scrub.c 115.2 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	atomic_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204 205

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250 251 252
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
253
				u16 csum_size, int retry_failed_mirror);
254 255 256 257 258 259
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
260
					     struct scrub_block *sblock_good);
261 262 263
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
264 265 266
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
267 268 269 270 271
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
272 273
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
274 275
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
276 277
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
278
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
279
		       u64 physical, struct btrfs_device *dev, u64 flags,
280 281
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
282
static void scrub_bio_end_io(struct bio *bio, int err);
283 284
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
304
				      struct scrub_copy_nocow_ctx *ctx);
305 306 307
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
308
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
310
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
311 312


313 314
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
315
	atomic_inc(&sctx->refs);
316 317 318 319 320 321 322
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
323
	scrub_put_ctx(sctx);
324 325
}

326
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
327 328 329 330 331 332 333 334 335
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

336
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
337 338 339
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
340
}
341

342 343
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
344 345 346 347 348 349 350 351
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

352 353 354 355 356 357
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

358 359 360 361 362 363 364 365
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

366
	atomic_inc(&sctx->refs);
367 368 369 370 371 372 373 374 375 376 377 378 379
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
380 381 382 383 384 385 386 387 388 389

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
409
	scrub_put_ctx(sctx);
410 411
}

412
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
413
{
414
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
415
		struct btrfs_ordered_sum *sum;
416
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
417 418 419 420 421 422
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

423
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
424 425 426
{
	int i;

427
	if (!sctx)
A
Arne Jansen 已提交
428 429
		return;

430 431
	scrub_free_wr_ctx(&sctx->wr_ctx);

432
	/* this can happen when scrub is cancelled */
433 434
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
435 436

		for (i = 0; i < sbio->page_count; i++) {
437
			WARN_ON(!sbio->pagev[i]->page);
438 439 440 441 442
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

443
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
444
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
445 446 447 448 449 450

		if (!sbio)
			break;
		kfree(sbio);
	}

451 452
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
453 454
}

455 456 457 458 459 460
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
461
static noinline_for_stack
462
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
463
{
464
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
465 466
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
467 468
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
469

470 471 472 473 474 475 476 477 478 479 480 481
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
482 483
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
484
		goto nomem;
485
	atomic_set(&sctx->refs, 1);
486
	sctx->is_dev_replace = is_dev_replace;
487
	sctx->pages_per_rd_bio = pages_per_rd_bio;
488
	sctx->curr = -1;
489
	sctx->dev_root = dev->dev_root;
490
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
491 492 493 494 495
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
496
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
497 498

		sbio->index = i;
499
		sbio->sctx = sctx;
500
		sbio->page_count = 0;
501 502
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
503

504
		if (i != SCRUB_BIOS_PER_SCTX - 1)
505
			sctx->bios[i]->next_free = i + 1;
506
		else
507 508 509 510 511
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
512 513
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
514 515 516 517 518 519 520
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
521 522 523 524 525 526 527

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
528
	return sctx;
A
Arne Jansen 已提交
529 530

nomem:
531
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
532 533 534
	return ERR_PTR(-ENOMEM);
}

535 536
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
537 538 539 540 541 542 543
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
544
	struct scrub_warning *swarn = warn_ctx;
545 546 547 548
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
549
	struct btrfs_key key;
550 551 552 553 554 555 556 557 558 559

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

560 561 562
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
563 564 565 566 567
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
568 569 570 571 572 573 574 575 576 577 578 579 580
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
581 582 583 584 585
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
586 587 588 589 590 591 592 593 594 595
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
596
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
597 598
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
599
			swarn->logical, rcu_str_deref(swarn->dev->name),
600 601
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
602
			(char *)(unsigned long)ipath->fspath->val[i]);
603 604 605 606 607

	free_ipath(ipath);
	return 0;

err:
608
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
609 610
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
611
		swarn->logical, rcu_str_deref(swarn->dev->name),
612 613 614 615 616 617
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

618
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
619
{
620 621
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
622 623 624 625 626
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
627 628 629
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
630
	u64 ref_root;
631
	u32 item_size;
632
	u8 ref_level;
633
	int ret;
634

635
	WARN_ON(sblock->page_count < 1);
636
	dev = sblock->pagev[0]->dev;
637 638
	fs_info = sblock->sctx->dev_root->fs_info;

639
	path = btrfs_alloc_path();
640 641
	if (!path)
		return;
642

643 644
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
645
	swarn.errstr = errstr;
646
	swarn.dev = NULL;
647

648 649
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
650 651 652
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
653
	extent_item_pos = swarn.logical - found_key.objectid;
654 655 656 657 658 659
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

660
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
661
		do {
662 663 664
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
665
			printk_in_rcu(KERN_WARNING
666
				"BTRFS: %s at logical %llu on dev %s, "
667
				"sector %llu: metadata %s (level %d) in tree "
668 669
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
670 671 672 673 674
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
675
		btrfs_release_path(path);
676
	} else {
677
		btrfs_release_path(path);
678
		swarn.path = path;
679
		swarn.dev = dev;
680 681
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
682 683 684 685 686 687 688
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

689
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
690
{
691
	struct page *page = NULL;
692
	unsigned long index;
693
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
694
	int ret;
695
	int corrected = 0;
696
	struct btrfs_key key;
697
	struct inode *inode = NULL;
698
	struct btrfs_fs_info *fs_info;
699 700
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
701
	int srcu_index;
702 703 704 705

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
706 707 708 709 710 711 712

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
713
		return PTR_ERR(local_root);
714
	}
715 716 717 718

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
719 720
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
721 722 723 724 725 726
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
753
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
754
					fixup->logical, page,
755
					offset - page_offset(page),
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
790 791

	iput(inode);
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
811
	struct scrub_ctx *sctx;
812 813 814 815 816
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
817
	sctx = fixup->sctx;
818 819 820

	path = btrfs_alloc_path();
	if (!path) {
821 822 823
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

852 853 854
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
855 856 857 858 859

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
860 861 862
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
863 864 865
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
866 867
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
868
			fixup->logical, rcu_str_deref(fixup->dev->name));
869 870 871 872 873
	}

	btrfs_free_path(path);
	kfree(fixup);

874
	scrub_pending_trans_workers_dec(sctx);
875 876
}

877 878 879 880 881 882 883 884
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
885
		btrfs_put_bbio(recover->bbio);
886 887 888 889
		kfree(recover);
	}
}

A
Arne Jansen 已提交
890
/*
891 892 893 894 895 896
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
897
 */
898
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
899
{
900
	struct scrub_ctx *sctx = sblock_to_check->sctx;
901
	struct btrfs_device *dev;
902 903 904 905 906 907 908 909 910 911 912 913 914 915
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
916
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
917 918 919
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
920
	fs_info = sctx->dev_root->fs_info;
921 922 923 924 925 926 927 928 929 930 931
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
932
	length = sblock_to_check->page_count * PAGE_SIZE;
933 934 935 936 937
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
938
			BTRFS_EXTENT_FLAG_DATA);
939 940 941
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
942

943 944 945 946 947
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

977 978
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
979
	if (!sblocks_for_recheck) {
980 981 982 983 984
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
985
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
986
		goto out;
A
Arne Jansen 已提交
987 988
	}

989
	/* setup the context, map the logical blocks and alloc the pages */
990
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
991
	if (ret) {
992 993 994 995
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
996
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
997 998 999 1000
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1001

1002
	/* build and submit the bios for the failed mirror, check checksums */
1003
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
1004
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1016 1017
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1018
		sblock_to_check->data_corrected = 1;
1019
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1020

1021 1022
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1023
		goto out;
A
Arne Jansen 已提交
1024 1025
	}

1026
	if (!sblock_bad->no_io_error_seen) {
1027 1028 1029
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1030 1031
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1032
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1033
	} else if (sblock_bad->checksum_error) {
1034 1035 1036
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1037 1038
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1039
		btrfs_dev_stat_inc_and_print(dev,
1040
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1041
	} else if (sblock_bad->header_error) {
1042 1043 1044
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1045 1046 1047
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1048
		if (sblock_bad->generation_error)
1049
			btrfs_dev_stat_inc_and_print(dev,
1050 1051
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1052
			btrfs_dev_stat_inc_and_print(dev,
1053
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1054
	}
A
Arne Jansen 已提交
1055

1056 1057 1058 1059
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1060

1061 1062
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1063

1064 1065
		WARN_ON(sctx->is_dev_replace);

1066 1067
nodatasum_case:

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1078
		fixup_nodatasum->sctx = sctx;
1079
		fixup_nodatasum->dev = dev;
1080 1081 1082
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1083
		scrub_pending_trans_workers_inc(sctx);
1084 1085
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1086 1087
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1088
		goto out;
A
Arne Jansen 已提交
1089 1090
	}

1091 1092
	/*
	 * now build and submit the bios for the other mirrors, check
1093 1094
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1110
		struct scrub_block *sblock_other;
1111

1112 1113 1114 1115 1116
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1117 1118
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1119
				    sctx->csum_size, 0);
1120 1121

		if (!sblock_other->header_error &&
1122 1123
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1124 1125
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1126
				goto corrected_error;
1127 1128
			} else {
				ret = scrub_repair_block_from_good_copy(
1129 1130 1131
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1132
			}
1133 1134
		}
	}
A
Arne Jansen 已提交
1135

1136 1137
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1138 1139 1140

	/*
	 * In case of I/O errors in the area that is supposed to be
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1162
	 */
1163
	success = 1;
1164 1165
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1166
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1167
		struct scrub_block *sblock_other = NULL;
1168

1169 1170
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1171
			continue;
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1184 1185
				}
			}
1186 1187
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1188
		}
A
Arne Jansen 已提交
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1217
		}
A
Arne Jansen 已提交
1218 1219
	}

1220
	if (success && !sctx->is_dev_replace) {
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1231 1232
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1233
					    generation, sctx->csum_size, 1);
1234
			if (!sblock_bad->header_error &&
1235 1236 1237 1238 1239 1240 1241
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1242 1243
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1244
			sblock_to_check->data_corrected = 1;
1245
			spin_unlock(&sctx->stat_lock);
1246
			printk_ratelimited_in_rcu(KERN_ERR
1247
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1248
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1249
		}
1250 1251
	} else {
did_not_correct_error:
1252 1253 1254
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1255
		printk_ratelimited_in_rcu(KERN_ERR
1256
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1257
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1258
	}
A
Arne Jansen 已提交
1259

1260 1261 1262 1263 1264 1265
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1266
			struct scrub_recover *recover;
1267 1268
			int page_index;

1269 1270 1271
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1272 1273 1274 1275 1276 1277
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1278 1279
				scrub_page_put(sblock->pagev[page_index]);
			}
1280 1281 1282
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1283

1284 1285
	return 0;
}
A
Arne Jansen 已提交
1286

1287
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1288
{
Z
Zhao Lei 已提交
1289 1290 1291 1292 1293
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1294 1295 1296
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1297 1298
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1299 1300 1301 1302 1303 1304 1305
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1306
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1327
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1328 1329
				     struct scrub_block *sblocks_for_recheck)
{
1330 1331 1332 1333
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1334 1335 1336 1337 1338 1339
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1340
	int page_index = 0;
1341
	int mirror_index;
1342
	int nmirrors;
1343 1344 1345
	int ret;

	/*
1346
	 * note: the two members refs and outstanding_pages
1347 1348 1349 1350 1351
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1352 1353 1354
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1355

1356 1357 1358 1359
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1360
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1361
				       &mapped_length, &bbio, 0, 1);
1362
		if (ret || !bbio || mapped_length < sublen) {
1363
			btrfs_put_bbio(bbio);
1364 1365
			return -EIO;
		}
A
Arne Jansen 已提交
1366

1367 1368
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1369
			btrfs_put_bbio(bbio);
1370 1371 1372 1373 1374 1375 1376
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1377
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1378

1379
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1380

1381
		for (mirror_index = 0; mirror_index < nmirrors;
1382 1383 1384 1385 1386
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1387 1388 1389 1390
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1391 1392 1393
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1394
				scrub_put_recover(recover);
1395 1396
				return -ENOMEM;
			}
1397 1398 1399
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1400

Z
Zhao Lei 已提交
1401 1402 1403
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1404
						      mapped_length,
1405 1406
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1407 1408 1409 1410 1411 1412 1413
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1414 1415 1416 1417
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1418 1419
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1420
			sblock->page_count++;
1421 1422 1423
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1424 1425 1426

			scrub_get_recover(recover);
			page->recover = recover;
1427
		}
1428
		scrub_put_recover(recover);
1429 1430 1431 1432 1433 1434
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1435 1436
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1452
	return page->recover &&
1453
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1471
				    page->mirror_num, 0);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1482 1483 1484 1485 1486 1487 1488
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1489 1490 1491
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1492
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1493
{
1494
	int page_num;
I
Ilya Dryomov 已提交
1495

1496 1497 1498
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1499

1500 1501
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1502
		struct scrub_page *page = sblock->pagev[page_num];
1503

1504
		if (page->dev->bdev == NULL) {
1505 1506 1507 1508 1509
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1510
		WARN_ON(!page->page);
1511
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1512 1513 1514 1515 1516
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1517
		bio->bi_bdev = page->dev->bdev;
1518

1519
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1520 1521 1522 1523 1524 1525 1526 1527 1528
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1529

1530 1531
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1532

1533 1534 1535 1536 1537
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1538
	return;
A
Arne Jansen 已提交
1539 1540
}

M
Miao Xie 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1551 1552 1553 1554 1555
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1556
{
1557 1558 1559 1560 1561
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1562
	WARN_ON(!sblock->pagev[0]->page);
1563 1564 1565
	if (is_metadata) {
		struct btrfs_header *h;

1566
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1567 1568
		h = (struct btrfs_header *)mapped_buffer;

1569
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1570
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1571
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1572
			   BTRFS_UUID_SIZE)) {
1573
			sblock->header_error = 1;
1574
		} else if (generation != btrfs_stack_header_generation(h)) {
1575 1576 1577
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1578 1579 1580 1581
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1582

1583
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1584
	}
A
Arne Jansen 已提交
1585

1586 1587
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1588
			crc = btrfs_csum_data(
1589 1590 1591
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1592
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1593

1594
		kunmap_atomic(mapped_buffer);
1595 1596 1597
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1598
		WARN_ON(!sblock->pagev[page_num]->page);
1599

1600
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1601 1602 1603 1604 1605
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1606 1607
}

1608
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1609
					     struct scrub_block *sblock_good)
1610 1611 1612
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1613

1614 1615
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1616

1617 1618
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1619
							   page_num, 1);
1620 1621
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1622
	}
1623 1624 1625 1626 1627 1628 1629 1630

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1631 1632
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1633

1634 1635
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1636 1637 1638 1639 1640
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1641
		if (!page_bad->dev->bdev) {
1642 1643 1644
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1645 1646 1647
			return -EIO;
		}

1648
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1649 1650
		if (!bio)
			return -EIO;
1651
		bio->bi_bdev = page_bad->dev->bdev;
1652
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1653 1654 1655 1656 1657

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1658
		}
1659

1660
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1661 1662
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1663 1664 1665
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1666 1667 1668
			bio_put(bio);
			return -EIO;
		}
1669
		bio_put(bio);
A
Arne Jansen 已提交
1670 1671
	}

1672 1673 1674
	return 0;
}

1675 1676 1677 1678
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1679 1680 1681 1682 1683 1684 1685
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1741
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1752
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1811 1812
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1813
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1845 1846 1847 1848
{
	u64 flags;
	int ret;

1849 1850
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1862 1863

	return ret;
A
Arne Jansen 已提交
1864 1865
}

1866
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1867
{
1868
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1869
	u8 csum[BTRFS_CSUM_SIZE];
1870 1871 1872
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1873 1874
	u32 crc = ~(u32)0;
	int fail = 0;
1875 1876
	u64 len;
	int index;
A
Arne Jansen 已提交
1877

1878
	BUG_ON(sblock->page_count < 1);
1879
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1880 1881
		return 0;

1882 1883
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1884
	buffer = kmap_atomic(page);
1885

1886
	len = sctx->sectorsize;
1887 1888 1889 1890
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1891
		crc = btrfs_csum_data(buffer, crc, l);
1892
		kunmap_atomic(buffer);
1893 1894 1895 1896 1897
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1898 1899
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1900
		buffer = kmap_atomic(page);
1901 1902
	}

A
Arne Jansen 已提交
1903
	btrfs_csum_final(crc, csum);
1904
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1905 1906 1907 1908 1909
		fail = 1;

	return fail;
}

1910
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1911
{
1912
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1913
	struct btrfs_header *h;
1914
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1915
	struct btrfs_fs_info *fs_info = root->fs_info;
1916 1917 1918 1919 1920 1921
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1922 1923 1924
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1925 1926 1927 1928
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1929
	page = sblock->pagev[0]->page;
1930
	mapped_buffer = kmap_atomic(page);
1931
	h = (struct btrfs_header *)mapped_buffer;
1932
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1933 1934 1935 1936 1937 1938 1939

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1940
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1941 1942
		++fail;

1943
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1944 1945
		++fail;

M
Miao Xie 已提交
1946
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1947 1948 1949 1950 1951 1952
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1953
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1954 1955 1956 1957 1958 1959
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1960
		crc = btrfs_csum_data(p, crc, l);
1961
		kunmap_atomic(mapped_buffer);
1962 1963 1964 1965 1966
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1967 1968
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1969
		mapped_buffer = kmap_atomic(page);
1970 1971 1972 1973 1974
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1975
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1976 1977 1978 1979 1980
		++crc_fail;

	return fail || crc_fail;
}

1981
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1982 1983
{
	struct btrfs_super_block *s;
1984
	struct scrub_ctx *sctx = sblock->sctx;
1985 1986 1987 1988 1989 1990
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1991
	u32 crc = ~(u32)0;
1992 1993
	int fail_gen = 0;
	int fail_cor = 0;
1994 1995
	u64 len;
	int index;
A
Arne Jansen 已提交
1996

1997
	BUG_ON(sblock->page_count < 1);
1998
	page = sblock->pagev[0]->page;
1999
	mapped_buffer = kmap_atomic(page);
2000
	s = (struct btrfs_super_block *)mapped_buffer;
2001
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2002

2003
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2004
		++fail_cor;
A
Arne Jansen 已提交
2005

2006
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2007
		++fail_gen;
A
Arne Jansen 已提交
2008

M
Miao Xie 已提交
2009
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2010
		++fail_cor;
A
Arne Jansen 已提交
2011

2012 2013 2014 2015 2016 2017 2018
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2019
		crc = btrfs_csum_data(p, crc, l);
2020
		kunmap_atomic(mapped_buffer);
2021 2022 2023 2024 2025
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2026 2027
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2028
		mapped_buffer = kmap_atomic(page);
2029 2030 2031 2032 2033
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2034
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2035
		++fail_cor;
A
Arne Jansen 已提交
2036

2037
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2038 2039 2040 2041 2042
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2043 2044 2045
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2046
		if (fail_cor)
2047
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2048 2049
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2050
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2051
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2052 2053
	}

2054
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2055 2056
}

2057 2058
static void scrub_block_get(struct scrub_block *sblock)
{
2059
	atomic_inc(&sblock->refs);
2060 2061 2062 2063
}

static void scrub_block_put(struct scrub_block *sblock)
{
2064
	if (atomic_dec_and_test(&sblock->refs)) {
2065 2066
		int i;

2067 2068 2069
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2070
		for (i = 0; i < sblock->page_count; i++)
2071
			scrub_page_put(sblock->pagev[i]);
2072 2073 2074 2075
		kfree(sblock);
	}
}

2076 2077
static void scrub_page_get(struct scrub_page *spage)
{
2078
	atomic_inc(&spage->refs);
2079 2080 2081 2082
}

static void scrub_page_put(struct scrub_page *spage)
{
2083
	if (atomic_dec_and_test(&spage->refs)) {
2084 2085 2086 2087 2088 2089
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2090
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2091 2092 2093
{
	struct scrub_bio *sbio;

2094
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2095
		return;
A
Arne Jansen 已提交
2096

2097 2098
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2099
	scrub_pending_bio_inc(sctx);
2100
	btrfsic_submit_bio(READ, sbio->bio);
A
Arne Jansen 已提交
2101 2102
}

2103 2104
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2105
{
2106
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2107
	struct scrub_bio *sbio;
2108
	int ret;
A
Arne Jansen 已提交
2109 2110 2111 2112 2113

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2114 2115 2116 2117 2118 2119 2120 2121
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2122
		} else {
2123 2124
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2125 2126
		}
	}
2127
	sbio = sctx->bios[sctx->curr];
2128
	if (sbio->page_count == 0) {
2129 2130
		struct bio *bio;

2131 2132
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2133
		sbio->dev = spage->dev;
2134 2135
		bio = sbio->bio;
		if (!bio) {
2136
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2137 2138 2139 2140
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2141 2142 2143

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2144
		bio->bi_bdev = sbio->dev->bdev;
2145
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2146
		sbio->err = 0;
2147 2148 2149
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2150 2151
		   spage->logical ||
		   sbio->dev != spage->dev) {
2152
		scrub_submit(sctx);
A
Arne Jansen 已提交
2153 2154
		goto again;
	}
2155

2156 2157 2158 2159 2160 2161 2162 2163
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2164
		scrub_submit(sctx);
2165 2166 2167
		goto again;
	}

2168
	scrub_block_get(sblock); /* one for the page added to the bio */
2169 2170
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2171
	if (sbio->page_count == sctx->pages_per_rd_bio)
2172
		scrub_submit(sctx);
2173 2174 2175 2176

	return 0;
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
static void scrub_missing_raid56_end_io(struct bio *bio, int error)
{
	struct scrub_block *sblock = bio->bi_private;
	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;

	if (error)
		sblock->no_io_error_seen = 0;

	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	u64 generation;
	u64 logical;
	struct btrfs_device *dev;

	is_metadata = !(sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA);
	have_csum = sblock->pagev[0]->have_csum;
	csum = sblock->pagev[0]->csum;
	generation = sblock->pagev[0]->generation;
	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

	if (sblock->no_io_error_seen) {
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     sctx->csum_size);
	}

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
		printk_ratelimited_in_rcu(KERN_ERR
			"BTRFS: I/O error rebulding logical %llu for dev %s\n",
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		printk_ratelimited_in_rcu(KERN_ERR
			"BTRFS: failed to rebuild valid logical %llu for dev %s\n",
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
	struct btrfs_bio *bbio;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
			       &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2305
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2306
		       u64 physical, struct btrfs_device *dev, u64 flags,
2307 2308
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2309 2310 2311 2312 2313 2314
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2315 2316 2317
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2318
		return -ENOMEM;
A
Arne Jansen 已提交
2319
	}
2320

2321 2322
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2323
	atomic_set(&sblock->refs, 1);
2324
	sblock->sctx = sctx;
2325 2326 2327
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2328
		struct scrub_page *spage;
2329 2330
		u64 l = min_t(u64, len, PAGE_SIZE);

2331 2332 2333
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2334 2335 2336
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2337
			scrub_block_put(sblock);
2338 2339
			return -ENOMEM;
		}
2340 2341 2342
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2343
		spage->sblock = sblock;
2344
		spage->dev = dev;
2345 2346 2347 2348
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2349
		spage->physical_for_dev_replace = physical_for_dev_replace;
2350 2351 2352
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2353
			memcpy(spage->csum, csum, sctx->csum_size);
2354 2355 2356 2357
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2358 2359 2360
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2361 2362 2363
		len -= l;
		logical += l;
		physical += l;
2364
		physical_for_dev_replace += l;
2365 2366
	}

2367
	WARN_ON(sblock->page_count == 0);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;

			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2384
		}
A
Arne Jansen 已提交
2385

2386 2387 2388
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2389

2390 2391
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2392 2393 2394
	return 0;
}

2395 2396 2397
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2398
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2399 2400 2401 2402

	sbio->err = err;
	sbio->bio = bio;

2403
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2404 2405 2406 2407 2408
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2409
	struct scrub_ctx *sctx = sbio->sctx;
2410 2411
	int i;

2412
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2434 2435 2436 2437
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2438 2439 2440 2441 2442 2443 2444 2445

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2446
	scrub_pending_bio_dec(sctx);
2447 2448
}

2449 2450 2451 2452
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2453
	u32 offset;
2454 2455 2456 2457 2458 2459 2460 2461 2462
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2463
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2488 2489
static void scrub_block_complete(struct scrub_block *sblock)
{
2490 2491
	int corrupted = 0;

2492
	if (!sblock->no_io_error_seen) {
2493
		corrupted = 1;
2494
		scrub_handle_errored_block(sblock);
2495 2496 2497 2498 2499 2500
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2501 2502
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2503 2504
			scrub_write_block_to_dev_replace(sblock);
	}
2505 2506 2507 2508 2509 2510 2511 2512 2513

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2514 2515
}

2516
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2517 2518 2519
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2520
	unsigned long index;
A
Arne Jansen 已提交
2521 2522
	unsigned long num_sectors;

2523 2524
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2525 2526 2527 2528 2529 2530
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2531
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2532 2533 2534 2535 2536 2537 2538
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2539
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2540
	num_sectors = sum->len / sctx->sectorsize;
2541 2542
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2543 2544 2545
		list_del(&sum->list);
		kfree(sum);
	}
2546
	return 1;
A
Arne Jansen 已提交
2547 2548 2549
}

/* scrub extent tries to collect up to 64 kB for each bio */
2550
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2551
			u64 physical, struct btrfs_device *dev, u64 flags,
2552
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2553 2554 2555
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2556 2557 2558
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2559 2560 2561 2562 2563
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2564
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2565 2566 2567 2568 2569
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2570
	} else {
2571
		blocksize = sctx->sectorsize;
2572
		WARN_ON(1);
2573
	}
A
Arne Jansen 已提交
2574 2575

	while (len) {
2576
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2577 2578 2579 2580
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2581
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2582
			if (have_csum == 0)
2583
				++sctx->stat.no_csum;
2584 2585 2586 2587 2588 2589
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2590
		}
2591
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2592 2593 2594
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2595 2596 2597 2598 2599
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2600
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2601 2602 2603 2604
	}
	return 0;
}

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2624
	atomic_set(&sblock->refs, 1);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2699 2700 2701 2702 2703
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2728
skip:
2729 2730 2731 2732 2733 2734 2735
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2736 2737 2738 2739 2740 2741 2742 2743
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2744 2745
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2746 2747 2748 2749 2750
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2751 2752
	u32 stripe_index;
	u32 rot;
2753 2754 2755

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2756 2757 2758
	if (stripe_start)
		*stripe_start = last_offset;

2759 2760 2761 2762
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2763 2764
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2765 2766

		/* Work out the disk rotation on this stripe-set */
2767
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2768 2769
		/* calculate which stripe this data locates */
		rot += i;
2770
		stripe_index = rot % map->num_stripes;
2771 2772 2773 2774 2775 2776 2777 2778 2779
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2812 2813 2814 2815 2816 2817 2818 2819 2820
static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2821 2822 2823 2824 2825

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
			 &sparity->work);
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2842
	length = sparity->logic_end - sparity->logic_start;
2843
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2844
			       sparity->logic_start,
2845 2846
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2858
					      length, sparity->scrub_dev,
2859 2860 2861 2862 2863 2864
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2865
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2866 2867 2868 2869 2870 2871 2872 2873

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2874
	btrfs_put_bbio(bbio);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2891
	atomic_inc(&sparity->refs);
2892 2893 2894 2895
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2896
	if (!atomic_dec_and_test(&sparity->refs))
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2913
	struct btrfs_bio *bbio = NULL;
2914 2915 2916 2917 2918 2919 2920 2921 2922
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2923
	u64 mapped_length;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2948
	atomic_set(&sparity->refs, 1);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2997 2998 2999 3000
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3001 3002 3003 3004 3005 3006 3007 3008
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3009
			if (key.objectid >= logic_end) {
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3022 3023 3024 3025 3026 3027
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					  key.objectid, logic_start);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
			mapped_length = extent_len;
			ret = btrfs_map_block(fs_info, READ, extent_logical,
					      &mapped_length, &bbio, 0);
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3076 3077 3078

			scrub_free_csums(sctx);

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3110
						logic_end - logic_start);
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3121
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3122 3123
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3124 3125
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3126
{
3127
	struct btrfs_path *path, *ppath;
3128
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
3129 3130 3131
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3132
	struct blk_plug plug;
A
Arne Jansen 已提交
3133 3134 3135 3136 3137 3138 3139 3140
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3141
	u64 logic_end;
3142
	u64 physical_end;
A
Arne Jansen 已提交
3143
	u64 generation;
3144
	int mirror_num;
A
Arne Jansen 已提交
3145 3146 3147 3148
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3149 3150
	u64 increment = map->stripe_len;
	u64 offset;
3151 3152 3153
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3154 3155
	u64 stripe_logical;
	u64 stripe_end;
3156 3157
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3158
	int stop_loop = 0;
D
David Woodhouse 已提交
3159

3160
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3161
	offset = 0;
3162
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3163 3164 3165
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3166
		mirror_num = 1;
A
Arne Jansen 已提交
3167 3168 3169 3170
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3171
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3172 3173
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3174
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3175 3176
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3177
		mirror_num = num % map->num_stripes + 1;
3178
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3179
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3180 3181
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3182 3183
	} else {
		increment = map->stripe_len;
3184
		mirror_num = 1;
A
Arne Jansen 已提交
3185 3186 3187 3188 3189 3190
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3191 3192
	ppath = btrfs_alloc_path();
	if (!ppath) {
3193
		btrfs_free_path(path);
3194 3195 3196
		return -ENOMEM;
	}

3197 3198 3199 3200 3201
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3202 3203 3204
	path->search_commit_root = 1;
	path->skip_locking = 1;

3205 3206
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3207
	/*
A
Arne Jansen 已提交
3208 3209 3210
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3211 3212
	 */
	logical = base + offset;
3213
	physical_end = physical + nstripes * map->stripe_len;
3214
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3215
		get_raid56_logic_offset(physical_end, num,
3216
					map, &logic_end, NULL);
3217 3218 3219 3220
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3221
	wait_event(sctx->list_wait,
3222
		   atomic_read(&sctx->bios_in_flight) == 0);
3223
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3224 3225 3226 3227 3228

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3229
	key_end.objectid = logic_end;
3230 3231
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3232 3233 3234 3235 3236 3237 3238
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3239
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3240 3241 3242 3243 3244 3245 3246
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3247 3248 3249 3250 3251

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3252
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3253 3254 3255 3256 3257

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3258
	while (physical < physical_end) {
A
Arne Jansen 已提交
3259 3260 3261 3262
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3263
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3264 3265 3266 3267 3268 3269 3270 3271
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3272
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3273
			scrub_submit(sctx);
3274 3275 3276
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3277
			wait_event(sctx->list_wait,
3278
				   atomic_read(&sctx->bios_in_flight) == 0);
3279
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3280
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3281 3282
		}

3283 3284 3285 3286 3287 3288
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3289
				/* it is parity strip */
3290
				stripe_logical += base;
3291
				stripe_end = stripe_logical + increment;
3292 3293 3294 3295 3296 3297 3298 3299 3300
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3301 3302 3303 3304
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3305
		key.objectid = logical;
L
Liu Bo 已提交
3306
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3307 3308 3309 3310

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3311

3312
		if (ret > 0) {
3313
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3314 3315
			if (ret < 0)
				goto out;
3316 3317 3318 3319 3320 3321 3322 3323 3324
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3325 3326
		}

L
Liu Bo 已提交
3327
		stop_loop = 0;
A
Arne Jansen 已提交
3328
		while (1) {
3329 3330
			u64 bytes;

A
Arne Jansen 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3340
				stop_loop = 1;
A
Arne Jansen 已提交
3341 3342 3343 3344
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3345 3346 3347 3348
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3349
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3350
				bytes = root->nodesize;
3351 3352 3353 3354
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3355 3356
				goto next;

L
Liu Bo 已提交
3357 3358 3359 3360 3361 3362
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3363 3364 3365 3366 3367 3368

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3369 3370 3371 3372
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3373 3374 3375
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3376
				       key.objectid, logical);
A
Arne Jansen 已提交
3377 3378 3379
				goto next;
			}

L
Liu Bo 已提交
3380 3381 3382 3383
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3384 3385 3386
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3387 3388 3389
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3390
			}
L
Liu Bo 已提交
3391
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3392
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3393 3394
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3395 3396
			}

L
Liu Bo 已提交
3397
			extent_physical = extent_logical - logical + physical;
3398 3399 3400 3401 3402 3403 3404
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3405

3406 3407 3408 3409 3410
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3411 3412 3413
			if (ret)
				goto out;

3414 3415 3416
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3417
					   extent_logical - logical + physical);
3418 3419 3420

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3421 3422 3423
			if (ret)
				goto out;

L
Liu Bo 已提交
3424 3425
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3426
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3427 3428 3429 3430
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3441
								increment;
3442 3443 3444 3445 3446 3447 3448 3449
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3450 3451 3452 3453
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3454 3455 3456 3457 3458
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3459
				if (physical >= physical_end) {
L
Liu Bo 已提交
3460 3461 3462 3463
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3464 3465 3466
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3467
		btrfs_release_path(path);
3468
skip:
A
Arne Jansen 已提交
3469 3470
		logical += increment;
		physical += map->stripe_len;
3471
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3472 3473 3474 3475 3476
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3477
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3478 3479
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3480
	}
3481
out:
A
Arne Jansen 已提交
3482
	/* push queued extents */
3483
	scrub_submit(sctx);
3484 3485 3486
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3487

3488
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3489
	btrfs_free_path(path);
3490
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3491 3492 3493
	return ret < 0 ? ret : 0;
}

3494
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3495 3496 3497
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3498
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3499 3500
{
	struct btrfs_mapping_tree *map_tree =
3501
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3502 3503 3504
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3505
	int ret = 0;
A
Arne Jansen 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3522
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3523
		    map->stripes[i].physical == dev_offset) {
3524
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3525 3526
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3538
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3539 3540
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3541 3542 3543
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3544
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3545 3546 3547 3548 3549
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
3550
	int ret = 0;
A
Arne Jansen 已提交
3551 3552 3553 3554 3555
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3556
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3566
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3567 3568 3569 3570 3571 3572
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3573 3574 3575 3576 3577
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3578 3579 3580 3581
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3582
					break;
3583 3584 3585
				}
			} else {
				ret = 0;
3586 3587
			}
		}
A
Arne Jansen 已提交
3588 3589 3590 3591 3592 3593

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3594
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3595 3596
			break;

3597
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3609 3610
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3621 3622 3623 3624 3625 3626

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
		scrub_pause_off(fs_info);
		if (ret) {
			btrfs_put_block_group(cache);
			break;
		}

3643 3644 3645
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3646
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3668 3669

		scrub_pause_on(fs_info);
3670 3671 3672 3673 3674 3675

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3676 3677
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3678 3679
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3680
		scrub_pause_off(fs_info);
3681

3682 3683
		btrfs_dec_block_group_ro(root, cache);

A
Arne Jansen 已提交
3684 3685 3686
		btrfs_put_block_group(cache);
		if (ret)
			break;
3687 3688
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3689 3690 3691 3692 3693 3694 3695
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3696

3697 3698
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3699
skip:
A
Arne Jansen 已提交
3700
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3701
		btrfs_release_path(path);
A
Arne Jansen 已提交
3702 3703 3704
	}

	btrfs_free_path(path);
3705

3706
	return ret;
A
Arne Jansen 已提交
3707 3708
}

3709 3710
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3711 3712 3713 3714 3715
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3716
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3717

3718
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3719 3720
		return -EIO;

3721 3722 3723 3724 3725
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3726 3727 3728

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3729 3730
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3731 3732
			break;

3733
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3734
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3735
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3736 3737 3738
		if (ret)
			return ret;
	}
3739
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3740 3741 3742 3743 3744 3745 3746

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3747 3748
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3749
{
3750
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3751
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3752

A
Arne Jansen 已提交
3753
	if (fs_info->scrub_workers_refcnt == 0) {
3754
		if (is_dev_replace)
3755 3756 3757
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3758
		else
3759 3760 3761
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
3762 3763 3764
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3765 3766 3767
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
3768 3769 3770
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3771 3772
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3773 3774
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3775 3776 3777
		fs_info->scrub_parity_workers =
			btrfs_alloc_workqueue("btrfs-scrubparity", flags,
					      max_active, 2);
3778 3779
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3780
	}
A
Arne Jansen 已提交
3781
	++fs_info->scrub_workers_refcnt;
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3792 3793
}

3794
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3795
{
3796
	if (--fs_info->scrub_workers_refcnt == 0) {
3797 3798 3799
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3800
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3801
	}
A
Arne Jansen 已提交
3802 3803 3804
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3805 3806
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3807
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3808
{
3809
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3810 3811
	int ret;
	struct btrfs_device *dev;
3812
	struct rcu_string *name;
A
Arne Jansen 已提交
3813

3814
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3815 3816
		return -EINVAL;

3817
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3818 3819 3820 3821 3822
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3823 3824
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3825
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3826 3827 3828
		return -EINVAL;
	}

3829
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3830
		/* not supported for data w/o checksums */
3831 3832 3833
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3834
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3835 3836 3837
		return -EINVAL;
	}

3838 3839 3840 3841 3842 3843 3844 3845
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3846 3847
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3848 3849 3850 3851 3852 3853 3854
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3855

3856 3857
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3858
	if (!dev || (dev->missing && !is_dev_replace)) {
3859
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3860 3861 3862
		return -ENODEV;
	}

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3873
	mutex_lock(&fs_info->scrub_lock);
3874
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3875
		mutex_unlock(&fs_info->scrub_lock);
3876 3877
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3878 3879
	}

3880 3881 3882 3883 3884
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3885
		mutex_unlock(&fs_info->scrub_lock);
3886
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3887 3888
		return -EINPROGRESS;
	}
3889
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3890 3891 3892 3893 3894 3895 3896 3897

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3898
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3899
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3900
		mutex_unlock(&fs_info->scrub_lock);
3901 3902
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3903
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3904
	}
3905 3906
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3907
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3908

3909 3910 3911 3912
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3913
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3914 3915 3916
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3917
	if (!is_dev_replace) {
3918 3919 3920 3921
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3922
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3923
		ret = scrub_supers(sctx, dev);
3924
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925
	}
A
Arne Jansen 已提交
3926 3927

	if (!ret)
3928 3929
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3930

3931
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3932 3933 3934
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3935
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3936

A
Arne Jansen 已提交
3937
	if (progress)
3938
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3939 3940 3941

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3942
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3943 3944
	mutex_unlock(&fs_info->scrub_lock);

3945
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3946 3947 3948 3949

	return ret;
}

3950
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3967
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3968 3969 3970 3971 3972 3973 3974
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3975
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3996 3997
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3998
{
3999
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4000 4001

	mutex_lock(&fs_info->scrub_lock);
4002 4003
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4004 4005 4006
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4007
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4018

A
Arne Jansen 已提交
4019 4020 4021 4022
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4023
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4024 4025

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4026
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4027
	if (dev)
4028 4029 4030
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4031 4032
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

4033
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4034
}
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4051
		btrfs_put_bbio(bbio);
4052 4053 4054 4055 4056 4057
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4058
	btrfs_put_bbio(bbio);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4111 4112
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4113
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4114 4115
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4116 4117 4118 4119

	return 0;
}

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4172
					  record_inode_for_nocow, nocow_ctx);
4173
	if (ret != 0 && ret != -ENOENT) {
4174 4175
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4176 4177
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4178 4179 4180 4181
		not_written = 1;
		goto out;
	}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4200
out:
4201 4202 4203 4204 4205 4206 4207 4208
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4265 4266
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4267
{
4268
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4269
	struct btrfs_key key;
4270 4271
	struct inode *inode;
	struct page *page;
4272
	struct btrfs_root *local_root;
4273
	struct extent_io_tree *io_tree;
4274
	u64 physical_for_dev_replace;
4275
	u64 nocow_ctx_logical;
4276
	u64 len = nocow_ctx->len;
4277
	unsigned long index;
4278
	int srcu_index;
4279 4280
	int ret = 0;
	int err = 0;
4281 4282 4283 4284

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4285 4286 4287

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4288
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4289 4290
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4291
		return PTR_ERR(local_root);
4292
	}
4293 4294 4295 4296 4297

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4298
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4299 4300 4301
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4302 4303 4304 4305
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4306
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4307
	io_tree = &BTRFS_I(inode)->io_tree;
4308
	nocow_ctx_logical = nocow_ctx->logical;
4309

4310 4311 4312 4313
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4314 4315
	}

4316 4317
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4318
again:
4319 4320
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4321
			btrfs_err(fs_info, "find_or_create_page() failed");
4322
			ret = -ENOMEM;
4323
			goto out;
4324 4325 4326 4327 4328 4329 4330
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4331
			err = extent_read_full_page(io_tree, page,
4332 4333
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4334 4335
			if (err) {
				ret = err;
4336 4337
				goto next_page;
			}
4338

4339
			lock_page(page);
4340 4341 4342 4343 4344 4345 4346
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4347
				unlock_page(page);
4348 4349 4350
				page_cache_release(page);
				goto again;
			}
4351 4352 4353 4354 4355
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4356 4357 4358 4359 4360 4361 4362 4363

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4364 4365 4366 4367
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4368
next_page:
4369 4370 4371 4372 4373 4374
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4375 4376
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4377
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4378 4379
		len -= PAGE_CACHE_SIZE;
	}
4380
	ret = COPY_COMPLETE;
4381
out:
4382
	mutex_unlock(&inode->i_mutex);
4383
	iput(inode);
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4399
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4400 4401
		return -EIO;
	}
4402
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4403 4404 4405 4406 4407 4408
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4409 4410
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4411 4412 4413 4414 4415 4416 4417 4418 4419
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4420
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4421 4422 4423 4424 4425
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}