly;
184
	int			pages_per_rd_bio;
185 186
	u32			sectorsize;
	u32			nodesize;
187 188

	int			is_dev_replace;
189
	struct scrub_wr_ctx	wr_ctx;
190

A
Arne Jansen 已提交
191 192 193 194 195 196 197
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

198
struct scrub_fixup_nodatasum {
199
	struct scrub_ctx	*sctx;
200
	struct btrfs_device	*dev;
201 202 203 204 205 206
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

207 208 209 210 211 212 213
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

214 215 216 217 218 219
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
220
	struct list_head	inodes;
221 222 223
	struct btrfs_work	work;
};

224 225 226 227 228 229 230 231 232
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

233 234 235 236
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239
				     struct scrub_block *sblocks_for_recheck);
240 241 242
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
243
				u16 csum_size, int retry_failed_mirror);
244 245 246 247 248 249
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
250
					     struct scrub_block *sblock_good);
251 252 253
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
254 255 256
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
257 258 259 260 261
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
262 263
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
264 265
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
266 267
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
268
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
269
		       u64 physical, struct btrfs_device *dev, u64 flags,
270 271
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
272
static void scrub_bio_end_io(struct bio *bio, int err);
273 274
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
294
				      struct scrub_copy_nocow_ctx *ctx);
295 296 297
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
298
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
299
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
300 301


302 303 304 305 306 307 308 309 310 311 312
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

313
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
314 315 316 317 318 319 320 321 322
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

323 324 325 326 327 328 329 330 331 332 333 334 335
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
357 358 359 360 361 362 363 364 365 366

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

388
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
389
{
390
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
391
		struct btrfs_ordered_sum *sum;
392
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
393 394 395 396 397 398
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

399
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
400 401 402
{
	int i;

403
	if (!sctx)
A
Arne Jansen 已提交
404 405
		return;

406 407
	scrub_free_wr_ctx(&sctx->wr_ctx);

408
	/* this can happen when scrub is cancelled */
409 410
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
411 412

		for (i = 0; i < sbio->page_count; i++) {
413
			WARN_ON(!sbio->pagev[i]->page);
414 415 416 417 418
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

419
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
420
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
421 422 423 424 425 426

		if (!sbio)
			break;
		kfree(sbio);
	}

427 428
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
429 430 431
}

static noinline_for_stack
432
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
433
{
434
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
435 436
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
437 438
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
439

440 441 442 443 444 445 446 447 448 449 450 451
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
452 453
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
454
		goto nomem;
455
	sctx->is_dev_replace = is_dev_replace;
456
	sctx->pages_per_rd_bio = pages_per_rd_bio;
457
	sctx->curr = -1;
458
	sctx->dev_root = dev->dev_root;
459
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
460 461 462 463 464
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
465
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
466 467

		sbio->index = i;
468
		sbio->sctx = sctx;
469
		sbio->page_count = 0;
470 471
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
472

473
		if (i != SCRUB_BIOS_PER_SCTX - 1)
474
			sctx->bios[i]->next_free = i + 1;
475
		else
476 477 478 479 480
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
481 482
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
483 484 485 486 487 488 489
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
490 491 492 493 494 495 496

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
497
	return sctx;
A
Arne Jansen 已提交
498 499

nomem:
500
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
501 502 503
	return ERR_PTR(-ENOMEM);
}

504 505
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
506 507 508 509 510 511 512
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
513
	struct scrub_warning *swarn = warn_ctx;
514 515 516 517
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
518
	struct btrfs_key key;
519 520 521 522 523 524 525 526 527 528

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

529 530 531
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
532 533 534 535 536
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
537 538 539 540 541 542 543 544 545 546 547 548 549
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
550 551 552 553 554
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
555 556 557 558 559 560 561 562 563 564
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
565
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
566 567
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
568
			swarn->logical, rcu_str_deref(swarn->dev->name),
569 570
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
571
			(char *)(unsigned long)ipath->fspath->val[i]);
572 573 574 575 576

	free_ipath(ipath);
	return 0;

err:
577
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
578 579
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
580
		swarn->logical, rcu_str_deref(swarn->dev->name),
581 582 583 584 585 586
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

587
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
588
{
589 590
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
591 592 593 594 595
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
596 597 598
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
599
	u64 ref_root;
600
	u32 item_size;
601
	u8 ref_level;
602
	int ret;
603

604
	WARN_ON(sblock->page_count < 1);
605
	dev = sblock->pagev[0]->dev;
606 607
	fs_info = sblock->sctx->dev_root->fs_info;

608
	path = btrfs_alloc_path();
609 610
	if (!path)
		return;
611

612 613
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
614
	swarn.errstr = errstr;
615
	swarn.dev = NULL;
616

617 618
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
619 620 621
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
622
	extent_item_pos = swarn.logical - found_key.objectid;
623 624 625 626 627 628
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

629
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
630
		do {
631 632 633
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
634
			printk_in_rcu(KERN_WARNING
635
				"BTRFS: %s at logical %llu on dev %s, "
636
				"sector %llu: metadata %s (level %d) in tree "
637 638
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
639 640 641 642 643
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
644
		btrfs_release_path(path);
645
	} else {
646
		btrfs_release_path(path);
647
		swarn.path = path;
648
		swarn.dev = dev;
649 650
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
651 652 653 654 655 656 657
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

658
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
659
{
660
	struct page *page = NULL;
661
	unsigned long index;
662
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
663
	int ret;
664
	int corrected = 0;
665
	struct btrfs_key key;
666
	struct inode *inode = NULL;
667
	struct btrfs_fs_info *fs_info;
668 669
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
670
	int srcu_index;
671 672 673 674

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
675 676 677 678 679 680 681

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
682
		return PTR_ERR(local_root);
683
	}
684 685 686 687

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
688 689
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
690 691 692 693 694 695
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
722
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
723
					fixup->logical, page,
724
					offset - page_offset(page),
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
759 760

	iput(inode);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
780
	struct scrub_ctx *sctx;
781 782 783 784 785
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
786
	sctx = fixup->sctx;
787 788 789

	path = btrfs_alloc_path();
	if (!path) {
790 791 792
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

821 822 823
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
824 825 826 827 828

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
829 830 831
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
832 833 834
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
835 836
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
837
			fixup->logical, rcu_str_deref(fixup->dev->name));
838 839 840 841 842
	}

	btrfs_free_path(path);
	kfree(fixup);

843
	scrub_pending_trans_workers_dec(sctx);
844 845
}

846 847 848 849 850 851 852 853
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
854
		btrfs_put_bbio(recover->bbio);
855 856 857 858
		kfree(recover);
	}
}

A
Arne Jansen 已提交
859
/*
860 861 862 863 864 865
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
866
 */
867
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
868
{
869
	struct scrub_ctx *sctx = sblock_to_check->sctx;
870
	struct btrfs_device *dev;
871 872 873 874 875 876 877 878 879 880 881 882 883 884
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
885
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
886 887 888
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
889
	fs_info = sctx->dev_root->fs_info;
890 891 892 893 894 895 896 897 898 899 900
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
901
	length = sblock_to_check->page_count * PAGE_SIZE;
902 903 904 905 906
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
907
			BTRFS_EXTENT_FLAG_DATA);
908 909 910
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
911

912 913 914 915 916
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
950 951 952 953 954
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
955
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
956
		goto out;
A
Arne Jansen 已提交
957 958
	}

959
	/* setup the context, map the logical blocks and alloc the pages */
960
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
961
	if (ret) {
962 963 964 965
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
966
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
967 968 969 970
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
971

972
	/* build and submit the bios for the failed mirror, check checksums */
973
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
974
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
975

976 977 978 979 980 981 982 983 984 985
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
986 987
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
988
		sblock_to_check->data_corrected = 1;
989
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
990

991 992
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
993
		goto out;
A
Arne Jansen 已提交
994 995
	}

996
	if (!sblock_bad->no_io_error_seen) {
997 998 999
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1000 1001
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1002
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1003
	} else if (sblock_bad->checksum_error) {
1004 1005 1006
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1007 1008
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1009
		btrfs_dev_stat_inc_and_print(dev,
1010
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1011
	} else if (sblock_bad->header_error) {
1012 1013 1014
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1015 1016 1017
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1018
		if (sblock_bad->generation_error)
1019
			btrfs_dev_stat_inc_and_print(dev,
1020 1021
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1022
			btrfs_dev_stat_inc_and_print(dev,
1023
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1024
	}
A
Arne Jansen 已提交
1025

1026 1027 1028 1029
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1030

1031 1032
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1033

1034 1035
		WARN_ON(sctx->is_dev_replace);

1036 1037
nodatasum_case:

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1048
		fixup_nodatasum->sctx = sctx;
1049
		fixup_nodatasum->dev = dev;
1050 1051 1052
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1053
		scrub_pending_trans_workers_inc(sctx);
1054 1055
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1056 1057
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1058
		goto out;
A
Arne Jansen 已提交
1059 1060
	}

1061 1062
	/*
	 * now build and submit the bios for the other mirrors, check
1063 1064
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1080
		struct scrub_block *sblock_other;
1081

1082 1083 1084 1085 1086
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1087 1088
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1089
				    sctx->csum_size, 0);
1090 1091

		if (!sblock_other->header_error &&
1092 1093
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1094 1095
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1096
				goto corrected_error;
1097 1098
			} else {
				ret = scrub_repair_block_from_good_copy(
1099 1100 1101
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1102
			}
1103 1104
		}
	}
A
Arne Jansen 已提交
1105

1106 1107
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1108 1109 1110

	/*
	 * In case of I/O errors in the area that is supposed to be
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1132
	 */
1133
	success = 1;
1134 1135
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1136
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1137
		struct scrub_block *sblock_other = NULL;
1138

1139 1140
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1141
			continue;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1154 1155
				}
			}
1156 1157
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1158
		}
A
Arne Jansen 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1187
		}
A
Arne Jansen 已提交
1188 1189
	}

1190
	if (success && !sctx->is_dev_replace) {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1201 1202
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1203
					    generation, sctx->csum_size, 1);
1204
			if (!sblock_bad->header_error &&
1205 1206 1207 1208 1209 1210 1211
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1212 1213
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1214
			sblock_to_check->data_corrected = 1;
1215
			spin_unlock(&sctx->stat_lock);
1216
			printk_ratelimited_in_rcu(KERN_ERR
1217
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1218
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1219
		}
1220 1221
	} else {
did_not_correct_error:
1222 1223 1224
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1225
		printk_ratelimited_in_rcu(KERN_ERR
1226
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1227
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1228
	}
A
Arne Jansen 已提交
1229

1230 1231 1232 1233 1234 1235
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1236
			struct scrub_recover *recover;
1237 1238
			int page_index;

1239 1240 1241
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1242 1243 1244 1245 1246 1247
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1248 1249
				scrub_page_put(sblock->pagev[page_index]);
			}
1250 1251 1252
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1253

1254 1255
	return 0;
}
A
Arne Jansen 已提交
1256

1257
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1258
{
1259
	if (bbio->raid_map) {
1260 1261
		int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;

1262
		if (bbio->raid_map[real_stripes - 1] == RAID6_Q_STRIPE)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			return 3;
		else
			return 2;
	} else {
		return (int)bbio->num_stripes;
	}
}

static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

	if (raid_map) {
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1300
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1301 1302
				     struct scrub_block *sblocks_for_recheck)
{
1303 1304 1305 1306
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1307 1308 1309 1310 1311 1312
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1313
	int page_index = 0;
1314
	int mirror_index;
1315
	int nmirrors;
1316 1317 1318
	int ret;

	/*
1319
	 * note: the two members ref_count and outstanding_pages
1320 1321 1322 1323 1324
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1325 1326 1327
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1328

1329 1330 1331 1332
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1333
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1334
				       &mapped_length, &bbio, 0, 1);
1335
		if (ret || !bbio || mapped_length < sublen) {
1336
			btrfs_put_bbio(bbio);
1337 1338
			return -EIO;
		}
A
Arne Jansen 已提交
1339

1340 1341
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1342
			btrfs_put_bbio(bbio);
1343 1344 1345 1346 1347 1348 1349
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1350
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1351

1352
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1353
		for (mirror_index = 0; mirror_index < nmirrors;
1354 1355 1356 1357 1358
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1359 1360 1361 1362
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1363 1364 1365
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1366
				scrub_put_recover(recover);
1367 1368
				return -ENOMEM;
			}
1369 1370 1371
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1372

1373
			scrub_stripe_index_and_offset(logical, bbio->raid_map,
1374
						      mapped_length,
1375 1376
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1377 1378 1379 1380 1381 1382 1383
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1384 1385 1386 1387
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1388 1389
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1390
			sblock->page_count++;
1391 1392 1393
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1394 1395 1396

			scrub_get_recover(recover);
			page->recover = recover;
1397
		}
1398
		scrub_put_recover(recover);
1399 1400 1401 1402 1403 1404
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1405 1406
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
1422
	return page->recover && page->recover->bbio->raid_map;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1440
				    page->mirror_num, 0);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1451 1452 1453 1454 1455 1456 1457
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1458 1459 1460
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1461
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1462
{
1463
	int page_num;
I
Ilya Dryomov 已提交
1464

1465 1466 1467
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1468

1469 1470
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1471
		struct scrub_page *page = sblock->pagev[page_num];
1472

1473
		if (page->dev->bdev == NULL) {
1474 1475 1476 1477 1478
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1479
		WARN_ON(!page->page);
1480
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1481 1482 1483 1484 1485
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1486
		bio->bi_bdev = page->dev->bdev;
1487

1488
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1489 1490 1491 1492 1493 1494 1495 1496 1497
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1498

1499 1500
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1501

1502 1503 1504 1505 1506
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1507
	return;
A
Arne Jansen 已提交
1508 1509
}

M
Miao Xie 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1520 1521 1522 1523 1524
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1525
{
1526 1527 1528 1529 1530
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1531
	WARN_ON(!sblock->pagev[0]->page);
1532 1533 1534
	if (is_metadata) {
		struct btrfs_header *h;

1535
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1536 1537
		h = (struct btrfs_header *)mapped_buffer;

1538
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1539
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1540
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1541
			   BTRFS_UUID_SIZE)) {
1542
			sblock->header_error = 1;
1543
		} else if (generation != btrfs_stack_header_generation(h)) {
1544 1545 1546
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1547 1548 1549 1550
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1551

1552
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1553
	}
A
Arne Jansen 已提交
1554

1555 1556
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1557
			crc = btrfs_csum_data(
1558 1559 1560
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1561
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1562

1563
		kunmap_atomic(mapped_buffer);
1564 1565 1566
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1567
		WARN_ON(!sblock->pagev[page_num]->page);
1568

1569
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1570 1571 1572 1573 1574
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1575 1576
}

1577
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1578
					     struct scrub_block *sblock_good)
1579 1580 1581
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1582

1583 1584
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1585

1586 1587
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1588
							   page_num, 1);
1589 1590
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1591
	}
1592 1593 1594 1595 1596 1597 1598 1599

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1600 1601
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1602

1603 1604
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1605 1606 1607 1608 1609
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1610
		if (!page_bad->dev->bdev) {
1611 1612 1613
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1614 1615 1616
			return -EIO;
		}

1617
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1618 1619
		if (!bio)
			return -EIO;
1620
		bio->bi_bdev = page_bad->dev->bdev;
1621
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1622 1623 1624 1625 1626

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1627
		}
1628

1629
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1630 1631
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1632 1633 1634
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1635 1636 1637
			bio_put(bio);
			return -EIO;
		}
1638
		bio_put(bio);
A
Arne Jansen 已提交
1639 1640
	}

1641 1642 1643
	return 0;
}

1644 1645 1646 1647
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1648 1649 1650 1651 1652 1653 1654
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1710
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1721
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1780 1781
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1782
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1814 1815 1816 1817
{
	u64 flags;
	int ret;

1818 1819
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1831 1832

	return ret;
A
Arne Jansen 已提交
1833 1834
}

1835
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1836
{
1837
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1838
	u8 csum[BTRFS_CSUM_SIZE];
1839 1840 1841
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1842 1843
	u32 crc = ~(u32)0;
	int fail = 0;
1844 1845
	u64 len;
	int index;
A
Arne Jansen 已提交
1846

1847
	BUG_ON(sblock->page_count < 1);
1848
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1849 1850
		return 0;

1851 1852
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1853
	buffer = kmap_atomic(page);
1854

1855
	len = sctx->sectorsize;
1856 1857 1858 1859
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1860
		crc = btrfs_csum_data(buffer, crc, l);
1861
		kunmap_atomic(buffer);
1862 1863 1864 1865 1866
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1867 1868
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1869
		buffer = kmap_atomic(page);
1870 1871
	}

A
Arne Jansen 已提交
1872
	btrfs_csum_final(crc, csum);
1873
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1874 1875 1876 1877 1878
		fail = 1;

	return fail;
}

1879
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1880
{
1881
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1882
	struct btrfs_header *h;
1883
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1884
	struct btrfs_fs_info *fs_info = root->fs_info;
1885 1886 1887 1888 1889 1890
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1891 1892 1893
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1894 1895 1896 1897
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1898
	page = sblock->pagev[0]->page;
1899
	mapped_buffer = kmap_atomic(page);
1900
	h = (struct btrfs_header *)mapped_buffer;
1901
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1902 1903 1904 1905 1906 1907 1908

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1909
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1910 1911
		++fail;

1912
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1913 1914
		++fail;

M
Miao Xie 已提交
1915
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1916 1917 1918 1919 1920 1921
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1922
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1923 1924 1925 1926 1927 1928
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1929
		crc = btrfs_csum_data(p, crc, l);
1930
		kunmap_atomic(mapped_buffer);
1931 1932 1933 1934 1935
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1936 1937
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1938
		mapped_buffer = kmap_atomic(page);
1939 1940 1941 1942 1943
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1944
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1945 1946 1947 1948 1949
		++crc_fail;

	return fail || crc_fail;
}

1950
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1951 1952
{
	struct btrfs_super_block *s;
1953
	struct scrub_ctx *sctx = sblock->sctx;
1954 1955 1956 1957 1958 1959
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1960
	u32 crc = ~(u32)0;
1961 1962
	int fail_gen = 0;
	int fail_cor = 0;
1963 1964
	u64 len;
	int index;
A
Arne Jansen 已提交
1965

1966
	BUG_ON(sblock->page_count < 1);
1967
	page = sblock->pagev[0]->page;
1968
	mapped_buffer = kmap_atomic(page);
1969
	s = (struct btrfs_super_block *)mapped_buffer;
1970
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1971

1972
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1973
		++fail_cor;
A
Arne Jansen 已提交
1974

1975
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1976
		++fail_gen;
A
Arne Jansen 已提交
1977

M
Miao Xie 已提交
1978
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1979
		++fail_cor;
A
Arne Jansen 已提交
1980

1981 1982 1983 1984 1985 1986 1987
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1988
		crc = btrfs_csum_data(p, crc, l);
1989
		kunmap_atomic(mapped_buffer);
1990 1991 1992 1993 1994
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1995 1996
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1997
		mapped_buffer = kmap_atomic(page);
1998 1999 2000 2001 2002
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2003
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2004
		++fail_cor;
A
Arne Jansen 已提交
2005

2006
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2007 2008 2009 2010 2011
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2012 2013 2014
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2015
		if (fail_cor)
2016
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2017 2018
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2019
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2020
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2021 2022
	}

2023
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2024 2025
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

2036 2037 2038
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2039
		for (i = 0; i < sblock->page_count; i++)
2040
			scrub_page_put(sblock->pagev[i]);
2041 2042 2043 2044
		kfree(sblock);
	}
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2059
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2060 2061 2062
{
	struct scrub_bio *sbio;

2063
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2064
		return;
A
Arne Jansen 已提交
2065

2066 2067
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2068
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2079
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2080 2081 2082 2083
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2084 2085
}

2086 2087
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2088
{
2089
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2090
	struct scrub_bio *sbio;
2091
	int ret;
A
Arne Jansen 已提交
2092 2093 2094 2095 2096

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2097 2098 2099 2100 2101 2102 2103 2104
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2105
		} else {
2106 2107
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2108 2109
		}
	}
2110
	sbio = sctx->bios[sctx->curr];
2111
	if (sbio->page_count == 0) {
2112 2113
		struct bio *bio;

2114 2115
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2116
		sbio->dev = spage->dev;
2117 2118
		bio = sbio->bio;
		if (!bio) {
2119
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2120 2121 2122 2123
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2124 2125 2126

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2127
		bio->bi_bdev = sbio->dev->bdev;
2128
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2129
		sbio->err = 0;
2130 2131 2132
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2133 2134
		   spage->logical ||
		   sbio->dev != spage->dev) {
2135
		scrub_submit(sctx);
A
Arne Jansen 已提交
2136 2137
		goto again;
	}
2138

2139 2140 2141 2142 2143 2144 2145 2146
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2147
		scrub_submit(sctx);
2148 2149 2150
		goto again;
	}

2151
	scrub_block_get(sblock); /* one for the page added to the bio */
2152 2153
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2154
	if (sbio->page_count == sctx->pages_per_rd_bio)
2155
		scrub_submit(sctx);
2156 2157 2158 2159

	return 0;
}

2160
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2161
		       u64 physical, struct btrfs_device *dev, u64 flags,
2162 2163
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2164 2165 2166 2167 2168 2169
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2170 2171 2172
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2173
		return -ENOMEM;
A
Arne Jansen 已提交
2174
	}
2175

2176 2177
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2178
	atomic_set(&sblock->ref_count, 1);
2179
	sblock->sctx = sctx;
2180 2181 2182
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2183
		struct scrub_page *spage;
2184 2185
		u64 l = min_t(u64, len, PAGE_SIZE);

2186 2187 2188
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2189 2190 2191
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2192
			scrub_block_put(sblock);
2193 2194
			return -ENOMEM;
		}
2195 2196 2197
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2198
		spage->sblock = sblock;
2199
		spage->dev = dev;
2200 2201 2202 2203
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2204
		spage->physical_for_dev_replace = physical_for_dev_replace;
2205 2206 2207
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2208
			memcpy(spage->csum, csum, sctx->csum_size);
2209 2210 2211 2212
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2213 2214 2215
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2216 2217 2218
		len -= l;
		logical += l;
		physical += l;
2219
		physical_for_dev_replace += l;
2220 2221
	}

2222
	WARN_ON(sblock->page_count == 0);
2223
	for (index = 0; index < sblock->page_count; index++) {
2224
		struct scrub_page *spage = sblock->pagev[index];
2225 2226
		int ret;

2227
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2228 2229
		if (ret) {
			scrub_block_put(sblock);
2230
			return ret;
2231
		}
2232
	}
A
Arne Jansen 已提交
2233

2234
	if (force)
2235
		scrub_submit(sctx);
A
Arne Jansen 已提交
2236

2237 2238
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2239 2240 2241
	return 0;
}

2242 2243 2244
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2245
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2246 2247 2248 2249

	sbio->err = err;
	sbio->bio = bio;

2250
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2251 2252 2253 2254 2255
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2256
	struct scrub_ctx *sctx = sbio->sctx;
2257 2258
	int i;

2259
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2281 2282 2283 2284
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2285 2286 2287 2288 2289 2290 2291 2292

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2293
	scrub_pending_bio_dec(sctx);
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2335 2336
static void scrub_block_complete(struct scrub_block *sblock)
{
2337 2338
	int corrupted = 0;

2339
	if (!sblock->no_io_error_seen) {
2340
		corrupted = 1;
2341
		scrub_handle_errored_block(sblock);
2342 2343 2344 2345 2346 2347
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2348 2349
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2350 2351
			scrub_write_block_to_dev_replace(sblock);
	}
2352 2353 2354 2355 2356 2357 2358 2359 2360

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2361 2362
}

2363
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2364 2365 2366
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2367
	unsigned long index;
A
Arne Jansen 已提交
2368 2369
	unsigned long num_sectors;

2370 2371
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2372 2373 2374 2375 2376 2377
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2378
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2379 2380 2381 2382 2383 2384 2385
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2386
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2387
	num_sectors = sum->len / sctx->sectorsize;
2388 2389
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2390 2391 2392
		list_del(&sum->list);
		kfree(sum);
	}
2393
	return 1;
A
Arne Jansen 已提交
2394 2395 2396
}

/* scrub extent tries to collect up to 64 kB for each bio */
2397
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2398
			u64 physical, struct btrfs_device *dev, u64 flags,
2399
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2400 2401 2402
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2403 2404 2405
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2406 2407 2408 2409 2410
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2411
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2412 2413 2414 2415 2416
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2417
	} else {
2418
		blocksize = sctx->sectorsize;
2419
		WARN_ON(1);
2420
	}
A
Arne Jansen 已提交
2421 2422

	while (len) {
2423
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2424 2425 2426 2427
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2428
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2429
			if (have_csum == 0)
2430
				++sctx->stat.no_csum;
2431 2432 2433 2434 2435 2436
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2437
		}
2438
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2439 2440 2441
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2442 2443 2444 2445 2446
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2447
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2448 2449 2450 2451
	}
	return 0;
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2570
skip:
2571 2572 2573 2574 2575 2576 2577
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2578 2579 2580 2581 2582 2583 2584 2585
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2586 2587
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2598 2599 2600
	if (stripe_start)
		*stripe_start = last_offset;

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2613
		stripe_index = rot % map->num_stripes;
2614 2615 2616 2617 2618 2619 2620 2621 2622
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2674
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2675
			       sparity->logic_start,
2676 2677
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2689
					      length, sparity->scrub_dev,
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2706
	btrfs_put_bbio(bbio);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
	atomic_inc(&sparity->ref_count);
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
	if (!atomic_dec_and_test(&sparity->ref_count))
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
	atomic_set(&sparity->ref_count, 1);
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2937
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2938 2939
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2940 2941
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2942
{
2943
	struct btrfs_path *path, *ppath;
2944
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2945 2946 2947
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2948
	struct blk_plug plug;
A
Arne Jansen 已提交
2949 2950 2951 2952 2953 2954 2955 2956
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2957
	u64 logic_end;
2958
	u64 physical_end;
A
Arne Jansen 已提交
2959
	u64 generation;
2960
	int mirror_num;
A
Arne Jansen 已提交
2961 2962 2963 2964
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2965 2966
	u64 increment = map->stripe_len;
	u64 offset;
2967 2968 2969
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2970 2971
	u64 stripe_logical;
	u64 stripe_end;
2972 2973
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
2974
	int stop_loop = 0;
D
David Woodhouse 已提交
2975

A
Arne Jansen 已提交
2976
	nstripes = length;
2977
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
2978 2979 2980 2981 2982
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2983
		mirror_num = 1;
A
Arne Jansen 已提交
2984 2985 2986 2987
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2988
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2989 2990
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2991
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2992 2993
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2994
		mirror_num = num % map->num_stripes + 1;
2995 2996
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
2997
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
2998 2999
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3000 3001
	} else {
		increment = map->stripe_len;
3002
		mirror_num = 1;
A
Arne Jansen 已提交
3003 3004 3005 3006 3007 3008
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3009 3010 3011 3012 3013 3014
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3015 3016 3017 3018 3019
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3020 3021 3022 3023
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3024 3025 3026
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3027 3028
	 */
	logical = base + offset;
3029 3030 3031 3032
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
3033
					map, &logic_end, NULL);
3034 3035 3036 3037
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3038
	wait_event(sctx->list_wait,
3039
		   atomic_read(&sctx->bios_in_flight) == 0);
3040
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3041 3042 3043 3044 3045

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3046
	key_end.objectid = logic_end;
3047 3048
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3049 3050 3051 3052 3053 3054 3055
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3056
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3057 3058 3059 3060 3061 3062 3063
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3064 3065 3066 3067 3068

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3069
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3070 3071 3072 3073 3074

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3075 3076 3077 3078 3079
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
3080
					map, &logical, &stripe_logical);
3081
			logical += base;
3082 3083 3084 3085 3086 3087 3088 3089
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3090
				goto skip;
3091
			}
3092
		}
A
Arne Jansen 已提交
3093 3094 3095 3096
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3097
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3098 3099 3100 3101 3102 3103 3104 3105
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3106
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3107
			scrub_submit(sctx);
3108 3109 3110
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3111
			wait_event(sctx->list_wait,
3112
				   atomic_read(&sctx->bios_in_flight) == 0);
3113
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3114
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3115 3116
		}

3117 3118 3119 3120
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3121
		key.objectid = logical;
L
Liu Bo 已提交
3122
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3123 3124 3125 3126

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3127

3128
		if (ret > 0) {
3129
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3130 3131
			if (ret < 0)
				goto out;
3132 3133 3134 3135 3136 3137 3138 3139 3140
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3141 3142
		}

L
Liu Bo 已提交
3143
		stop_loop = 0;
A
Arne Jansen 已提交
3144
		while (1) {
3145 3146
			u64 bytes;

A
Arne Jansen 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3156
				stop_loop = 1;
A
Arne Jansen 已提交
3157 3158 3159 3160
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3161
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3162
				bytes = root->nodesize;
3163 3164 3165 3166
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3167 3168
				goto next;

L
Liu Bo 已提交
3169 3170 3171
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3172

L
Liu Bo 已提交
3173 3174 3175 3176 3177 3178
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3179 3180 3181 3182 3183 3184 3185 3186

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3187 3188 3189
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3190
				       key.objectid, logical);
A
Arne Jansen 已提交
3191 3192 3193
				goto next;
			}

L
Liu Bo 已提交
3194 3195 3196 3197
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3198 3199 3200
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3201 3202 3203
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3204
			}
L
Liu Bo 已提交
3205
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3206
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3207 3208
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3209 3210
			}

L
Liu Bo 已提交
3211
			extent_physical = extent_logical - logical + physical;
3212 3213 3214 3215 3216 3217 3218
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3219 3220 3221 3222 3223 3224 3225

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3226 3227 3228
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3229
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3230 3231 3232
			if (ret)
				goto out;

3233
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3234 3235
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3236 3237 3238 3239 3240 3241
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3261 3262 3263 3264
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3265 3266 3267 3268 3269
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3270
				if (physical >= physical_end) {
L
Liu Bo 已提交
3271 3272 3273 3274
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3275 3276 3277
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3278
		btrfs_release_path(path);
3279
skip:
A
Arne Jansen 已提交
3280 3281
		logical += increment;
		physical += map->stripe_len;
3282
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3283 3284 3285 3286 3287
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3288
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3289 3290
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3291
	}
3292
out:
A
Arne Jansen 已提交
3293
	/* push queued extents */
3294
	scrub_submit(sctx);
3295 3296 3297
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3298

3299
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3300
	btrfs_free_path(path);
3301
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3302 3303 3304
	return ret < 0 ? ret : 0;
}

3305
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3306 3307 3308
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3309
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3310 3311
{
	struct btrfs_mapping_tree *map_tree =
3312
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3313 3314 3315
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3316
	int ret = 0;
A
Arne Jansen 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3333
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3334
		    map->stripes[i].physical == dev_offset) {
3335
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3336 3337
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3349
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3350 3351
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3352 3353 3354
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3355
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3367
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3368 3369 3370 3371 3372 3373 3374 3375 3376

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3377
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3378 3379 3380 3381 3382 3383
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3384 3385 3386 3387 3388 3389 3390 3391 3392
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3393 3394 3395 3396 3397 3398

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3399
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3400 3401
			break;

3402
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3414 3415
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426 3427 3428 3429 3430 3431

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3432 3433 3434
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3435
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3457 3458 3459 3460 3461 3462 3463 3464
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3465 3466
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3467 3468 3469 3470 3471 3472 3473
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3474

A
Arne Jansen 已提交
3475 3476 3477
		btrfs_put_block_group(cache);
		if (ret)
			break;
3478 3479
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3480 3481 3482 3483 3484 3485 3486
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3487

3488 3489
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3490
skip:
A
Arne Jansen 已提交
3491
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3492
		btrfs_release_path(path);
A
Arne Jansen 已提交
3493 3494 3495
	}

	btrfs_free_path(path);
3496 3497 3498 3499 3500 3501

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3502 3503
}

3504 3505
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3506 3507 3508 3509 3510
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3511
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3512

3513
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3514 3515
		return -EIO;

3516 3517 3518 3519 3520
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3521 3522 3523

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3524 3525
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3526 3527
			break;

3528
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3529
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3530
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3531 3532 3533
		if (ret)
			return ret;
	}
3534
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3535 3536 3537 3538 3539 3540 3541

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3542 3543
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3544
{
3545
	int ret = 0;
3546 3547
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3548

A
Arne Jansen 已提交
3549
	if (fs_info->scrub_workers_refcnt == 0) {
3550
		if (is_dev_replace)
3551 3552 3553
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3554
		else
3555 3556 3557 3558 3559
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3560
			goto out;
3561 3562 3563 3564 3565 3566
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3567
			goto out;
3568 3569 3570 3571 3572
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3573
			goto out;
3574
		}
A
Arne Jansen 已提交
3575
	}
A
Arne Jansen 已提交
3576
	++fs_info->scrub_workers_refcnt;
3577 3578
out:
	return ret;
A
Arne Jansen 已提交
3579 3580
}

3581
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3582
{
3583
	if (--fs_info->scrub_workers_refcnt == 0) {
3584 3585 3586
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3587
	}
A
Arne Jansen 已提交
3588 3589 3590
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3591 3592
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3593
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3594
{
3595
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3596 3597
	int ret;
	struct btrfs_device *dev;
3598
	struct rcu_string *name;
A
Arne Jansen 已提交
3599

3600
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3601 3602
		return -EINVAL;

3603
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3604 3605 3606 3607 3608
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3609 3610
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3611
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3612 3613 3614
		return -EINVAL;
	}

3615
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3616
		/* not supported for data w/o checksums */
3617 3618 3619
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3620
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3621 3622 3623
		return -EINVAL;
	}

3624 3625 3626 3627 3628 3629 3630 3631
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3632 3633
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3634 3635 3636 3637 3638 3639 3640
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3641

3642 3643
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3644
	if (!dev || (dev->missing && !is_dev_replace)) {
3645
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3646 3647 3648
		return -ENODEV;
	}

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3659
	mutex_lock(&fs_info->scrub_lock);
3660
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3661
		mutex_unlock(&fs_info->scrub_lock);
3662 3663
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3664 3665
	}

3666 3667 3668 3669 3670
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3671
		mutex_unlock(&fs_info->scrub_lock);
3672
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3673 3674
		return -EINPROGRESS;
	}
3675
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3676 3677 3678 3679 3680 3681 3682 3683

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3684
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3685
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3686
		mutex_unlock(&fs_info->scrub_lock);
3687 3688
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3689
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3690
	}
3691 3692
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3693
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3694

3695 3696 3697 3698
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3699
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3700 3701 3702
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3703
	if (!is_dev_replace) {
3704 3705 3706 3707
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3708
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3709
		ret = scrub_supers(sctx, dev);
3710
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3711
	}
A
Arne Jansen 已提交
3712 3713

	if (!ret)
3714 3715
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3716

3717
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3718 3719 3720
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3721
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3722

A
Arne Jansen 已提交
3723
	if (progress)
3724
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3725 3726 3727

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3728
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3729 3730
	mutex_unlock(&fs_info->scrub_lock);

3731
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3732 3733 3734 3735

	return ret;
}

3736
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3753
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3754 3755 3756 3757 3758 3759 3760
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3761
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3782 3783
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3784
{
3785
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3786 3787

	mutex_lock(&fs_info->scrub_lock);
3788 3789
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3790 3791 3792
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3793
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3804

A
Arne Jansen 已提交
3805 3806 3807 3808
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3809
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3810 3811

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3812
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3813
	if (dev)
3814 3815 3816
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3817 3818
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3819
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3820
}
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3837
		btrfs_put_bbio(bbio);
3838 3839 3840 3841 3842 3843
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
3844
	btrfs_put_bbio(bbio);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3897 3898
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3899
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3900 3901
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3902 3903 3904 3905

	return 0;
}

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3958
					  record_inode_for_nocow, nocow_ctx);
3959
	if (ret != 0 && ret != -ENOENT) {
3960 3961
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3962 3963
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3964 3965 3966 3967
		not_written = 1;
		goto out;
	}

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3986
out:
3987 3988 3989 3990 3991 3992 3993 3994
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4051 4052
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4053
{
4054
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4055
	struct btrfs_key key;
4056 4057
	struct inode *inode;
	struct page *page;
4058
	struct btrfs_root *local_root;
4059
	struct extent_io_tree *io_tree;
4060
	u64 physical_for_dev_replace;
4061
	u64 nocow_ctx_logical;
4062
	u64 len = nocow_ctx->len;
4063
	unsigned long index;
4064
	int srcu_index;
4065 4066
	int ret = 0;
	int err = 0;
4067 4068 4069 4070

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4071 4072 4073

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4074
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4075 4076
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4077
		return PTR_ERR(local_root);
4078
	}
4079 4080 4081 4082 4083

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4084
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4085 4086 4087
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4088 4089 4090 4091
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4092
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4093
	io_tree = &BTRFS_I(inode)->io_tree;
4094
	nocow_ctx_logical = nocow_ctx->logical;
4095

4096 4097 4098 4099
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4100 4101
	}

4102 4103
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4104
again:
4105 4106
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4107
			btrfs_err(fs_info, "find_or_create_page() failed");
4108
			ret = -ENOMEM;
4109
			goto out;
4110 4111 4112 4113 4114 4115 4116
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4117
			err = extent_read_full_page(io_tree, page,
4118 4119
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4120 4121
			if (err) {
				ret = err;
4122 4123
				goto next_page;
			}
4124

4125
			lock_page(page);
4126 4127 4128 4129 4130 4131 4132
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4133
				unlock_page(page);
4134 4135 4136
				page_cache_release(page);
				goto again;
			}
4137 4138 4139 4140 4141
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4142 4143 4144 4145 4146 4147 4148 4149

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4150 4151 4152 4153
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4154
next_page:
4155 4156 4157 4158 4159 4160
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4161 4162
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4163
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4164 4165
		len -= PAGE_CACHE_SIZE;
	}
4166
	ret = COPY_COMPLETE;
4167
out:
4168
	mutex_unlock(&inode->i_mutex);
4169
	iput(inode);
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4185
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4186 4187
		return -EIO;
	}
4188
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4189 4190 4191 4192 4193 4194
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4195 4196
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4197 4198 4199 4200 4201 4202 4203 4204 4205
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4206
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4207 4208 4209 4210 4211
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}