memory.c 19.8 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26
#include <linux/uaccess.h>
27

28 29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32 33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34 35 36 37 38 39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41 42 43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47 48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49 50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79 80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82 83 84 85

	kfree(mem);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106 107 108 109 110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115 116 117 118 119 120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121 122 123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124 125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127 128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131 132 133
	if (mem->state != MEM_ONLINE)
		goto out;

134
	for (i = 0; i < sections_per_block; i++) {
135 136
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
137
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
138 139 140
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

141
out:
142 143 144
	return sprintf(buf, "%d\n", ret);
}

145 146 147
/*
 * online, offline, going offline, etc.
 */
148 149
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
150
{
151
	struct memory_block *mem = to_memory_block(dev);
152 153 154 155 156 157 158
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
159 160 161 162 163 164 165 166 167 168 169 170 171 172
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
173 174 175 176 177
	}

	return len;
}

178
int memory_notify(unsigned long val, void *v)
179
{
180
	return blocking_notifier_call_chain(&memory_chain, val, v);
181 182
}

183 184 185 186 187
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

188 189 190 191
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
192
static bool pages_correctly_reserved(unsigned long start_pfn)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

223 224 225
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
226
 * Must already be protected by mem_hotplug_begin().
227 228
 */
static int
229
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
230
{
231
	unsigned long start_pfn;
232
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
233 234
	int ret;

235
	start_pfn = section_nr_to_pfn(phys_index);
236

237
	switch (action) {
238 239 240 241 242 243 244 245 246 247 248 249 250
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
251 252 253 254 255
	}

	return ret;
}

256
static int memory_block_change_state(struct memory_block *mem,
257
		unsigned long to_state, unsigned long from_state_req)
258
{
259
	int ret = 0;
260

261 262
	if (mem->state != from_state_req)
		return -EINVAL;
263

264 265 266
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

267 268 269
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

270
	mem->state = ret ? from_state_req : to_state;
271

272 273
	return ret;
}
274

275
/* The device lock serializes operations on memory_subsys_[online|offline] */
276 277
static int memory_subsys_online(struct device *dev)
{
278
	struct memory_block *mem = to_memory_block(dev);
279
	int ret;
280

281 282
	if (mem->state == MEM_ONLINE)
		return 0;
283

284 285 286 287 288 289
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
290
		mem->online_type = MMOP_ONLINE_KEEP;
291

292
	/* Already under protection of mem_hotplug_begin() */
293
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
294

295 296
	/* clear online_type */
	mem->online_type = -1;
297 298 299 300 301

	return ret;
}

static int memory_subsys_offline(struct device *dev)
302
{
303
	struct memory_block *mem = to_memory_block(dev);
304

305 306
	if (mem->state == MEM_OFFLINE)
		return 0;
307

308 309 310 311
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

312
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
313
}
314

315
static ssize_t
316 317
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
318
{
319
	struct memory_block *mem = to_memory_block(dev);
320
	int ret, online_type;
321

322 323 324
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
325

326
	if (sysfs_streq(buf, "online_kernel"))
327
		online_type = MMOP_ONLINE_KERNEL;
328
	else if (sysfs_streq(buf, "online_movable"))
329
		online_type = MMOP_ONLINE_MOVABLE;
330
	else if (sysfs_streq(buf, "online"))
331
		online_type = MMOP_ONLINE_KEEP;
332
	else if (sysfs_streq(buf, "offline"))
333
		online_type = MMOP_OFFLINE;
334 335 336 337
	else {
		ret = -EINVAL;
		goto err;
	}
338

339 340 341 342 343 344 345 346 347
	/*
	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
	 * the correct memory block to online before doing device_online(dev),
	 * which will take dev->mutex.  Take the lock early to prevent an
	 * inversion, memory_subsys_online() callbacks will be implemented by
	 * assuming it's already protected.
	 */
	mem_hotplug_begin();

348
	switch (online_type) {
349 350 351
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
352 353 354
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
355
	case MMOP_OFFLINE:
356 357 358 359
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
360 361
	}

362
	mem_hotplug_done();
363
err:
364
	unlock_device_hotplug();
365

366
	if (ret < 0)
367
		return ret;
368 369 370
	if (ret)
		return -EINVAL;

371 372 373 374 375 376 377 378 379 380 381 382
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
383 384
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
385
{
386
	struct memory_block *mem = to_memory_block(dev);
387 388 389
	return sprintf(buf, "%d\n", mem->phys_device);
}

390 391 392 393 394 395
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
396
	unsigned long valid_start, valid_end, valid_pages;
397 398
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct zone *zone;
399
	int zone_shift = 0;
400 401 402 403 404

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;

	/* The block contains more than one zone can not be offlined. */
405
	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
406 407
		return sprintf(buf, "none\n");

408 409
	zone = page_zone(pfn_to_page(valid_start));
	valid_pages = valid_end - valid_start;
410

411 412 413 414
	/* MMOP_ONLINE_KEEP */
	sprintf(buf, "%s", zone->name);

	/* MMOP_ONLINE_KERNEL */
415
	zone_can_shift(valid_start, valid_pages, ZONE_NORMAL, &zone_shift);
416 417 418
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
419 420
	}

421
	/* MMOP_ONLINE_MOVABLE */
422
	zone_can_shift(valid_start, valid_pages, ZONE_MOVABLE, &zone_shift);
423 424 425
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
426 427
	}

428 429 430
	strcat(buf, "\n");

	return strlen(buf);
431 432 433 434
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

435 436 437 438
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
439 440 441 442 443

/*
 * Block size attribute stuff
 */
static ssize_t
444
print_block_size(struct device *dev, struct device_attribute *attr,
445
		 char *buf)
446
{
447
	return sprintf(buf, "%lx\n", get_memory_block_size());
448 449
}

450
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * Memory auto online policy.
 */

static ssize_t
show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	if (memhp_auto_online)
		return sprintf(buf, "online\n");
	else
		return sprintf(buf, "offline\n");
}

static ssize_t
store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	if (sysfs_streq(buf, "online"))
		memhp_auto_online = true;
	else if (sysfs_streq(buf, "offline"))
		memhp_auto_online = false;
	else
		return -EINVAL;

	return count;
}

static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
		   store_auto_online_blocks);

483 484 485 486 487 488 489 490
/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
491
memory_probe_store(struct device *dev, struct device_attribute *attr,
492
		   const char *buf, size_t count)
493 494
{
	u64 phys_addr;
495
	int nid, ret;
496
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
497

498 499 500
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
501

502 503 504
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

505 506 507
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr,
			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
508

509 510
	if (ret)
		goto out;
511

512 513 514
	ret = count;
out:
	return ret;
515 516
}

517
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
518 519
#endif

520 521 522 523 524 525 526
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
527 528
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
529
			const char *buf, size_t count)
530 531 532 533 534
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
535
	if (kstrtoull(buf, 0, &pfn) < 0)
536 537 538 539 540 541 542 543 544 545
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
546 547
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
548
			const char *buf, size_t count)
549 550 551 552 553
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
554
	if (kstrtoull(buf, 0, &pfn) < 0)
555 556
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
557
	ret = memory_failure(pfn, 0, 0);
558 559 560
	return ret ? ret : count;
}

561 562
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
563 564
#endif

565 566 567 568 569
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
570 571 572 573
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
574

575 576 577 578
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
579 580
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
581
{
582
	int block_id = base_memory_block_id(__section_nr(section));
583 584
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
585

586 587 588 589
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
590
		return NULL;
591
	return to_memory_block(dev);
592 593
}

594 595 596 597 598 599
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
600
 * This could be made generic for all device subsystems.
601 602 603 604 605 606
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

607 608 609 610 611
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
612 613 614
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
637
	memory->dev.offline = memory->state == MEM_OFFLINE;
638

639
	return device_register(&memory->dev);
640 641
}

642 643
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
644
{
645
	struct memory_block *mem;
646
	unsigned long start_pfn;
647
	int scn_nr;
648 649
	int ret = 0;

650
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
651 652 653
	if (!mem)
		return -ENOMEM;

654
	scn_nr = __section_nr(section);
655 656 657
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
658
	mem->state = state;
659
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
660 661
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

662 663 664 665 666 667
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

668
static int add_memory_block(int base_section_nr)
669
{
670 671
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
672

673 674 675 676 677 678 679 680
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
681 682
	}

683 684 685 686 687 688 689
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
690 691
}

692 693 694 695 696 697
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
698 699
	int ret = 0;
	struct memory_block *mem;
700 701 702

	mutex_lock(&mem_sysfs_mutex);

703 704 705 706 707 708 709 710
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
711
		mem->section_count++;
712 713 714 715 716 717
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
718
	return ret;
719 720 721 722 723 724 725 726 727
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
728
	put_device(&memory->dev);
729 730 731
	device_unregister(&memory->dev);
}

732
static int remove_memory_section(unsigned long node_id,
733
			       struct mem_section *section, int phys_device)
734 735 736
{
	struct memory_block *mem;

737
	mutex_lock(&mem_sysfs_mutex);
738 739 740 741 742

	/*
	 * Some users of the memory hotplug do not want/need memblock to
	 * track all sections. Skip over those.
	 */
743
	mem = find_memory_block(section);
744 745 746
	if (!mem)
		goto out_unlock;

747
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
748 749

	mem->section_count--;
750
	if (mem->section_count == 0)
751
		unregister_memory(mem);
752
	else
753
		put_device(&mem->dev);
754

755
out_unlock:
756
	mutex_unlock(&mem_sysfs_mutex);
757 758 759 760 761
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
762
	if (!present_section(section))
763 764
		return -EINVAL;

765
	return remove_memory_section(0, section, 0);
766
}
767
#endif /* CONFIG_MEMORY_HOTREMOVE */
768

769 770 771 772 773 774
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

775 776 777 778 779 780 781 782 783 784 785
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
786
	&dev_attr_auto_online_blocks.attr,
787 788 789 790 791 792 793 794 795 796 797 798
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

799 800 801 802 803 804 805
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
806
	int err;
807
	unsigned long block_sz;
808

809
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
810 811
	if (ret)
		goto out;
812

813 814 815
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

816 817 818 819
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
820
	mutex_lock(&mem_sysfs_mutex);
821
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
822 823 824 825
		/* Don't iterate over sections we know are !present: */
		if (i > __highest_present_section_nr)
			break;

826
		err = add_memory_block(i);
827 828
		if (!ret)
			ret = err;
829
	}
830
	mutex_unlock(&mem_sysfs_mutex);
831

832 833
out:
	if (ret)
834
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
835 836
	return ret;
}