memory.c 18.0 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20 21
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
22
#include <linux/mutex.h>
23
#include <linux/stat.h>
24
#include <linux/slab.h>
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
27 28
#include <asm/uaccess.h>

29 30
static DEFINE_MUTEX(mem_sysfs_mutex);

31
#define MEMORY_CLASS_NAME	"memory"
32 33 34 35 36 37 38

static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
39

40
static struct bus_type memory_subsys = {
41
	.name = MEMORY_CLASS_NAME,
42
	.dev_name = MEMORY_CLASS_NAME,
43 44
};

45
static BLOCKING_NOTIFIER_HEAD(memory_chain);
46

47
int register_memory_notifier(struct notifier_block *nb)
48
{
49
        return blocking_notifier_chain_register(&memory_chain, nb);
50
}
51
EXPORT_SYMBOL(register_memory_notifier);
52

53
void unregister_memory_notifier(struct notifier_block *nb)
54
{
55
        blocking_notifier_chain_unregister(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(unregister_memory_notifier);
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

73 74 75 76 77 78 79
static void memory_block_release(struct device *dev)
{
	struct memory_block *mem = container_of(dev, struct memory_block, dev);

	kfree(mem);
}

80 81 82
/*
 * register_memory - Setup a sysfs device for a memory block
 */
83
static
84
int register_memory(struct memory_block *memory)
85 86 87
{
	int error;

88 89
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
90
	memory->dev.release = memory_block_release;
91

92
	error = device_register(&memory->dev);
93 94 95 96
	return error;
}

static void
97
unregister_memory(struct memory_block *memory)
98
{
99
	BUG_ON(memory->dev.bus != &memory_subsys);
100

101
	/* drop the ref. we got in remove_memory_block() */
102 103
	kobject_put(&memory->dev.kobj);
	device_unregister(&memory->dev);
104 105
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

126 127 128 129 130
/*
 * use this as the physical section index that this memsection
 * uses.
 */

131 132
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
133 134
{
	struct memory_block *mem =
135
		container_of(dev, struct memory_block, dev);
136 137 138 139 140 141
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

142 143
static ssize_t show_mem_end_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
144 145
{
	struct memory_block *mem =
146
		container_of(dev, struct memory_block, dev);
147 148 149 150
	unsigned long phys_index;

	phys_index = mem->end_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
151 152
}

153 154 155
/*
 * Show whether the section of memory is likely to be hot-removable
 */
156 157
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
158
{
159 160
	unsigned long i, pfn;
	int ret = 1;
161
	struct memory_block *mem =
162
		container_of(dev, struct memory_block, dev);
163

164
	for (i = 0; i < sections_per_block; i++) {
165
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
166 167 168
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

169 170 171
	return sprintf(buf, "%d\n", ret);
}

172 173 174
/*
 * online, offline, going offline, etc.
 */
175 176
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
177 178
{
	struct memory_block *mem =
179
		container_of(dev, struct memory_block, dev);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

206
int memory_notify(unsigned long val, void *v)
207
{
208
	return blocking_notifier_call_chain(&memory_chain, val, v);
209 210
}

211 212 213 214 215
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
static bool pages_correctly_reserved(unsigned long start_pfn,
					unsigned long nr_pages)
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

252 253 254 255 256
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
257
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
258
{
259
	unsigned long start_pfn;
260
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
261
	struct page *first_page;
262 263
	int ret;

264
	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
265
	start_pfn = page_to_pfn(first_page);
266

267 268
	switch (action) {
		case MEM_ONLINE:
269 270 271
			if (!pages_correctly_reserved(start_pfn, nr_pages))
				return -EBUSY;

272
			ret = online_pages(start_pfn, nr_pages, online_type);
273 274
			break;
		case MEM_OFFLINE:
275
			ret = offline_pages(start_pfn, nr_pages);
276 277
			break;
		default:
278 279
			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
			     "%ld\n", __func__, phys_index, action, action);
280 281 282 283 284 285
			ret = -EINVAL;
	}

	return ret;
}

286
static int __memory_block_change_state(struct memory_block *mem,
287 288
		unsigned long to_state, unsigned long from_state_req,
		int online_type)
289
{
290
	int ret = 0;
291

292 293 294 295 296
	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

297 298 299
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

300
	ret = memory_block_action(mem->start_section_nr, to_state, online_type);
301

302
	if (ret) {
303
		mem->state = from_state_req;
304 305
		goto out;
	}
306

307 308 309 310 311 312 313 314 315 316 317
	mem->state = to_state;
	switch (mem->state) {
	case MEM_OFFLINE:
		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
		break;
	case MEM_ONLINE:
		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
		break;
	default:
		break;
	}
318 319 320 321
out:
	return ret;
}

322
static int memory_block_change_state(struct memory_block *mem,
323 324
		unsigned long to_state, unsigned long from_state_req,
		int online_type)
325 326 327 328
{
	int ret;

	mutex_lock(&mem->state_mutex);
329 330
	ret = __memory_block_change_state(mem, to_state, from_state_req,
					  online_type);
331 332 333 334
	mutex_unlock(&mem->state_mutex);

	return ret;
}
335
static ssize_t
336 337
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
338 339 340 341
{
	struct memory_block *mem;
	int ret = -EINVAL;

342
	mem = container_of(dev, struct memory_block, dev);
343

344 345 346 347 348 349 350 351 352 353 354 355
	if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
		ret = memory_block_change_state(mem, MEM_ONLINE,
						MEM_OFFLINE, ONLINE_KERNEL);
	else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
		ret = memory_block_change_state(mem, MEM_ONLINE,
						MEM_OFFLINE, ONLINE_MOVABLE);
	else if (!strncmp(buf, "online", min_t(int, count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE,
						MEM_OFFLINE, ONLINE_KEEP);
	else if(!strncmp(buf, "offline", min_t(int, count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE,
						MEM_ONLINE, -1);
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
371 372
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
373 374
{
	struct memory_block *mem =
375
		container_of(dev, struct memory_block, dev);
376 377 378
	return sprintf(buf, "%d\n", mem->phys_device);
}

379 380 381 382 383
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
384 385

#define mem_create_simple_file(mem, attr_name)	\
386
	device_create_file(&mem->dev, &dev_attr_##attr_name)
387
#define mem_remove_simple_file(mem, attr_name)	\
388
	device_remove_file(&mem->dev, &dev_attr_##attr_name)
389 390 391 392 393

/*
 * Block size attribute stuff
 */
static ssize_t
394
print_block_size(struct device *dev, struct device_attribute *attr,
395
		 char *buf)
396
{
397
	return sprintf(buf, "%lx\n", get_memory_block_size());
398 399
}

400
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
401 402 403

static int block_size_init(void)
{
404 405
	return device_create_file(memory_subsys.dev_root,
				  &dev_attr_block_size_bytes);
406 407 408 409 410 411 412 413 414 415
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
416
memory_probe_store(struct device *dev, struct device_attribute *attr,
417
		   const char *buf, size_t count)
418 419
{
	u64 phys_addr;
420
	int nid;
421
	int i, ret;
422
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
423 424 425

	phys_addr = simple_strtoull(buf, NULL, 0);

426 427 428
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

429 430 431 432 433
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
434
			goto out;
435 436 437

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
438

439 440 441
	ret = count;
out:
	return ret;
442
}
443
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
444 445 446

static int memory_probe_init(void)
{
447
	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
448 449
}
#else
450 451 452 453
static inline int memory_probe_init(void)
{
	return 0;
}
454 455
#endif

456 457 458 459 460 461 462
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
463 464
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
465
			const char *buf, size_t count)
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
482 483
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
484
			const char *buf, size_t count)
485 486 487 488 489 490 491 492
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
493
	ret = memory_failure(pfn, 0, 0);
494 495 496
	return ret ? ret : count;
}

497 498
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
499 500 501 502 503

static __init int memory_fail_init(void)
{
	int err;

504 505
	err = device_create_file(memory_subsys.dev_root,
				&dev_attr_soft_offline_page);
506
	if (!err)
507 508
		err = device_create_file(memory_subsys.dev_root,
				&dev_attr_hard_offline_page);
509 510 511 512 513 514 515 516 517
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

518 519 520 521 522
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
523 524 525 526
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
527

528 529 530 531
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
532 533
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
534
{
535
	int block_id = base_memory_block_id(__section_nr(section));
536 537
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
538

539 540 541 542
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
543
		return NULL;
544
	return container_of(dev, struct memory_block, dev);
545 546
}

547 548 549 550 551 552
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
553
 * This could be made generic for all device subsystems.
554 555 556 557 558 559
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

560 561
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
562
{
563
	struct memory_block *mem;
564
	unsigned long start_pfn;
565
	int scn_nr;
566 567
	int ret = 0;

568
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
569 570 571
	if (!mem)
		return -ENOMEM;

572
	scn_nr = __section_nr(section);
573 574 575
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
576
	mem->state = state;
577
	mem->section_count++;
578
	mutex_init(&mem->state_mutex);
579
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
580 581
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

582
	ret = register_memory(mem);
583 584
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
585 586
	if (!ret)
		ret = mem_create_simple_file(mem, end_phys_index);
587 588 589 590 591 592
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
593 594 595 596 597 598

	*memory = mem;
	return ret;
}

static int add_memory_section(int nid, struct mem_section *section,
599
			struct memory_block **mem_p,
600 601
			unsigned long state, enum mem_add_context context)
{
602 603
	struct memory_block *mem = NULL;
	int scn_nr = __section_nr(section);
604 605 606 607
	int ret = 0;

	mutex_lock(&mem_sysfs_mutex);

608 609 610 611 612 613 614 615 616 617 618
	if (context == BOOT) {
		/* same memory block ? */
		if (mem_p && *mem_p)
			if (scn_nr >= (*mem_p)->start_section_nr &&
			    scn_nr <= (*mem_p)->end_section_nr) {
				mem = *mem_p;
				kobject_get(&mem->dev.kobj);
			}
	} else
		mem = find_memory_block(section);

619 620
	if (mem) {
		mem->section_count++;
621
		kobject_put(&mem->dev.kobj);
622
	} else {
623
		ret = init_memory_block(&mem, section, state);
624 625 626 627 628
		/* store memory_block pointer for next loop */
		if (!ret && context == BOOT)
			if (mem_p)
				*mem_p = mem;
	}
629

630
	if (!ret) {
631 632
		if (context == HOTPLUG &&
		    mem->section_count == sections_per_block)
633 634 635
			ret = register_mem_sect_under_node(mem, nid);
	}

636
	mutex_unlock(&mem_sysfs_mutex);
637 638 639
	return ret;
}

640 641 642 643 644
int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

645
	mutex_lock(&mem_sysfs_mutex);
646
	mem = find_memory_block(section);
647
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
648 649 650 651

	mem->section_count--;
	if (mem->section_count == 0) {
		mem_remove_simple_file(mem, phys_index);
652
		mem_remove_simple_file(mem, end_phys_index);
653 654 655
		mem_remove_simple_file(mem, state);
		mem_remove_simple_file(mem, phys_device);
		mem_remove_simple_file(mem, removable);
656 657
		unregister_memory(mem);
	} else
658
		kobject_put(&mem->dev.kobj);
659

660
	mutex_unlock(&mem_sysfs_mutex);
661 662 663 664 665 666 667
	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
668
int register_new_memory(int nid, struct mem_section *section)
669
{
670
	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
671 672 673 674
}

int unregister_memory_section(struct mem_section *section)
{
675
	if (!present_section(section))
676 677 678 679 680
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

681 682 683 684 685 686 687 688 689
/*
 * offline one memory block. If the memory block has been offlined, do nothing.
 */
int offline_memory_block(struct memory_block *mem)
{
	int ret = 0;

	mutex_lock(&mem->state_mutex);
	if (mem->state != MEM_OFFLINE)
690
		ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
691 692 693 694 695
	mutex_unlock(&mem->state_mutex);

	return ret;
}

696 697 698 699 700 701
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

702 703 704 705 706 707 708
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
709
	int err;
710
	unsigned long block_sz;
711
	struct memory_block *mem = NULL;
712

713
	ret = subsys_system_register(&memory_subsys, NULL);
714 715
	if (ret)
		goto out;
716

717 718 719
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

720 721 722 723 724
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
725
		if (!present_section_nr(i))
726
			continue;
727 728 729 730
		/* don't need to reuse memory_block if only one per block */
		err = add_memory_section(0, __nr_to_section(i),
				 (sections_per_block == 1) ? NULL : &mem,
					 MEM_ONLINE,
731
					 BOOT);
732 733
		if (!ret)
			ret = err;
734 735
	}

736
	err = memory_probe_init();
737 738 739
	if (!ret)
		ret = err;
	err = memory_fail_init();
740 741 742 743 744 745 746
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
747
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
748 749
	return ret;
}