scrub.c 114.6 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	atomic_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204 205

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250 251 252
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
253
				u16 csum_size, int retry_failed_mirror);
254 255 256 257 258 259
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
260
					     struct scrub_block *sblock_good);
261 262 263
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
264 265 266
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
267 268 269 270 271
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
272 273
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
274 275
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
276 277
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
278
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
279
		       u64 physical, struct btrfs_device *dev, u64 flags,
280 281
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
282
static void scrub_bio_end_io(struct bio *bio);
283 284
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
285 286 287 288 289 290 291 292 293 294 295 296 297 298
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
299
static void scrub_wr_bio_end_io(struct bio *bio);
300 301 302 303
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
304
				      struct scrub_copy_nocow_ctx *ctx);
305 306 307
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
308
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
310
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
311 312


313 314
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
315
	atomic_inc(&sctx->refs);
316 317 318 319 320 321 322
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
323
	scrub_put_ctx(sctx);
324 325
}

326
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
327 328 329 330 331 332 333 334 335
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

336
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
337 338 339
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
340
}
341

342 343
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
344 345 346 347 348 349 350 351
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

352 353 354 355 356 357
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

358 359 360 361 362 363 364 365
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

366
	atomic_inc(&sctx->refs);
367 368 369 370 371 372 373 374 375 376 377 378 379
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
380 381 382 383 384 385 386 387 388 389

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
409
	scrub_put_ctx(sctx);
410 411
}

412
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
413
{
414
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
415
		struct btrfs_ordered_sum *sum;
416
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
417 418 419 420 421 422
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

423
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
424 425 426
{
	int i;

427
	if (!sctx)
A
Arne Jansen 已提交
428 429
		return;

430 431
	scrub_free_wr_ctx(&sctx->wr_ctx);

432
	/* this can happen when scrub is cancelled */
433 434
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
435 436

		for (i = 0; i < sbio->page_count; i++) {
437
			WARN_ON(!sbio->pagev[i]->page);
438 439 440 441 442
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

443
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
444
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
445 446 447 448 449 450

		if (!sbio)
			break;
		kfree(sbio);
	}

451 452
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
453 454
}

455 456 457 458 459 460
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
461
static noinline_for_stack
462
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
463
{
464
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
465 466
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
467
	int ret;
A
Arne Jansen 已提交
468

469 470
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
471
		goto nomem;
472
	atomic_set(&sctx->refs, 1);
473
	sctx->is_dev_replace = is_dev_replace;
474
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
475
	sctx->curr = -1;
476
	sctx->dev_root = dev->dev_root;
477
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
478 479 480 481 482
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
483
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
484 485

		sbio->index = i;
486
		sbio->sctx = sctx;
487
		sbio->page_count = 0;
488 489
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
490

491
		if (i != SCRUB_BIOS_PER_SCTX - 1)
492
			sctx->bios[i]->next_free = i + 1;
493
		else
494 495 496 497 498
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
499 500
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
501 502 503 504 505 506 507
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
508 509 510 511 512 513 514

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
515
	return sctx;
A
Arne Jansen 已提交
516 517

nomem:
518
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
519 520 521
	return ERR_PTR(-ENOMEM);
}

522 523
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
524 525 526 527 528 529 530
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
531
	struct scrub_warning *swarn = warn_ctx;
532 533 534 535
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
536
	struct btrfs_key key;
537 538 539 540 541 542 543 544 545 546

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

547 548 549
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
550 551 552 553 554
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
555 556 557 558 559 560 561 562 563 564 565 566 567
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
568 569 570 571 572
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
573 574 575 576 577 578 579 580 581 582
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
583
		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
584
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
585
			"length %llu, links %u (path: %s)", swarn->errstr,
586
			swarn->logical, rcu_str_deref(swarn->dev->name),
587 588
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
589
			(char *)(unsigned long)ipath->fspath->val[i]);
590 591 592 593 594

	free_ipath(ipath);
	return 0;

err:
595
	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
596
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
597
		"resolving failed with ret=%d", swarn->errstr,
598
		swarn->logical, rcu_str_deref(swarn->dev->name),
599 600 601 602 603 604
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

605
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
606
{
607 608
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
609 610 611 612 613
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
614 615 616
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
617
	u64 ref_root;
618
	u32 item_size;
619
	u8 ref_level;
620
	int ret;
621

622
	WARN_ON(sblock->page_count < 1);
623
	dev = sblock->pagev[0]->dev;
624 625
	fs_info = sblock->sctx->dev_root->fs_info;

626
	path = btrfs_alloc_path();
627 628
	if (!path)
		return;
629

630 631
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
632
	swarn.errstr = errstr;
633
	swarn.dev = NULL;
634

635 636
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
637 638 639
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
640
	extent_item_pos = swarn.logical - found_key.objectid;
641 642 643 644 645 646
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

647
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
648
		do {
649 650 651
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
652 653
			btrfs_warn_in_rcu(fs_info,
				"%s at logical %llu on dev %s, "
654
				"sector %llu: metadata %s (level %d) in tree "
655
				"%llu", errstr, swarn.logical,
656
				rcu_str_deref(dev->name),
657 658 659 660 661
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
662
		btrfs_release_path(path);
663
	} else {
664
		btrfs_release_path(path);
665
		swarn.path = path;
666
		swarn.dev = dev;
667 668
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
669 670 671 672 673 674 675
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

676
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
677
{
678
	struct page *page = NULL;
679
	unsigned long index;
680
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
681
	int ret;
682
	int corrected = 0;
683
	struct btrfs_key key;
684
	struct inode *inode = NULL;
685
	struct btrfs_fs_info *fs_info;
686 687
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
688
	int srcu_index;
689 690 691 692

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
693 694 695 696 697 698 699

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
700
		return PTR_ERR(local_root);
701
	}
702 703 704 705

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
706 707
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
708 709 710 711 712 713
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
740
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
741
					fixup->logical, page,
742
					offset - page_offset(page),
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
777 778

	iput(inode);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
798
	struct scrub_ctx *sctx;
799 800 801 802 803
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
804
	sctx = fixup->sctx;
805 806 807

	path = btrfs_alloc_path();
	if (!path) {
808 809 810
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

839 840 841
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
842 843 844 845 846

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
847 848 849
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
850 851 852
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
853 854
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
855
			fixup->logical, rcu_str_deref(fixup->dev->name));
856 857 858 859 860
	}

	btrfs_free_path(path);
	kfree(fixup);

861
	scrub_pending_trans_workers_dec(sctx);
862 863
}

864 865 866 867 868 869 870 871
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
872
		btrfs_put_bbio(recover->bbio);
873 874 875 876
		kfree(recover);
	}
}

A
Arne Jansen 已提交
877
/*
878 879 880 881 882 883
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
884
 */
885
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
886
{
887
	struct scrub_ctx *sctx = sblock_to_check->sctx;
888
	struct btrfs_device *dev;
889 890 891 892 893 894 895 896 897 898 899 900 901 902
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
903
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
904 905 906
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
907
	fs_info = sctx->dev_root->fs_info;
908 909 910 911 912 913 914 915 916 917 918
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
919
	length = sblock_to_check->page_count * PAGE_SIZE;
920 921 922 923 924
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
925
			BTRFS_EXTENT_FLAG_DATA);
926 927 928
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
929

930 931 932 933 934
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

964 965
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
966
	if (!sblocks_for_recheck) {
967 968 969 970 971
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
972
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
973
		goto out;
A
Arne Jansen 已提交
974 975
	}

976
	/* setup the context, map the logical blocks and alloc the pages */
977
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
978
	if (ret) {
979 980 981 982
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
983
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
984 985 986 987
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
988

989
	/* build and submit the bios for the failed mirror, check checksums */
990
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
991
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
992

993 994 995 996 997 998 999 1000 1001 1002
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1003 1004
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1005
		sblock_to_check->data_corrected = 1;
1006
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1007

1008 1009
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1010
		goto out;
A
Arne Jansen 已提交
1011 1012
	}

1013
	if (!sblock_bad->no_io_error_seen) {
1014 1015 1016
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1017 1018
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1019
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1020
	} else if (sblock_bad->checksum_error) {
1021 1022 1023
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1024 1025
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1026
		btrfs_dev_stat_inc_and_print(dev,
1027
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1028
	} else if (sblock_bad->header_error) {
1029 1030 1031
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1032 1033 1034
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1035
		if (sblock_bad->generation_error)
1036
			btrfs_dev_stat_inc_and_print(dev,
1037 1038
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1039
			btrfs_dev_stat_inc_and_print(dev,
1040
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1041
	}
A
Arne Jansen 已提交
1042

1043 1044 1045 1046
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1047

1048 1049
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1050

1051 1052
		WARN_ON(sctx->is_dev_replace);

1053 1054
nodatasum_case:

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1065
		fixup_nodatasum->sctx = sctx;
1066
		fixup_nodatasum->dev = dev;
1067 1068 1069
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1070
		scrub_pending_trans_workers_inc(sctx);
1071 1072
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1073 1074
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1075
		goto out;
A
Arne Jansen 已提交
1076 1077
	}

1078 1079
	/*
	 * now build and submit the bios for the other mirrors, check
1080 1081
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1097
		struct scrub_block *sblock_other;
1098

1099 1100 1101 1102 1103
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1104 1105
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1106
				    sctx->csum_size, 0);
1107 1108

		if (!sblock_other->header_error &&
1109 1110
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1111 1112
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1113
				goto corrected_error;
1114 1115
			} else {
				ret = scrub_repair_block_from_good_copy(
1116 1117 1118
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1119
			}
1120 1121
		}
	}
A
Arne Jansen 已提交
1122

1123 1124
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1125 1126 1127

	/*
	 * In case of I/O errors in the area that is supposed to be
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1149
	 */
1150
	success = 1;
1151 1152
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1153
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1154
		struct scrub_block *sblock_other = NULL;
1155

1156 1157
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1158
			continue;
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1171 1172
				}
			}
1173 1174
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1175
		}
A
Arne Jansen 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1204
		}
A
Arne Jansen 已提交
1205 1206
	}

1207
	if (success && !sctx->is_dev_replace) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1218 1219
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1220
					    generation, sctx->csum_size, 1);
1221
			if (!sblock_bad->header_error &&
1222 1223 1224 1225 1226 1227 1228
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1229 1230
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1231
			sblock_to_check->data_corrected = 1;
1232
			spin_unlock(&sctx->stat_lock);
1233 1234
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1235
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1236
		}
1237 1238
	} else {
did_not_correct_error:
1239 1240 1241
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1242 1243
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1244
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1245
	}
A
Arne Jansen 已提交
1246

1247 1248 1249 1250 1251 1252
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1253
			struct scrub_recover *recover;
1254 1255
			int page_index;

1256 1257 1258
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1259 1260 1261 1262 1263 1264
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1265 1266
				scrub_page_put(sblock->pagev[page_index]);
			}
1267 1268 1269
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1270

1271 1272
	return 0;
}
A
Arne Jansen 已提交
1273

1274
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1275
{
Z
Zhao Lei 已提交
1276 1277 1278 1279 1280
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1281 1282 1283
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1284 1285
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1286 1287 1288 1289 1290 1291 1292
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1293
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1314
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1315 1316
				     struct scrub_block *sblocks_for_recheck)
{
1317 1318 1319 1320
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1321 1322 1323 1324 1325 1326
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1327
	int page_index = 0;
1328
	int mirror_index;
1329
	int nmirrors;
1330 1331 1332
	int ret;

	/*
1333
	 * note: the two members refs and outstanding_pages
1334 1335 1336 1337 1338
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1339 1340 1341
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1342

1343 1344 1345 1346
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1347
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1348
				       &mapped_length, &bbio, 0, 1);
1349
		if (ret || !bbio || mapped_length < sublen) {
1350
			btrfs_put_bbio(bbio);
1351 1352
			return -EIO;
		}
A
Arne Jansen 已提交
1353

1354 1355
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1356
			btrfs_put_bbio(bbio);
1357 1358 1359 1360 1361 1362 1363
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1364
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1365

1366
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1367

1368
		for (mirror_index = 0; mirror_index < nmirrors;
1369 1370 1371 1372 1373
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1374 1375 1376 1377
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1378 1379 1380
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1381
				scrub_put_recover(recover);
1382 1383
				return -ENOMEM;
			}
1384 1385 1386
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1387

Z
Zhao Lei 已提交
1388 1389 1390
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1391
						      mapped_length,
1392 1393
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1394 1395 1396 1397 1398 1399 1400
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1401 1402 1403 1404
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1405 1406
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1407
			sblock->page_count++;
1408 1409 1410
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1411 1412 1413

			scrub_get_recover(recover);
			page->recover = recover;
1414
		}
1415
		scrub_put_recover(recover);
1416 1417 1418 1419 1420 1421
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1422 1423
}

1424 1425 1426 1427 1428
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1429
static void scrub_bio_wait_endio(struct bio *bio)
1430 1431 1432
{
	struct scrub_bio_ret *ret = bio->bi_private;

1433
	ret->error = bio->bi_error;
1434 1435 1436 1437 1438
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1439
	return page->recover &&
1440
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1458
				    page->mirror_num, 0);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1469 1470 1471 1472 1473 1474 1475
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1476 1477 1478
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1479
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1480
{
1481
	int page_num;
I
Ilya Dryomov 已提交
1482

1483 1484 1485
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1486

1487 1488
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1489
		struct scrub_page *page = sblock->pagev[page_num];
1490

1491
		if (page->dev->bdev == NULL) {
1492 1493 1494 1495 1496
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1497
		WARN_ON(!page->page);
1498
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1499 1500 1501 1502 1503
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1504
		bio->bi_bdev = page->dev->bdev;
1505

1506
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1507 1508 1509 1510 1511 1512 1513 1514 1515
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1516

1517 1518
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1519

1520 1521 1522 1523 1524
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1525
	return;
A
Arne Jansen 已提交
1526 1527
}

M
Miao Xie 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1538 1539 1540 1541 1542
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1543
{
1544 1545 1546 1547 1548
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1549
	WARN_ON(!sblock->pagev[0]->page);
1550 1551 1552
	if (is_metadata) {
		struct btrfs_header *h;

1553
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1554 1555
		h = (struct btrfs_header *)mapped_buffer;

1556
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1557
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1558
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1559
			   BTRFS_UUID_SIZE)) {
1560
			sblock->header_error = 1;
1561
		} else if (generation != btrfs_stack_header_generation(h)) {
1562 1563 1564
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1565 1566 1567 1568
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1569

1570
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1571
	}
A
Arne Jansen 已提交
1572

1573 1574
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1575
			crc = btrfs_csum_data(
1576 1577 1578
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1579
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1580

1581
		kunmap_atomic(mapped_buffer);
1582 1583 1584
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1585
		WARN_ON(!sblock->pagev[page_num]->page);
1586

1587
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1588 1589 1590 1591 1592
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1593 1594
}

1595
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1596
					     struct scrub_block *sblock_good)
1597 1598 1599
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1600

1601 1602
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1603

1604 1605
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1606
							   page_num, 1);
1607 1608
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1609
	}
1610 1611 1612 1613 1614 1615 1616 1617

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1618 1619
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1620

1621 1622
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1623 1624 1625 1626 1627
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1628
		if (!page_bad->dev->bdev) {
1629
			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1630
				"scrub_repair_page_from_good_copy(bdev == NULL) "
1631
				"is unexpected");
1632 1633 1634
			return -EIO;
		}

1635
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1636 1637
		if (!bio)
			return -EIO;
1638
		bio->bi_bdev = page_bad->dev->bdev;
1639
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1640 1641 1642 1643 1644

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1645
		}
1646

1647
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1648 1649
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1650 1651 1652
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1653 1654 1655
			bio_put(bio);
			return -EIO;
		}
1656
		bio_put(bio);
A
Arne Jansen 已提交
1657 1658
	}

1659 1660 1661
	return 0;
}

1662 1663 1664 1665
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1666 1667 1668 1669 1670 1671 1672
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1728
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1739
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

1790
static void scrub_wr_bio_end_io(struct bio *bio)
1791 1792 1793 1794
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

1795
	sbio->err = bio->bi_error;
1796 1797
	sbio->bio = bio;

1798 1799
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1800
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1832 1833 1834 1835
{
	u64 flags;
	int ret;

1836 1837
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1849 1850

	return ret;
A
Arne Jansen 已提交
1851 1852
}

1853
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1854
{
1855
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1856
	u8 csum[BTRFS_CSUM_SIZE];
1857 1858 1859
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1860 1861
	u32 crc = ~(u32)0;
	int fail = 0;
1862 1863
	u64 len;
	int index;
A
Arne Jansen 已提交
1864

1865
	BUG_ON(sblock->page_count < 1);
1866
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1867 1868
		return 0;

1869 1870
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1871
	buffer = kmap_atomic(page);
1872

1873
	len = sctx->sectorsize;
1874 1875 1876 1877
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1878
		crc = btrfs_csum_data(buffer, crc, l);
1879
		kunmap_atomic(buffer);
1880 1881 1882 1883 1884
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1885 1886
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1887
		buffer = kmap_atomic(page);
1888 1889
	}

A
Arne Jansen 已提交
1890
	btrfs_csum_final(crc, csum);
1891
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1892 1893 1894 1895 1896
		fail = 1;

	return fail;
}

1897
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1898
{
1899
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1900
	struct btrfs_header *h;
1901
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1902
	struct btrfs_fs_info *fs_info = root->fs_info;
1903 1904 1905 1906 1907 1908
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1909 1910 1911
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1912 1913 1914 1915
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1916
	page = sblock->pagev[0]->page;
1917
	mapped_buffer = kmap_atomic(page);
1918
	h = (struct btrfs_header *)mapped_buffer;
1919
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1920 1921 1922 1923 1924 1925 1926

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1927
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1928 1929
		++fail;

1930
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1931 1932
		++fail;

M
Miao Xie 已提交
1933
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1934 1935 1936 1937 1938 1939
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1940
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1941 1942 1943 1944 1945 1946
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1947
		crc = btrfs_csum_data(p, crc, l);
1948
		kunmap_atomic(mapped_buffer);
1949 1950 1951 1952 1953
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1954 1955
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1956
		mapped_buffer = kmap_atomic(page);
1957 1958 1959 1960 1961
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1962
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1963 1964 1965 1966 1967
		++crc_fail;

	return fail || crc_fail;
}

1968
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1969 1970
{
	struct btrfs_super_block *s;
1971
	struct scrub_ctx *sctx = sblock->sctx;
1972 1973 1974 1975 1976 1977
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1978
	u32 crc = ~(u32)0;
1979 1980
	int fail_gen = 0;
	int fail_cor = 0;
1981 1982
	u64 len;
	int index;
A
Arne Jansen 已提交
1983

1984
	BUG_ON(sblock->page_count < 1);
1985
	page = sblock->pagev[0]->page;
1986
	mapped_buffer = kmap_atomic(page);
1987
	s = (struct btrfs_super_block *)mapped_buffer;
1988
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1989

1990
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1991
		++fail_cor;
A
Arne Jansen 已提交
1992

1993
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1994
		++fail_gen;
A
Arne Jansen 已提交
1995

M
Miao Xie 已提交
1996
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1997
		++fail_cor;
A
Arne Jansen 已提交
1998

1999 2000 2001 2002 2003 2004 2005
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2006
		crc = btrfs_csum_data(p, crc, l);
2007
		kunmap_atomic(mapped_buffer);
2008 2009 2010 2011 2012
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2013 2014
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2015
		mapped_buffer = kmap_atomic(page);
2016 2017 2018 2019 2020
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2021
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2022
		++fail_cor;
A
Arne Jansen 已提交
2023

2024
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2025 2026 2027 2028 2029
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2030 2031 2032
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2033
		if (fail_cor)
2034
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2035 2036
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2037
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2038
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2039 2040
	}

2041
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2042 2043
}

2044 2045
static void scrub_block_get(struct scrub_block *sblock)
{
2046
	atomic_inc(&sblock->refs);
2047 2048 2049 2050
}

static void scrub_block_put(struct scrub_block *sblock)
{
2051
	if (atomic_dec_and_test(&sblock->refs)) {
2052 2053
		int i;

2054 2055 2056
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2057
		for (i = 0; i < sblock->page_count; i++)
2058
			scrub_page_put(sblock->pagev[i]);
2059 2060 2061 2062
		kfree(sblock);
	}
}

2063 2064
static void scrub_page_get(struct scrub_page *spage)
{
2065
	atomic_inc(&spage->refs);
2066 2067 2068 2069
}

static void scrub_page_put(struct scrub_page *spage)
{
2070
	if (atomic_dec_and_test(&spage->refs)) {
2071 2072 2073 2074 2075 2076
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2077
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2078 2079 2080
{
	struct scrub_bio *sbio;

2081
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2082
		return;
A
Arne Jansen 已提交
2083

2084 2085
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2086
	scrub_pending_bio_inc(sctx);
2087
	btrfsic_submit_bio(READ, sbio->bio);
A
Arne Jansen 已提交
2088 2089
}

2090 2091
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2092
{
2093
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2094
	struct scrub_bio *sbio;
2095
	int ret;
A
Arne Jansen 已提交
2096 2097 2098 2099 2100

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2101 2102 2103 2104 2105 2106 2107 2108
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2109
		} else {
2110 2111
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2112 2113
		}
	}
2114
	sbio = sctx->bios[sctx->curr];
2115
	if (sbio->page_count == 0) {
2116 2117
		struct bio *bio;

2118 2119
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2120
		sbio->dev = spage->dev;
2121 2122
		bio = sbio->bio;
		if (!bio) {
2123
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2124 2125 2126 2127
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2128 2129 2130

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2131
		bio->bi_bdev = sbio->dev->bdev;
2132
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2133
		sbio->err = 0;
2134 2135 2136
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2137 2138
		   spage->logical ||
		   sbio->dev != spage->dev) {
2139
		scrub_submit(sctx);
A
Arne Jansen 已提交
2140 2141
		goto again;
	}
2142

2143 2144 2145 2146 2147 2148 2149 2150
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2151
		scrub_submit(sctx);
2152 2153 2154
		goto again;
	}

2155
	scrub_block_get(sblock); /* one for the page added to the bio */
2156 2157
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2158
	if (sbio->page_count == sctx->pages_per_rd_bio)
2159
		scrub_submit(sctx);
2160 2161 2162 2163

	return 0;
}

2164
static void scrub_missing_raid56_end_io(struct bio *bio)
2165 2166 2167 2168
{
	struct scrub_block *sblock = bio->bi_private;
	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;

2169
	if (bio->bi_error)
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		sblock->no_io_error_seen = 0;

	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	u64 generation;
	u64 logical;
	struct btrfs_device *dev;

	is_metadata = !(sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA);
	have_csum = sblock->pagev[0]->have_csum;
	csum = sblock->pagev[0]->csum;
	generation = sblock->pagev[0]->generation;
	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

	if (sblock->no_io_error_seen) {
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     sctx->csum_size);
	}

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2204 2205
		btrfs_err_rl_in_rcu(fs_info,
			"IO error rebuilding logical %llu for dev %s",
2206 2207 2208 2209 2210
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2211 2212
		btrfs_err_rl_in_rcu(fs_info,
			"failed to rebuild valid logical %llu for dev %s",
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
	struct btrfs_bio *bbio;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
			       &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2292
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2293
		       u64 physical, struct btrfs_device *dev, u64 flags,
2294 2295
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2296 2297 2298 2299 2300 2301
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2302 2303 2304
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2305
		return -ENOMEM;
A
Arne Jansen 已提交
2306
	}
2307

2308 2309
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2310
	atomic_set(&sblock->refs, 1);
2311
	sblock->sctx = sctx;
2312 2313 2314
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2315
		struct scrub_page *spage;
2316 2317
		u64 l = min_t(u64, len, PAGE_SIZE);

2318 2319 2320
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2321 2322 2323
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2324
			scrub_block_put(sblock);
2325 2326
			return -ENOMEM;
		}
2327 2328 2329
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2330
		spage->sblock = sblock;
2331
		spage->dev = dev;
2332 2333 2334 2335
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2336
		spage->physical_for_dev_replace = physical_for_dev_replace;
2337 2338 2339
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2340
			memcpy(spage->csum, csum, sctx->csum_size);
2341 2342 2343 2344
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2345 2346 2347
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2348 2349 2350
		len -= l;
		logical += l;
		physical += l;
2351
		physical_for_dev_replace += l;
2352 2353
	}

2354
	WARN_ON(sblock->page_count == 0);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2365

2366 2367 2368 2369 2370
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2371
		}
A
Arne Jansen 已提交
2372

2373 2374 2375
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2376

2377 2378
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2379 2380 2381
	return 0;
}

2382
static void scrub_bio_end_io(struct bio *bio)
2383 2384
{
	struct scrub_bio *sbio = bio->bi_private;
2385
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2386

2387
	sbio->err = bio->bi_error;
2388 2389
	sbio->bio = bio;

2390
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2391 2392 2393 2394 2395
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2396
	struct scrub_ctx *sctx = sbio->sctx;
2397 2398
	int i;

2399
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2421 2422 2423 2424
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2425 2426 2427 2428 2429 2430 2431 2432

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2433
	scrub_pending_bio_dec(sctx);
2434 2435
}

2436 2437 2438 2439
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2440
	u32 offset;
2441 2442 2443 2444 2445 2446 2447 2448 2449
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2450
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2475 2476
static void scrub_block_complete(struct scrub_block *sblock)
{
2477 2478
	int corrupted = 0;

2479
	if (!sblock->no_io_error_seen) {
2480
		corrupted = 1;
2481
		scrub_handle_errored_block(sblock);
2482 2483 2484 2485 2486 2487
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2488 2489
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2490 2491
			scrub_write_block_to_dev_replace(sblock);
	}
2492 2493 2494 2495 2496 2497 2498 2499 2500

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2501 2502
}

2503
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2504 2505 2506
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2507
	unsigned long index;
A
Arne Jansen 已提交
2508 2509
	unsigned long num_sectors;

2510 2511
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2512 2513 2514 2515 2516 2517
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2518
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2519 2520 2521 2522 2523 2524 2525
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2526
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2527
	num_sectors = sum->len / sctx->sectorsize;
2528 2529
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2530 2531 2532
		list_del(&sum->list);
		kfree(sum);
	}
2533
	return 1;
A
Arne Jansen 已提交
2534 2535 2536
}

/* scrub extent tries to collect up to 64 kB for each bio */
2537
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2538
			u64 physical, struct btrfs_device *dev, u64 flags,
2539
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2540 2541 2542
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2543 2544 2545
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2546 2547 2548 2549 2550
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2551
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2552 2553 2554 2555 2556
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2557
	} else {
2558
		blocksize = sctx->sectorsize;
2559
		WARN_ON(1);
2560
	}
A
Arne Jansen 已提交
2561 2562

	while (len) {
2563
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2564 2565 2566 2567
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2568
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2569
			if (have_csum == 0)
2570
				++sctx->stat.no_csum;
2571 2572 2573 2574 2575 2576
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2577
		}
2578
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2579 2580 2581
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2582 2583 2584 2585 2586
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2587
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2588 2589 2590 2591
	}
	return 0;
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2611
	atomic_set(&sblock->refs, 1);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2686 2687 2688 2689 2690
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2715
skip:
2716 2717 2718 2719 2720 2721 2722
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2723 2724 2725 2726 2727 2728 2729 2730
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2731 2732
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2733 2734 2735 2736 2737
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2738 2739
	u32 stripe_index;
	u32 rot;
2740 2741 2742

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2743 2744 2745
	if (stripe_start)
		*stripe_start = last_offset;

2746 2747 2748 2749
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2750 2751
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2752 2753

		/* Work out the disk rotation on this stripe-set */
2754
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2755 2756
		/* calculate which stripe this data locates */
		rot += i;
2757
		stripe_index = rot % map->num_stripes;
2758 2759 2760 2761 2762 2763 2764 2765 2766
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2799
static void scrub_parity_bio_endio(struct bio *bio)
2800 2801 2802
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;

2803
	if (bio->bi_error)
2804 2805 2806 2807
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2808 2809 2810 2811 2812

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
			 &sparity->work);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2829
	length = sparity->logic_end - sparity->logic_start;
2830
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2831
			       sparity->logic_start,
2832 2833
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2845
					      length, sparity->scrub_dev,
2846 2847 2848 2849 2850 2851
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2852
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2853 2854 2855 2856 2857 2858 2859 2860

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2861
	btrfs_put_bbio(bbio);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2878
	atomic_inc(&sparity->refs);
2879 2880 2881 2882
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2883
	if (!atomic_dec_and_test(&sparity->refs))
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2900
	struct btrfs_bio *bbio = NULL;
2901 2902 2903 2904 2905 2906 2907 2908 2909
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2910
	u64 mapped_length;
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2935
	atomic_set(&sparity->refs, 1);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2984 2985 2986 2987
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2988 2989 2990 2991 2992 2993 2994 2995
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2996
			if (key.objectid >= logic_end) {
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3009 3010 3011 3012 3013 3014
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					  key.objectid, logic_start);
3015 3016 3017
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
			mapped_length = extent_len;
			ret = btrfs_map_block(fs_info, READ, extent_logical,
					      &mapped_length, &bbio, 0);
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3066 3067 3068

			scrub_free_csums(sctx);

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3100
						logic_end - logic_start);
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3111
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3112 3113
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3114 3115
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3116
{
3117
	struct btrfs_path *path, *ppath;
3118
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
3119 3120 3121
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3122
	struct blk_plug plug;
A
Arne Jansen 已提交
3123 3124 3125 3126 3127 3128 3129 3130
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3131
	u64 logic_end;
3132
	u64 physical_end;
A
Arne Jansen 已提交
3133
	u64 generation;
3134
	int mirror_num;
A
Arne Jansen 已提交
3135 3136 3137 3138
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3139 3140
	u64 increment = map->stripe_len;
	u64 offset;
3141 3142 3143
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3144 3145
	u64 stripe_logical;
	u64 stripe_end;
3146 3147
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3148
	int stop_loop = 0;
D
David Woodhouse 已提交
3149

3150
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3151
	offset = 0;
3152
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3153 3154 3155
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3156
		mirror_num = 1;
A
Arne Jansen 已提交
3157 3158 3159 3160
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3161
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3162 3163
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3164
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3165 3166
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3167
		mirror_num = num % map->num_stripes + 1;
3168
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3169
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3170 3171
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3172 3173
	} else {
		increment = map->stripe_len;
3174
		mirror_num = 1;
A
Arne Jansen 已提交
3175 3176 3177 3178 3179 3180
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3181 3182
	ppath = btrfs_alloc_path();
	if (!ppath) {
3183
		btrfs_free_path(path);
3184 3185 3186
		return -ENOMEM;
	}

3187 3188 3189 3190 3191
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3192 3193 3194
	path->search_commit_root = 1;
	path->skip_locking = 1;

3195 3196
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3197
	/*
A
Arne Jansen 已提交
3198 3199 3200
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3201 3202
	 */
	logical = base + offset;
3203
	physical_end = physical + nstripes * map->stripe_len;
3204
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3205
		get_raid56_logic_offset(physical_end, num,
3206
					map, &logic_end, NULL);
3207 3208 3209 3210
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3211
	wait_event(sctx->list_wait,
3212
		   atomic_read(&sctx->bios_in_flight) == 0);
3213
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3214 3215 3216 3217 3218

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3219
	key_end.objectid = logic_end;
3220 3221
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3222 3223 3224 3225 3226 3227 3228
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3229
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3230 3231 3232 3233 3234 3235 3236
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3237 3238 3239 3240 3241

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3242
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3243 3244 3245 3246 3247

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3248
	while (physical < physical_end) {
A
Arne Jansen 已提交
3249 3250 3251 3252
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3253
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3254 3255 3256 3257 3258 3259 3260 3261
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3262
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3263
			scrub_submit(sctx);
3264 3265 3266
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3267
			wait_event(sctx->list_wait,
3268
				   atomic_read(&sctx->bios_in_flight) == 0);
3269
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3270
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3271 3272
		}

3273 3274 3275 3276 3277 3278
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3279
				/* it is parity strip */
3280
				stripe_logical += base;
3281
				stripe_end = stripe_logical + increment;
3282 3283 3284 3285 3286 3287 3288 3289 3290
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3291 3292 3293 3294
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3295
		key.objectid = logical;
L
Liu Bo 已提交
3296
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3297 3298 3299 3300

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3301

3302
		if (ret > 0) {
3303
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3304 3305
			if (ret < 0)
				goto out;
3306 3307 3308 3309 3310 3311 3312 3313 3314
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3315 3316
		}

L
Liu Bo 已提交
3317
		stop_loop = 0;
A
Arne Jansen 已提交
3318
		while (1) {
3319 3320
			u64 bytes;

A
Arne Jansen 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3330
				stop_loop = 1;
A
Arne Jansen 已提交
3331 3332 3333 3334
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3335 3336 3337 3338
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3339
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3340
				bytes = root->nodesize;
3341 3342 3343 3344
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3345 3346
				goto next;

L
Liu Bo 已提交
3347 3348 3349 3350 3351 3352
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3353 3354 3355 3356 3357 3358

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3359 3360 3361 3362
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3363 3364 3365
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3366
				       key.objectid, logical);
3367 3368 3369
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3370 3371 3372
				goto next;
			}

L
Liu Bo 已提交
3373 3374 3375 3376
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3377 3378 3379
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3380 3381 3382
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3383
			}
L
Liu Bo 已提交
3384
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3385
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3386 3387
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3388 3389
			}

L
Liu Bo 已提交
3390
			extent_physical = extent_logical - logical + physical;
3391 3392 3393 3394 3395 3396 3397
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3398

3399 3400 3401 3402 3403
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3404 3405 3406
			if (ret)
				goto out;

3407 3408 3409
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3410
					   extent_logical - logical + physical);
3411 3412 3413

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3414 3415 3416
			if (ret)
				goto out;

L
Liu Bo 已提交
3417 3418
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3419
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3420 3421 3422 3423
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3434
								increment;
3435 3436 3437 3438 3439 3440 3441 3442
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3443 3444 3445 3446
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3447 3448 3449 3450 3451
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3452
				if (physical >= physical_end) {
L
Liu Bo 已提交
3453 3454 3455 3456
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3457 3458 3459
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3460
		btrfs_release_path(path);
3461
skip:
A
Arne Jansen 已提交
3462 3463
		logical += increment;
		physical += map->stripe_len;
3464
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3465 3466 3467 3468 3469
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3470
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3471 3472
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3473
	}
3474
out:
A
Arne Jansen 已提交
3475
	/* push queued extents */
3476
	scrub_submit(sctx);
3477 3478 3479
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3480

3481
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3482
	btrfs_free_path(path);
3483
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3484 3485 3486
	return ret < 0 ? ret : 0;
}

3487
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3488 3489
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3490
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3491 3492
{
	struct btrfs_mapping_tree *map_tree =
3493
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3494 3495 3496
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3497
	int ret = 0;
A
Arne Jansen 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3514
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3515
		    map->stripes[i].physical == dev_offset) {
3516
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3517 3518
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3530
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3531 3532
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3533 3534 3535
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3536
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3537 3538 3539
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_offset;
3540
	int ret = 0;
A
Arne Jansen 已提交
3541 3542 3543 3544 3545
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3546
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3556
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3557 3558 3559 3560 3561 3562
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3563 3564 3565 3566 3567
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3568 3569 3570 3571
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3572
					break;
3573 3574 3575
				}
			} else {
				ret = 0;
3576 3577
			}
		}
A
Arne Jansen 已提交
3578 3579 3580 3581 3582 3583

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3584
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3585 3586
			break;

3587
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3599 3600
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3601 3602 3603 3604 3605 3606 3607 3608

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3609 3610 3611 3612 3613 3614

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
		scrub_pause_off(fs_info);
		if (ret) {
			btrfs_put_block_group(cache);
			break;
		}

3631 3632 3633
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3634 3635
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
				  found_key.offset, is_dev_replace);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3655 3656

		scrub_pause_on(fs_info);
3657 3658 3659 3660 3661 3662

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3663 3664
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3665 3666
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3667
		scrub_pause_off(fs_info);
3668

3669
		btrfs_dec_block_group_ro(root, cache);
3670

A
Arne Jansen 已提交
3671 3672 3673
		btrfs_put_block_group(cache);
		if (ret)
			break;
3674 3675
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3676 3677 3678 3679 3680 3681 3682
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3683

3684 3685
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3686
skip:
A
Arne Jansen 已提交
3687
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3688
		btrfs_release_path(path);
A
Arne Jansen 已提交
3689 3690 3691
	}

	btrfs_free_path(path);
3692

3693
	return ret;
A
Arne Jansen 已提交
3694 3695
}

3696 3697
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3698 3699 3700 3701 3702
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3703
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3704

3705
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3706 3707
		return -EIO;

3708 3709 3710 3711 3712
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3713 3714 3715

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3716 3717
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3718 3719
			break;

3720
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3721
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3722
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3723 3724 3725
		if (ret)
			return ret;
	}
3726
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3727 3728 3729 3730 3731 3732 3733

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3734 3735
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3736
{
3737
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3738
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3739

A
Arne Jansen 已提交
3740
	if (fs_info->scrub_workers_refcnt == 0) {
3741
		if (is_dev_replace)
3742 3743 3744
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3745
		else
3746 3747 3748
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
3749 3750 3751
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3752 3753 3754
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
3755 3756 3757
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3758 3759
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3760 3761
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3762 3763 3764
		fs_info->scrub_parity_workers =
			btrfs_alloc_workqueue("btrfs-scrubparity", flags,
					      max_active, 2);
3765 3766
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3767
	}
A
Arne Jansen 已提交
3768
	++fs_info->scrub_workers_refcnt;
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3779 3780
}

3781
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3782
{
3783
	if (--fs_info->scrub_workers_refcnt == 0) {
3784 3785 3786
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3787
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3788
	}
A
Arne Jansen 已提交
3789 3790 3791
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3792 3793
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3794
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3795
{
3796
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3797 3798
	int ret;
	struct btrfs_device *dev;
3799
	struct rcu_string *name;
A
Arne Jansen 已提交
3800

3801
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3802 3803
		return -EINVAL;

3804
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3805 3806 3807 3808 3809
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3810 3811
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3812
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3813 3814 3815
		return -EINVAL;
	}

3816
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3817
		/* not supported for data w/o checksums */
3818 3819 3820
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3821
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3822 3823 3824
		return -EINVAL;
	}

3825 3826 3827 3828 3829 3830 3831 3832
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3833 3834
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3835 3836 3837 3838 3839 3840 3841
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3842

3843 3844
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3845
	if (!dev || (dev->missing && !is_dev_replace)) {
3846
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3847 3848 3849
		return -ENODEV;
	}

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3860
	mutex_lock(&fs_info->scrub_lock);
3861
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3862
		mutex_unlock(&fs_info->scrub_lock);
3863 3864
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3865 3866
	}

3867 3868 3869 3870 3871
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3872
		mutex_unlock(&fs_info->scrub_lock);
3873
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3874 3875
		return -EINPROGRESS;
	}
3876
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3877 3878 3879 3880 3881 3882 3883 3884

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3885
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3886
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3887
		mutex_unlock(&fs_info->scrub_lock);
3888 3889
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3890
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3891
	}
3892 3893
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3894
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3895

3896 3897 3898 3899
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3900
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3901 3902 3903
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3904
	if (!is_dev_replace) {
3905 3906 3907 3908
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3909
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3910
		ret = scrub_supers(sctx, dev);
3911
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3912
	}
A
Arne Jansen 已提交
3913 3914

	if (!ret)
3915 3916
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3917

3918
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3919 3920 3921
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3922
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3923

A
Arne Jansen 已提交
3924
	if (progress)
3925
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3926 3927 3928

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3929
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3930 3931
	mutex_unlock(&fs_info->scrub_lock);

3932
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3933 3934 3935 3936

	return ret;
}

3937
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3954
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3955 3956 3957 3958 3959 3960 3961
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3962
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3983 3984
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3985
{
3986
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3987 3988

	mutex_lock(&fs_info->scrub_lock);
3989 3990
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3991 3992 3993
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3994
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4005

A
Arne Jansen 已提交
4006 4007 4008 4009
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4010
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4011 4012

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4013
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4014
	if (dev)
4015 4016 4017
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4018 4019
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

4020
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4021
}
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4038
		btrfs_put_bbio(bbio);
4039 4040 4041 4042 4043 4044
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4045
	btrfs_put_bbio(bbio);
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
4062
	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4097 4098
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4099
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4100 4101
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4102 4103 4104 4105

	return 0;
}

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4158
					  record_inode_for_nocow, nocow_ctx);
4159
	if (ret != 0 && ret != -ENOENT) {
4160 4161
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4162 4163
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4164 4165 4166 4167
		not_written = 1;
		goto out;
	}

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4186
out:
4187 4188 4189 4190 4191 4192 4193 4194
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4251 4252
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4253
{
4254
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4255
	struct btrfs_key key;
4256 4257
	struct inode *inode;
	struct page *page;
4258
	struct btrfs_root *local_root;
4259
	struct extent_io_tree *io_tree;
4260
	u64 physical_for_dev_replace;
4261
	u64 nocow_ctx_logical;
4262
	u64 len = nocow_ctx->len;
4263
	unsigned long index;
4264
	int srcu_index;
4265 4266
	int ret = 0;
	int err = 0;
4267 4268 4269 4270

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4271 4272 4273

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4274
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4275 4276
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4277
		return PTR_ERR(local_root);
4278
	}
4279 4280 4281 4282 4283

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4284
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4285 4286 4287
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4288 4289 4290 4291
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4292
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4293
	io_tree = &BTRFS_I(inode)->io_tree;
4294
	nocow_ctx_logical = nocow_ctx->logical;
4295

4296 4297 4298 4299
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4300 4301
	}

4302 4303
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4304
again:
4305 4306
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4307
			btrfs_err(fs_info, "find_or_create_page() failed");
4308
			ret = -ENOMEM;
4309
			goto out;
4310 4311 4312 4313 4314 4315 4316
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4317
			err = extent_read_full_page(io_tree, page,
4318 4319
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4320 4321
			if (err) {
				ret = err;
4322 4323
				goto next_page;
			}
4324

4325
			lock_page(page);
4326 4327 4328 4329 4330 4331 4332
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4333
				unlock_page(page);
4334 4335 4336
				page_cache_release(page);
				goto again;
			}
4337 4338 4339 4340 4341
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4342 4343 4344 4345 4346 4347 4348 4349

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4350 4351 4352 4353
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4354
next_page:
4355 4356 4357 4358 4359 4360
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4361 4362
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4363
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4364 4365
		len -= PAGE_CACHE_SIZE;
	}
4366
	ret = COPY_COMPLETE;
4367
out:
4368
	mutex_unlock(&inode->i_mutex);
4369
	iput(inode);
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4384 4385
		btrfs_warn_rl(dev->dev_root->fs_info,
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4386 4387
		return -EIO;
	}
4388
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4389 4390 4391 4392 4393 4394
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4395 4396
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4397 4398 4399 4400 4401 4402 4403 4404 4405
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4406
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4407 4408 4409 4410 4411
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}